
Clocks,	Snapshots

Arvind	Krishnamurthy	

University	of	Washington



• Why	do	we	need	to	order	events	in	a	distributed	
system?



Distributed	make

• Distributed	file	servers	holds	source	and	object	files	
• Clients	specify	modification	time	on	uploaded	files	

• Use	timestamps	to	decide	what	needs	to	be	rebuilt	

• if	object	O	depends	on	source	S,	and		
• O.time	<	S.time,	rebuild	O	

• What	can	go	wrong?



Another	example

• Remove	boss	as	friend	

• Post:	“My	boss	is	the	worst,	I	need	a	new	job!”	

• Friendship	links,	posts,	privacy	settings	stored	
across	a	large	number	of	distributed	servers	

• lots	of	copies	of	data:	replicas,	caches,	cross-
datacenter	replication,	etc.	

• Don’t	want	to	get	a	concurrent	read	to	see	the	
wrong	order!



Two	approaches

• Synchronize	physical	clocks	
• Logical	clocks



• Design	a	scheme	that	synchronizes	physical	clocks	

• What	do	you	think	are	the	sources	of	
inaccuracy?	

• Why	is	clock	synchronization	hard?	

• How	to	make	this	scalable?



Simplest	Approach

• Designate	one	server	as	the	master	

• Master	periodically	broadcasts	time	

• Clients	receive	broadcast,	set	their	clock	to	the	
value	in	the	message	

• Is	this	a	good	approach?



Variations	in	Network	Latency

• Latency	can	be	unpredictable	and	has	a	lower	bound	

• Simple	approach:	Designated	server	broadcasts	
time,	Clients	receive	broadcast,	set	their	clock	to	the	
value	in	the	message	+	minimum	delay



Interrogation	Based	Approach

• Client	sends	a	roundtrip	message	to	query	server’s	time	

• Set’s	client’s	clock	to	server’s	clock	+	half	of	RTT	

• Worst	case	error	(if	we	know	the	min	latency):	(T2-T0)/2	-	
min



Practical	Realization

• NTP	uses	an	interrogation-based	approach,	plus:	
• taking	multiple	samples	to	eliminate	ones	not	
close	to	min	RTT	

• averaging	among	multiple	masters	

• PTP	adds	hardware	timestamping	support	to	track	
latency	introduced	in	network



Clock	synchronization	measurements

• Within	a	datacenter:	~20-50	microseconds	

• Across	datacenters:	tens	of	milliseconds	



Logical	Clocks

• another	way	to	keep	track	of	time	

• based	on	the	idea	of	causal	relationships	between	
events	

• doesn’t	require	any	physical	clocks



Events	and	Histories

• Processes	execute	sequences	of	events	
• Events	can	be	of	3	types:	local,	send,	and	receive	
• The	local	history	of	a	process	is	the	sequence	of	
events	executed	by	process	



Ordering	events

• Observation	1:		
• Events	in	a	local	history	are	totally	ordered	

• Observation	2:		
• For	every	message,		send	precedes	receive

time

time

time

m

p1

p1

p2

m



Lamport	Clock:	Increment	Rules

• Timestamp	m	with	TS(m)	=	LC(send(m))



Discussion

• What	are	the	strengths	of	Lamport	clocks?	

• What	are	the	limitations	of	Lamport	clocks?



Examples	of	Global	Predicates

• Token	ring	networks	
• Nodes	arranged	in	a	ring	

• Node	can	transmit	to	any	other	node	when	it	has	a	
“token”	

• Node	passes	along	to	another	node	when	it	is	done	
sending	a	message	

• Tokens	sometimes	get	lost	or	corrupted	

• Global	predicate:	is	there	a	token	in	the	network?



