
Optimizing	Paxos

Arvind	Krishnamurthy	

University	of	Washington



Leader-Based	Paxos

• Optimized	to	eliminate	Phase	1	messages	

• Phase	1	message	cost	is	amortized	for	many	
instances	into	the	future	

• What	are	the	costs	of	leader-based	Paxos?	

• Number	of	messages	per	instance	

• Latency	for	a	client	request	
• Number	of	messages	at	bottleneck	node



Paxos	deployment	models

• Datacenter	
• Wide-area	(across	the	Internet)	

• What	are	the	implications	of	different	types	of	
deployments?



Paxos	Variants

• Optimizations:	

• Reduce	latency	from	a	client	perspective	
(FastPaxos,	SpecPaxos,	NoPaxos)	

• Reduce	load	on	the	leader	(FastPaxos,	Mencius,	
EPaxos)



Mencius

• Approach:	
• Rotating	leader	
• Variant	of	consensus	algorithm	

• Various	optimizations	to	make	rotations	
seamless



Rotating	the	leader

• Each	instance	of	consensus	is	assigned	to	a	
“coordinator”	

• Coordinator	is	the	default	leader	of	that	instance	
• Simple	assignment:	e.g.,	round-robin	

• A	server	proposes	client	requests	immediately	to	
the	next	available	instance	it	coordinates	

• A	server	only	proposes	client	requests	to	instances	
it	coordinates



Rule	1

• A	server	p	maintains	its	index	Ip,	i.e.,	the	next	
consensus	instance	it	coordinates	

• Rule	1:	Upon	receiving	a	client	request	v,	it	
immediately	proposes	v	to	instance	Ip	and	updates	
its	index	accordingly



Benefits	of	rotating	the	leader

• All	servers	can	now	propose	requests	directly	
• Low	latency	at	all	sites	

• Load	balancing	at	the	servers	
• Higher	throughput	under	CPU-bound	client	load	

• Balanced	communication	pattern	

• Higher	throughput	under	network-bound	load



Servers	with	different	loads

• Rule	1	only	works	well	when	all	the	servers	have	
the	same	load	

• Servers	may	observe	different	loads	

• Servers	can	skip	turns	(propose	no-ops)



Rule	2

• Rule	2:	If	server	p	receives	a	propose	message	with	
some	value	v	other	than	no-op	for	instance	i	and	
i>Ip,	before	accepting	v	and	sending	back	an	accept	
message,	p	updates	its	index	Ip	to	be	greater	than	i	
and	proposes	no-ops	for	each	instance	in	range	
[Ip,Ip’)	that	p	coordinates,	where	Ip’	is	p’s	new	index.	



Proposing	no-ops	is	costly

• Consider	the	case	where	only	one	server	is	
proposing	values	

• It	takes	O(n2)	messages	to	get	one	value	chosen	

• Solution:	impose	constraints	on	what	servers	can	
propose	and	use	these	constraints	to	optimize	
communication	costs



“Simple	Consensus”

• Simple	consensus	constraints:	

• Coordinator	can	propose	either	a	client	request	
or	a	no-op	

• Non-coordinator:	only	no-op	
• Benefits	
• no-op	can	be	learned	in	one	message	delay	if	
the	coordinator	skips	(proposes	a	no-op)	

• Easy	to	piggyback	no-ops	to	improve	efficiency	
(essentially	at	no	extra	cost)	



Coordinated	Paxos

• Starting	state	
• The	coordinator	is	the	default	leader	
• Start	from	state	as	if	phase	one	is	done	by	the	coordinator	

• Suggest	
• The	coordinator	proposes	a	request	(Phase	2)	

• Skip	
• The	coordinator	proposes	a	no-op;	fast	learning	

• Revoke	
• A	replica	starts	the	full	phase	1	&	2	and	proposes	a	no-op	
• Only	needed	when	failure	is	suspected



Skips	with	simple	consensus



Reduce	message	complexity

• Piggyback	skip	to	2b	messages	as	well	as	future	2a	
messages



Mencius	optimizations

• When	a	server	p	receives	a	suggest	message	from	
server	q.	Let	r	be	a	server	other	than	p	or	q.	

• Optimization	1:	p	does	not	send	a	separate	skip	
message	to	q.	Instead,	p	uses	the	accept	message	that	
replies	the	suggest	to	promise	not	to	suggest	any	client	
requests	to	instances	smaller	than	i	in	the	future.	

• Optimization	2:	p	does	not	send	a	skip	message	to	r	
immediately.	Instead,	p	waits	for	a	future	suggest	
message	from	p	to	r	to	indicate	that	p	has	promised	
not	to	suggest	any	client	requests	to	instances	smaller	
than	i.



