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Primary-Backup	Replication

• Widely	used	

• Reasonably	simple	to	implement	

• Hard	to	get	desired	consistency	and	performance		

• Will	revisit	this	and	consider	other	approaches	later	
in	the	class



Fault	Tolerance

• we'd	like	a	service	that	continues	despite	failures!	
• available:	still	useable	despite	some	class	of	failures	

• strong	consistency:	act	just	like	a	single	server	to	
clients	

• very	useful!	
• very	hard!



Failure	Model

• What	do	we	want	to	cope	with?	

• Independent	fail-stop	computer	failure	

• Site-wide	power	failure	(and	eventual	reboot)	
• Network	partition	
• No	bugs,	no	malice



Core	Idea:	replication

• Two	servers	(or	more)	

• Each	replica	keeps	state	needed	for	the	service	
• If	one	replica	fails,	others	can	continue



Key	Questions

• What	state	to	replicate?	

• How	does	replica	get	state?	
• When	to	cut	over	to	backup?	

• Are	anomalies	visible	at	cut-over?	

• How	to	repair/re-integrate?



Two	Main	Approaches

• State	transfer	
• "Primary"	replica	executes	the	service	

• Primary	sends	[new]	state	to	backups	

• Replicated	state	machine	

• All	replicas	execute	all	operations	

• If	same	start	state,	same	operations,	same	
order,	deterministic	→ then	same	end	state	

• There	are	tradeoffs:	complexity,	costs,	consistency



Design	Space

• Active	or	passive	replicas	
• Symmetric	replicas	or	primary-backup	

• Replicate	commands	or	low-level	inputs



State	Machines

X = Yc

X = Z

f(c) • c is a Command 
• f is a Transition 

Function



State	Machine	Replication	(SMR)
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SMR	Requirements
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SMR	
Requirements
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SMR	Requirements
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• Replicas	need	to	handle	requests	in	the	same	order



SMR

• All	non	faulty	servers	need:	
• Agreement	

• Every	replica	needs	to	accept	the	same	set	
of	requests	

• Order	

• All	replicas	process	requests	in	the	same	
relative	order



Implementation

• Order	
• Assign	unique	ids	to	requests,	process	them	in	
ascending	order.	

• How	do	we	assign	unique	ids	in	a	distributed	
system?	

• How	do	we	know	when	every	replica	has	
processed	a	given	request?



SMR	Requirements
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SMR	Requirements
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Replica	Generated	IDs

• 2 Phase ID generation 

• Every Replica proposes a candidate

• One candidate is chosen and agreed upon by all 
replicas



Replica	ID	Generation
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Replica	ID	Generation
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Replica	ID	Generation
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Replica	ID	Generation
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Replica	ID	Generation
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Replica	ID	Generation
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Chain	Replication

• Fault Tolerant Storage Service (Fail-Stop) 

• Requests: 

• Update(x, y) => set object x  to value y

• Query(x) => read value of object x



Chain	Replication
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Chain	Replication
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Chain	Replication
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Chain	Replication
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Chain	Replication
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Chain	Replication
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Chain	Replication

• How does Chain Replication implement State Machine 
Replication? 

• Agreement 

• Only Update modifies state, can ignore Query

• Client always sends update to Head. Head 
propagates request down chain to Tail.  

• Everyone accepts the request!



Chain	Replication

• How does Chain Replication implement State Machine 
Replication? 

• Order 

• Unique IDs generated implicitly by Head’s ordering 

• FIFO order preserved down the chain 

• Tail interleaves Query requests 

• How can clients tell when their Updates have been handled?



Chain	Replication
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Chain	Replication
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Chain	Replication
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Chain	Replication
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Chain	Replication
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Fault	Tolerance

• Trusted	Master	

• Fault-tolerant	state	machine

• Trusted	by	all	replicas	

• Monitors	all	replicas	&	issues	commands	

• How	can	you	rely	on	this	trusted	master?



