
Replicated	State	Machines	
Primary-Backup

Arvind	Krishnamurthy	

University	of	Washington

Primary-Backup	Replication

• Widely	used	

• Reasonably	simple	to	implement	

• Hard	to	get	desired	consistency	and	performance		

• Will	revisit	this	and	consider	other	approaches	later	
in	the	class

Fault	Tolerance

• we'd	like	a	service	that	continues	despite	failures!	
• available:	still	useable	despite	some	class	of	failures	

• strong	consistency:	act	just	like	a	single	server	to	
clients	

• very	useful!	
• very	hard!

Failure	Model

• What	do	we	want	to	cope	with?	

• Independent	fail-stop	computer	failure	

• Site-wide	power	failure	(and	eventual	reboot)	
• Network	partition	
• No	bugs,	no	malice

Core	Idea:	replication

• Two	servers	(or	more)	

• Each	replica	keeps	state	needed	for	the	service	
• If	one	replica	fails,	others	can	continue

Key	Questions

• What	state	to	replicate?	

• How	does	replica	get	state?	
• When	to	cut	over	to	backup?	

• Are	anomalies	visible	at	cut-over?	

• How	to	repair/re-integrate?

Two	Main	Approaches

• State	transfer	
• "Primary"	replica	executes	the	service	

• Primary	sends	[new]	state	to	backups	

• Replicated	state	machine	

• All	replicas	execute	all	operations	

• If	same	start	state,	same	operations,	same	
order,	deterministic	→ then	same	end	state	

• There	are	tradeoffs:	complexity,	costs,	consistency

Design	Space

• Active	or	passive	replicas	
• Symmetric	replicas	or	primary-backup	

• Replicate	commands	or	low-level	inputs

State	Machines

X = Yc

X = Z

f(c) • c is a Command
• f is a Transition

Function

State	Machine	Replication	(SMR)

• The	State
Machine
Approach to	
a	fault	
tolerant	
distributed	
system	

• Keep	around	
N	copies	of	
the	state	
machine

X = Y

X = Y

X = Y

X = Yc

State Machine
Replica

State	Machine	Replication	(SMR)

• The	State
Machine
Approach to	
a	fault	
tolerant	
distributed	
system	

• Keep	around	
N	copies	of	
the	state	
machine

X = Z

X = Z

X = Z

X = Z

State Machine
Replica

f(c)

f(c) f(c)

f(c)

SMR	Requirements

X = 3

X = 3

X = 3

X = 3put(x,10)

SMR	Requirements

X = 10

X = 10

X = 10

X = 10

Great!

SMR	Requirements

X = 3

X = 3

X = 3

X = 3put(x,10)

SMR	
Requirements

X = 10

X = 10

X = 3

X = 10

Problem!

get(x)

10

get(x)

3

• Replicas	need	
to	agree	on	the	
which 
requests	have	
been	handled

SMR	Requirements

X = 3

X = 3

X = 3

X = 3put(x,10) put(x,30)
r0 r1

SMR	Requirements

X = 10

X = 10

X = 10

X = 10

X = 30

X = 30

X = 30

X = 30

OR

SMR	Requirements

X = 3

X = 3

X = 3

X = 3put(x,10) put(x,30)
r0 r1

SMR	Requirements

X = 10

X = 10

X = 30

X = 30r0
r1

put(x,10)
r0

put(x,30)

r1

r0
r1

r1
r0

r1
r0

SMR	Requirements

X = 30

X = 30

X = 10

X = 10r0
r1

r0
r1

r1
r0

r1
r0

• Replicas	need	to	handle	requests	in	the	same	order

SMR

• All	non	faulty	servers	need:	
• Agreement	

• Every	replica	needs	to	accept	the	same	set	
of	requests	

• Order	

• All	replicas	process	requests	in	the	same	
relative	order

Implementation

• Order	
• Assign	unique	ids	to	requests,	process	them	in	
ascending	order.	

• How	do	we	assign	unique	ids	in	a	distributed	
system?	

• How	do	we	know	when	every	replica	has	
processed	a	given	request?