Gaps	in	idle	replicas

• Potentially	unbounded	number	of	requests	wait	to	
be	committed	

• When	a	server	p	receives	a	suggest	message	from	
server	q,	let	r	be	a	server	other	than	p	or	q.	

• Accelerator	1:	A	server	p	propagates	skip	messages	
to	r	if	the	total	number	of	outstanding	skip	
messages	to	r	is	more	than	some	constant	α,	or	the	
message	has	been	deferred	for	more	than	some	
time	τ.



Failures

• Faulty	processes	cannot	skip	

• How	can	we	handle	faults?



Revocation

• Rule	3:	Let	q	be	a	server	that	another	server	p	
suspects	has	failed,	and	let	Cq	be	the	smallest	
instance	that	is	coordinated	by	q	and	not	learned	
by	p,	p	revokes	q	for	all	instances	in	the	range	[Cq,Ip]	
that	q	coordinates.	

• Revoke:	propose	no-op	on	behalf	of	the	faulty	
processes	

• Problem:	Full	3	phases	of	Paxos	are	costly	

• Solution:	revoke	for	large	block



Revocation	&	Recovery

• Node	may	come	back	because	of	failure	recovery	or	false	
suspicion	

• Find	out	the	next	available	slots	it	coordinates	

• Start	proposing	request	to	that	slot



Delayed	Commit

• Up	to	one	RTT	delay	
• Out-of-order	commits	for	commutable	requests



Mencius	Summary

• Rotating	leader	Paxos	
• Easy	to	ensure	safety	and	a	flexible	design	
• Simple	consensus	

• High	performance	

• High	throughput	under	high	load	
• Low	latency	under	low	load	
• Better	load	balancing



Egalitarian	Paxos

• Similar	goals:	

• High	throughput,	low	latency	
• Fast	failure	recovery	
• Load	balancing	
• Use	closest/fastest	replica	(geographically	
distributed)



EPaxos	Overview

• Each	replica	has	its	own	log	of	operations	
• Replica	has	“pre-prepared”	all	slots	in	its	log	

• No	longer	a	single	sequential	log;	order	is	unclear	
• Each	operation	comes	with	a	dependency	list	

• Other	operations	have	to	run	before	it



Dependencies

• Issuing	replica	might	know	of	the	most	recent	
conflicting	operations	

• During	first	round	of	messages,	acceptors	inform	
issuer	about	conflicts	

• Look	at	other	instances	
• Quorum	rule	means	issuer	learns	about	all	conflicts	

• First	round	of	messages:	pre-accept	&	ok	

• Ok	response	includes	conflict	list	
• If	agreement	on	conflict	list,	then	can	commit



When	do	two	commands	conflict?

• Interference	is	application	specified	
• E.g.,	same	key	in	KV	store	

• For	different	keys,	order	does	not	matter



Protocol



Protocol



Protocol



Protocol



Protocol



What	is	a	quorum?

• For	fast	path,	it	is	f	+	floor((f+1)/2)	
• For	slow	path,	it	is	f	+	1	
• Quorum	sizes	are	dependent	on	the	recovery	
protocol	

• What	happens	when	the	proposer	fails?	

• Can	we	reconstruct	the	state	that	the	proposer	
might	have	obtained?



Protocol



Protocol



When	is	second	phase	needed?

• If	all	responses	are	same,	quorum	of	nodes	
remember	the	pre-accept-ok	response	

• If	proposer	crashes,	recovery	ensures	that	
operation	will	go	into	the	slot	

• If	some	differ,	need	to	agree	on	what	is	the	slot



Order	only	interfering	commands

• 1	RTT	
• Non-concurrent	commands	

• OR	non-interfering	commands	

• 2	RTTs	
• Concurrent	and	interfering	commands



Ordering	with	dependencies

• If	two	conflicting	commands	are	committed,	at	
least	one	has	a	dependency	on	the	other	

• Execute	dependencies	of	a	command	first	

• But,	if	commands	are	mutually	dependent,	use	a	
deterministic	algorithm	to	compute	their	order



Execution



Execution

• Order	strongly	connected	components

Commands	in	SCC	ordered	by	
replica	sequence	numbers



Other	details

• Dependency	list	size:	safe	to	include	just	the	latest	
conflicting	operation	

• EPaxos	could	potentially	execute	a	transaction	—	
needs	to	take	into	account	dependencies	of	all	
operations	

• Recovery	could	be	complex



Performance	Gains

• Balanced	load	
• Client	can	use	the	closest	replica	as	the	coordinator	
• Replica	can	use	closest	replicas	as	its	quorum