Global	states	and	clocks

• Need	to	reason	about	global	states	of	a	distributed	system	

• Global	state:	processor	state	+	communication	channel	state	

• Consistent	global	state:	causal	dependencies	are	captured	

• Use	virtual	clocks	to	reason	about	the	timing	relationships	
between	events	on	different	nodes



Space	Time	Diagrams

p1

p2

p3



Cuts

p1

p2

p3

A	cut	C	is	a	subset	of	the	global	history	of	H	

The	frontier	of	C	is	the	set	of	events		



Consistent	Cuts

• A	cut	is	consistent	if	
• e2	is	in	the	cut	and	if	e1	happens	before	e2	
• then	e1	should	also	be	in	the	cut	

• A	consistent	global	state	is	one	corresponding	to	a	
consistent	cut	



Inconsistent	Cut	(or	global	state)

p1

p2

p3



Consistent	Global	States

• Can	we	use	Lamport	Clocks	as	part	of	a	mechanism	
to	get	globally	consistent	states?



Global	Snapshot

• Develop	a	simple	global	snapshot	protocol	

• Refine	protocol	as	we	relax	assumptions		

• Record:	
• processor	states	
• channel	states		

• Assumptions:	

• FIFO	channels	
• Each	message	timestamped	with	Lamport	Clock



Snapshot	Version	1

• p0	selects	t	
• p0	sends	“take	a	snapshot	at	t”	to	all	processes	
• when	clock	of	p	reads	t	then:	
• records	its	local	state		
• sends	an	empty	message	along	its	outgoing	channels	

• starts	recording	messages	received	on	each	of	
incoming	channels		

• stops	recording	a	channel	when	it	receives	first	
message	with	timestamp	greater	than	or	equal	to	t



Snapshot	Version	2

• p0	processor	selects	t	
• p0	sends	“take	a	snapshot	at	t”	to	all	processes;	it	waits	
for	all	of	them	to	reply	and	then	sets	its	logical	clock	to	t		

• when	clock	of	p	reads	t	then		
• records	its	local	state		
• sends	an	empty	message	along	its	outgoing	channels	

• starts	recording	messages	received	on	each	incoming	
channel	

• stops	recording	a	channel	when	receives	first	
message	with	timestamp	greater	than	or	equal	to	t



Relaxing	synchrony

Process does nothing 
for the protocol 
during this time!

 take a 
snapshot at t  

empty message (t) 

monitors

channels records  

local state 

sends empty message 



Snapshot	Version	3

• processor	p0	sends	itself	“take	a	snapshot“	
• when	pi	receives	“take	a	snapshot”	for	the	first	time	from	pj:	

• records	its	local	state		
• sends	“take	a	snapshot”	along	its	outgoing	channels	
• sets	channel	from	pj	to	empty	

• starts	recording	messages	received	over	each	of	its	other	
incoming	channels	

• when	pi	receives	“take	a	snapshot”	beyond	the	first	time	from	pk:	

• stops	recording	channel	from	pk	

• when	pi	has	received	“take	a	snapshot”	on	all	channels,	it	sends	
collected	state	to	p0	and	stops.	



Different	Approach

• Monitor	process	does	not	query	explicitly	

• Instead,	it	passively	collects	information	and	uses	it	
to	build	an	observation.	

• An	observation	is	an	ordering	of	events	of	the	
distributed	computation	based	on		the	order	in	
which	the	receiver	is	notified	of	the	events.



Vector	Clocks



Example



Operational	Interpretation

Vector	clock	maintains	the	count	of	number	of	operations	performed		
by	each	node	before	a	given	event



Vector	Clock	Properties

• Provides	strong	causal	relationships	
• Can	infer	concurrency	vs.	happened	before	or	after



Snapshot	Protocol

• Send	to	monitor	report	after	every	event	tagged	
with	its	vector	clock	

• Monitor	processes	the	report	respecting	the	
happens-before	relationship	

• Completes	processing	all	previous	reports	
before	a	given	report



Summary

• Lamport	clocks	and	vector	clocks	provide	us	with	
good	tools	to	reason	about	timing	of	events	in	a	
distributed	system	

• Global	snapshot	algorithm	provides	us	with	an	
efficient	mechanism	for	obtaining	consistent	global	
states