SMR	Requirements

X = 3

X = 3

X = 3

X = 3put(x,30) put(x,10)
r0 r1

SMR	Requirements

X = 3

X = 3

X = 3

X = 3put(x,30) put(x,10)
r0 r1

Request ID
r0 1
r1 2

Assign Total
Ordering

Replica	Generated	IDs

• 2 Phase ID generation

• Every Replica proposes a candidate

• One candidate is chosen and agreed upon by all
replicas

Replica	ID	Generation

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1
r1 2.1

Req. CUID UID
r0 1.2
r1 2.2

Req. CUID UID
r1 1.3
r0 2.3

Req. CUID UID
r1 1.4
r0 2.4

1) Propose Candidates

Replica	ID	Generation

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1 2.4
r1 2.1

Req. CUID UID
r0 1.2 2.4
r1 2.2

Req. CUID UID
r1 1.3
r0 2.3 2.4

Req. CUID UID
r1 1.4
r0 2.4 2.4

2) Accept r0

Replica	ID	Generation

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1 2.4
r1 2.1 2.2

Req. CUID UID
r0 1.2 2.4
r1 2.2 2.2

Req. CUID UID
r1 1.3 2.2
r0 2.3 2.4

Req. CUID UID
r1 1.4 2.2
r0 2.4 2.4

3) Accept r1

Replica	ID	Generation

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r1 2.1 2.2
r0 1.1 2.4

Req. CUID UID
r1 2.2 2.2
r0 1.2 2.4

Req. CUID UID
r1 1.3 2.2
r0 2.3 2.4

Req. CUID UID
r1 1.4 2.2
r0 2.4 2.4

r1 is now stable

Replica	ID	Generation

X = 10

X = 10

X = 10

X = 10
Req. CUID UID

r1 2.1 2.2
r0 1.1 2.4

Req. CUID UID
r1 2.2 2.2
r0 1.2 2.4

Req. CUID UID
r1 1.3 2.2
r0 2.3 2.4

Req. CUID UID
r1 1.4 2.2
r0 2.4 2.4

4) Apply r1

Replica	ID	Generation

X = 30

X = 30

X = 30

X = 30
Req. CUID UID

r1 2.1 2.2
r0 1.1 2.4

Req. CUID UID
r1 2.2 2.2
r0 1.2 2.4

Req. CUID UID
r1 1.3 2.2
r0 2.3 2.4

Req. CUID UID
r1 1.4 2.2
r0 2.4 2.4

5) Apply r0

Chain	Replication

• Fault Tolerant Storage Service (Fail-Stop)

• Requests:

• Update(x, y) => set object x to value y

• Query(x) => read value of object x

Chain	Replication

X = 3

X = 3

X = 3

X = 3

Chain	Replication

X = 3X = 3 X = 3 X = 3

Head Tail

Client

get(x) 3

Chain	Replication

X = 3X = 3 X = 3 X = 3

Head Tail

Client

put(x,30)

Chain	Replication

X = 3X = 30 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r0 1

1) Head assigns uid

Chain	Replication

X = 30X = 30 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r0 1

Req. UID
r0 1

2) Head sends message
to next node

Chain	Replication

X = 30X = 30 X = 30 X = 3

Head Tail

Client

put(x,30)

Req. UID
r0 1

Req. UID
r0 1

Req. UID
r0 1

3) Repeat until
 tail is reached

Chain	Replication

X = 30X = 30 X = 30 X = 30

Head Tail

Client

put(x,30)

Req. UID
r0 1

Req. UID
r0 1

Req. UID
r0 1

Req. UID
r0 1

x= 30 4) respond to client with  
success

Chain	Replication

• How does Chain Replication implement State Machine
Replication?

• Agreement

• Only Update modifies state, can ignore Query

• Client always sends update to Head. Head
propagates request down chain to Tail.

• Everyone accepts the request!

Chain	Replication

• How does Chain Replication implement State Machine
Replication?

• Order

• Unique IDs generated implicitly by Head’s ordering

• FIFO order preserved down the chain

• Tail interleaves Query requests

• How can clients tell when their Updates have been handled?

Chain	Replication

X = 3X = 3 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1

Chain	Replication

X = 3X = 10 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1

Req. UID

r1 1

Req. UIDReq. UID

Chain	Replication

X = 10X = 30 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1

Req. UID
r1 1
r0 2

Req. UIDReq. UID
r1 1

Chain	Replication

X = 10X = 30 X = 10 X = 10

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1

Chain	Replication

X = 10X = 30 X = 10 X = 10

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1

x=10

Fault	Tolerance

• Trusted	Master	

• Fault-tolerant	state	machine

• Trusted	by	all	replicas	

• Monitors	all	replicas	&	issues	commands	

• How	can	you	rely	on	this	trusted	master?

