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Why	another	BFT	protocol?

• Many	BFT	protocols:	PBFT,	HQ,	Q/U,	etc.	

• Different	protocols	for	different	regimes	

• Number	of	failures	tolerated	

• High	request	contention	
• Desire	low	latency	
• Replication	overhead	

• Zyzzyva:	approach	lower	bounds	in	almost	every	
metric



Traditional	BFT	Protocols

• Replicas	agree	on	the	request	order	before	executing	

• Cost:	Agreement	protocol	overhead



Zyzzyva:	Speculative	execution

• Replicas	execute	requests	without	agreement	

• Cost:	No	explicit	replica	agreement



Avoid	explicit	replica	agreement

• Idea:	leverage	clients	to	avoid	explicit	agreement	

• Intuition:	output	commit	at	the	client	

• Sufficient:	client	knows	that	the	system	is	consistent	

• Not	required:	replicas	know	that	they	are	consistent



Client	Verification

• Client	verify	if	reply	is	stable	before	committing	operation	

• Request	history	allows	clients	to	verify	stable	reply	

• Replicas	include	request	history	in	the	replies	

• Replies	include	application	response	and	request	history	

• Request	history:	ordered	set	of	requests	executed	

• <Rik,	Hik>:	Reply	from	a	replica	i	after	executing	request	k			



Stable:	Unanimous	reply

• Client	commits	the	output	when	all	replies	match	

• All	correct	replicas	are	in	consistent	state



What	if	fast	path	is	not	successful?

• What	if	less	than	3f+1	responses	are	received?	

• What	if	2f+1	to	3f	responses	are	received?	

• What	if	less	than	2f+1	responses	are	received?	

• What	if	responses	don’t	match?



Replies:	Only	majority	match

• Majority	of	correct	replicas	share	the	same	history	

• Client	receives	at	least	2f+1	matching	replies



Stable	replies	with	failures

• Client	can	make	progress	with	additional	work	

• Sufficient:	majority	of	correct	replicas	can	prove	
that	they	share	request	history	to	other	replicas	

• Commit	phase:	client	deposits	commit	certificate	

• Commit	certificate	consists	of	2f+1	matching	
histories	

• Client	commits	after	2f+1	replicas	respond	with	
acks	to	the	commit	certificate



Stable	reply:	majority



Failures:	primary	or	network

• If	client	receives	fewer	than	2f+1	responses	
• Client	resends	its	request	to	all	replicas	

• Replicas	forward	the	request	to	the	primary	to	ensure	
that	the	request	is	assigned	a	sequence	number	

• If	this	results	in	a	successful	operation,	then	fine	

• Else,	initiate	a	view	change	

• If	client	receives	responses	indicating	inconsistent	ordering	

• Sends	a	proof	of	misbehavior	to	the	replicas,	which	
initiate	a	view	change



View	Change

1. Replica	initiates	it	by	sending	an	accusation	against	
the	primary	to	all	replicas	(“I	hate	primary”)	

2. Replica	receives	f+1	accusations	that	the	primary	is	
faulty	and	commits	to	the	view	change	

3. Replica	receives	2f+1	view	change	messages	

4. Replica	receives	a	valid	new	view	message	and	
sends	a	view	confirmation	message	to	all	other	
replicas	

5. Replica	receives	2f+1	matching	view-confirm	
messages	and	begins	accepting	requests



Algorand:	BFT	meets	
Blockchain



Cryptocurrencies	at	a	high	level
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Double	Spending	Challenge
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Solved	by	a	public	ledger

The	blockchain	is	a	public	log	of	agreed-upon	transactions	
! Permissionless:	anyone	can	join	and	help	maintain	the	log

Network

batch	of	TXs



Today’s	predominant	cryptocurrency:	Bitcoin

! Proof	of	Work:	assume	honest	fraction	of	compute	power

Network

Eureka!



Problem	with	PoW	based	agreement:	partitions

! Eclipse	attacks	[Heilman	et	al.,	Usenix	Security15’]	
! Routing	hijacks	[Apostolaki	et	al.,	IEEE	S&P	17’]

Network

Eureka!

Eureka!



Problem	with	PoW	based	agreement:	forks

! Two	users	grow	the	block	chain	
! transient	divergent	views	

! To	contend	with	forks,	Bitcoin	makes	two	sacrifices:	
! long	time	to	produce	a	new	block	(10	minutes)	
! must	wait	for	to	be	sure	a	TX	not	“reverted’’	(60	minutes)

Energy	efficient? Throughput	
(MB/hour)

Latency	
(sec)

Confirm.	time

Bitcoin no	(uses	PoW) 6 600 ~hour



What	about	Byzantine	Agreement	(BA)?
! Allows	to	establish	agreement	on	each	block	despite	malicious	
participants	

! There	is	a	long	line	of	BA	research	
! Appealing	approach,	but	with	significant	challenges…

Network



Security	challenge

! Need	more	than	const	fraction	of	honest	users	
! Cryptocurrency	setting	is	open:	pseudonyms	are	a	problem

Network



Scale	challenge

! Byzantine	agreement	participants	broadcast	
! We	need	to	support	millions	of	users:	doesn’t	scale

Network



Availability	challenge

! Could	sample	committee	to	scale	Byzantine	agreement	
! but,	committee	members	can	be	targeted	and	taken	offline

Network



Algorand

! Algorand:	scalable	permissionless	cryptocurrency	using	BA	
! sybil-resilience:	users	weighted	by	money	(i.e.	proof-of-stake)	
! scalability:	non-interactive	committee	members	sampling	
! availability:	replace	committee	members	after	they	speak	

! Evaluation:	
! commit	block	in	under	1 min,	achieve	750MB/hour	throughput



Threat	model:	the	attacker	can…

partition	the	network	for	bounded	time

have	many	pseudonyms hold	up	to	1/3	of	the	wealth

X	is	Y

send	conflicting	messages	to	users

X	is	Z

target	some	users



Algorand’s	gossip	network

! Node	relays	msgs	to	a	few	peers,	who	relay	to	their	peers…	
! All	messages	are	signed	by	the	origin

Network



What	is	the	block	to	agree	on?