Fault	Tolerance

• Failure cases: 

• Head Fails 

• Master assigns 2nd node as Head

• Tail Fails 

• Master assigns 2nd to last node as Tail

• Intermediate Node Fails 

• Master coordinates chain link-up



Chain Replication 
Evaluation

• Compare to other primary/backup protocols 

• Tradeoffs? 

• Latency 

• Consistency 

• Trusted Master



VMware’s	FT	Virtual	Machines

• Whole-system	replication	

• Completely	transparent	to	applications	and	clients	

• High	availability	for	any	existing	software	
• Failure	model:	

• independent	hardware	faults	

• site-wide	power	failure	

• Limited	to	uniprocessor	VMs



Overview

• two	machines,	primary	and	backup	

• shared-disk	for	persistent	storage	
• back-up	in	"lock	step"	with	primary	

• primary	sends	all	inputs	to	backup	

• outputs	of	backup	are	dropped	

• heart	beats	between	primary	and	backup	

• if	primary	fails,	start	backup	executing!



Challenges

• Making	it	look		like	a	single	reliable	server	

• How	to	avoid	two	primaries?		(“split-brain	
syndrome")	

• How	to	make	backup	an	exact	replica	of	primary	

• What	inputs	must	be	sent	to	backup?	

• How	to	deal	with	non-determinism?



Technique	1:	Deterministic	Replay

• Goal:	make	x86	platform	deterministic	

• idea:	use	hypervisor	to	make	virtual	x86	platform	
deterministic	

• Log	all	hardware	events	into	a	log	
• clock	interrupts,	network	interrupts,	i/o	interrupts,	etc.	

• for	non-deterministic	instructions,	record	additional	
info	

• e.g.,	log	the	value	of	the	time	stamp	register	

• on	replay:	return	the	value	from	the	log	instead	of	
the	actual	register



Deterministic	Replay

• Replay:	deliver	inputs	in	the	same	order,	at	the	same	instructions	

• if	during	recording	delivered	clock	interrupt	at	nth	instr.	

• during	replay	also	deliver	the	interrupt	at	the	nth	instr.	

• Given	an	event	log,	deterministic	replay	recreates	VM	

• hypervisor	delivers	first	event	

• lets	the	machine	execute	to	the	next	event	

• using	special	hardware	registers	to	stop	the	processor	at	the	
right	instruction	

• OS	runs	identical,	applications	runs	identical	

• Limitation:	cannot	handle	multicore	processors	and	interleaving



Applying	Deterministic	Replay	to	VM-FT

• Hypervisor	at	primary	records	

• Sends	log	entries	to	backup	over	logging	
channel	

• Hypervisor	at	backup	replays	log	entries	
• We	need	to	stop	virtual	x86	at	instruction	of	

next	event	

• We	need	to	know	what	is	the	next	event	

• backup	lags	behind	one	event



Example

• Primary	receives	network	interrupt	

• hypervisor	forwards	interrupt	plus	data	to	backup	

• hypervisor	delivers	network	interrupt	to	OS	kernel	

• OS	kernel	runs,	kernel	delivers	packet	to	server	

• server/kernel	write	response	to	network	card	

• hypervisor	gets	control	and	puts	response	on	the	wire	

• Backup	receives	log	entries	

• backup	delivers	network	interrupt	

• …	

• hypervisor	does	*not*	put	response	on	the	wire	

• hypervisor	ignores	local	clock	interrupts



Technique	2:	FT	Protocol

• Primary	delays	any	output	until	the	backup	acks	

• Log	entry	for	each	output	operation	

• Primary	sends	output	after	backup	acked	
receiving	output	operation	

• Performance	optimization:	

• primary	keeps	executing	past	output	
operations	

• buffers	output	until	backup	acknowledges



Questions

• Why	send	output	events	to	backup	and	delay	
output	until	backup	has	acked?	

• What	happens	when	primary	fails	after	receiving	
network	input	but	before	sending	a	corresponding	
log	entry	to	backup?