Fault	Tolerance

• Failure cases:

• Head Fails

• Master assigns 2nd node as Head

• Tail Fails

• Master assigns 2nd to last node as Tail

• Intermediate Node Fails

• Master coordinates chain link-up

Chain Replication
Evaluation

• Compare to other primary/backup protocols

• Tradeoffs?

• Latency

• Consistency

• Trusted Master

VMware’s	FT	Virtual	Machines

• Whole-system	replication	

• Completely	transparent	to	applications	and	clients	

• High	availability	for	any	existing	software	
• Failure	model:	

• independent	hardware	faults	

• site-wide	power	failure	

• Limited	to	uniprocessor	VMs

Overview

• two	machines,	primary	and	backup	

• shared-disk	for	persistent	storage	
• back-up	in	"lock	step"	with	primary	

• primary	sends	all	inputs	to	backup	

• outputs	of	backup	are	dropped	

• heart	beats	between	primary	and	backup	

• if	primary	fails,	start	backup	executing!

Challenges

• Making	it	look		like	a	single	reliable	server	

• How	to	avoid	two	primaries?		(“split-brain	
syndrome")	

• How	to	make	backup	an	exact	replica	of	primary	

• What	inputs	must	be	sent	to	backup?	

• How	to	deal	with	non-determinism?

Technique	1:	Deterministic	Replay

• Goal:	make	x86	platform	deterministic	

• idea:	use	hypervisor	to	make	virtual	x86	platform	
deterministic	

• Log	all	hardware	events	into	a	log	
• clock	interrupts,	network	interrupts,	i/o	interrupts,	etc.	

• for	non-deterministic	instructions,	record	additional	
info	

• e.g.,	log	the	value	of	the	time	stamp	register	

• on	replay:	return	the	value	from	the	log	instead	of	
the	actual	register

Deterministic	Replay

• Replay:	deliver	inputs	in	the	same	order,	at	the	same	instructions	

• if	during	recording	delivered	clock	interrupt	at	nth	instr.	

• during	replay	also	deliver	the	interrupt	at	the	nth	instr.	

• Given	an	event	log,	deterministic	replay	recreates	VM	

• hypervisor	delivers	first	event	

• lets	the	machine	execute	to	the	next	event	

• using	special	hardware	registers	to	stop	the	processor	at	the	
right	instruction	

• OS	runs	identical,	applications	runs	identical	

• Limitation:	cannot	handle	multicore	processors	and	interleaving

Applying	Deterministic	Replay	to	VM-FT

• Hypervisor	at	primary	records	

• Sends	log	entries	to	backup	over	logging	
channel	

• Hypervisor	at	backup	replays	log	entries	
• We	need	to	stop	virtual	x86	at	instruction	of	

next	event	

• We	need	to	know	what	is	the	next	event	

• backup	lags	behind	one	event

Example

• Primary	receives	network	interrupt	

• hypervisor	forwards	interrupt	plus	data	to	backup	

• hypervisor	delivers	network	interrupt	to	OS	kernel	

• OS	kernel	runs,	kernel	delivers	packet	to	server	

• server/kernel	write	response	to	network	card	

• hypervisor	gets	control	and	puts	response	on	the	wire	

• Backup	receives	log	entries	

• backup	delivers	network	interrupt	

• …	

• hypervisor	does	*not*	put	response	on	the	wire	

• hypervisor	ignores	local	clock	interrupts

Technique	2:	FT	Protocol

• Primary	delays	any	output	until	the	backup	acks	

• Log	entry	for	each	output	operation	

• Primary	sends	output	after	backup	acked	
receiving	output	operation	

• Performance	optimization:	

• primary	keeps	executing	past	output	
operations	

• buffers	output	until	backup	acknowledges

Questions

• Why	send	output	events	to	backup	and	delay	
output	until	backup	has	acked?	

• What	happens	when	primary	fails	after	receiving	
network	input	but	before	sending	a	corresponding	
log	entry	to	backup?