! Users	have	different	views	of	pending	TX

Network



Someone	proposes	a	block.	Who?

! Can’t	have	everyone	propose	
! high	overhead,	doesn’t	scale	

! Can’t	have	one	user	in	charge	
! single	point	of	failure	

! Solution:	non-interactive	verifiable	sampling



Money	as	weights

! PKs	assigned	to	weights	by	relative	fraction	of	money	
! attacker	has	to	split	wealth	between	pseudonyms
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Non-interactive	verifiable	sampling

! Crypto	tool:	verifiable	random	functions	
! 	pseudorandom	value	(unpredictable	without	 )	

! 	proof	that	 	was	computed	correctly	
! VRF	is	deterministic:	a	public	key	maps	x	to	one	hash

hash: 𝑠𝑘
π: h𝑎𝑠h

Prover,	has	secret	key	sk Verifier,	has	public	key	pk

verify𝑝𝑘(x,	hash,	π)

h𝑎𝑠h,  𝜋 ← VRF𝑠𝑘(x)



Block	proposers

! Choose	which	transactions	go	in	the	next	block	
! We	need:	not	too	many,	but	at	least	one	(at	least	often)

Network
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h𝑎𝑠h, 𝜋
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Take	block	from	user	with	
lowest	hash



Algorand	blocks	contain…

! New	transactions	
! Proof	that	the	proposer	was	selected		

! 	 		

! A	seed	for	next	round	 +1:		
!

h𝑎𝑠h, 𝜋
𝑟

𝑠𝑒𝑒𝑑𝑟+1,	πseed ← 𝑉𝑅𝐹𝑠𝑘(𝑠𝑒𝑒𝑑𝑟  | | ``𝑛𝑒𝑥𝑡 𝑠𝑒𝑒𝑑′ ′ )

h𝑎𝑠h, 𝜋

,		𝑠𝑒𝑒𝑑𝑟+1
πseed 



Can	we	take	proposed	block	and	be	done?

! The	block	proposer	may	be	malicious	
! proposer	might	send	different	blocks	to	different	users	

! Need	a	Byzantine	agreement

h𝑎𝑠h, 𝜋

,		𝑠𝑒𝑒𝑑𝑟+1
πseed 



Scale	Byzantine	agreement	by	sampling
! Recall:	in	traditional	BA	everyone	broadcasts	! doesn’t	scale	
! Sample	a	random	committee	using	weights	to	scale	BA	

! computation	using	private	key,	produces	non-interactive	proof	
! selected	users	originate	messages,	everyone	gossips

Network

selected?

selected?

selected?
selected? selected?

selected?

	selected?



Scale	Byzantine	agreement	by	sampling

! How	large	should	the	committee	be?	
! need	 	participants	to	deal	with	 	bad	users	
! but,	selection	is	pseudorandom!	

! so	we	don’t	know	 	or	have	bound	on	 	

! But	BAs	require	constant	decision	thresholds	
! how	can	we	set	the	threshold?	(without	knowing	 	and	 )

𝑛 ≥ 3𝑓 + 1 𝑓

𝑛 𝑓

𝑓 𝑛



Scale	Byzantine	agreement	by	sampling

! We	need	to	find	a	 	that	satisfies:	
! 	

! 	

! need	more	than	½	of	good	users	to	“vote	for”	the	same	value	
! therefore,	cannot	agree	on	two	values

𝑡h𝑟𝑒𝑠h
#𝑔𝑜𝑜𝑑 > 𝑡h𝑟𝑒𝑠h
1
2

#𝑔𝑜𝑜𝑑 + #𝑏𝑎𝑑 ≤ 𝑡h𝑟𝑒𝑠h

failure	prob.

To	avoid	forks

To	reach	agreement



! Replace	committee	members	after	they	send	a	message	
! Requirement:	no	private	state	(except	static	keys)

Network

Everyone	runs	the	protocol,	
but	only	committee	
members	send	messages
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Resisting	targeted	attacks



Design	summary

! Weighing	by	money	
! Sample	committee	based	on	weights	using	VRFs	
! Replace	committee	at	every	step	of	Byzantine	agreement	

! More	in	the	paper:	
! details	of	Byzantine	agreement	with	participant	replacement	
! selection	procedure	
! theorems	and	analysis



Algorand	achieves	low	latency

! 50	users	per	virtual	machine,	1MB	block	of	transactions	
! average	bandwidth	use	is	10mbps



Evaluation:	scalability

! 500	users	per	virtual	machine,	1MB	block



Algorand	achieves	high	throughput

Algorand:	up	to	10MB/48sec	! 750MB/hour														

Bitcoin:														1MB/10min	! 6MB/hour

50	users	X	1,000	
virtual	machines



Algorand	Takeaways

• Algorand doesn't utilize proof-of-work and instead weights 
users based on how much money they have in the system. 

• Algorand is more communication efficient since it is 
committee based. 

• However, it is not clear what incentives users have to 
participate in the protocol (their stake in the system 
notwithstanding). 

• Algorand requires money holders to be online and 
broadcasting their address to the world.  

• Algorand is really complicated.


