
BFT	+	Blockchain

Arvind	Krishnamurthy	

University	of	Washington	

Why	another	BFT	protocol?

• Many	BFT	protocols:	PBFT,	HQ,	Q/U,	etc.	

• Different	protocols	for	different	regimes	

• Number	of	failures	tolerated	

• High	request	contention	
• Desire	low	latency	
• Replication	overhead	

• Zyzzyva:	approach	lower	bounds	in	almost	every	
metric

Traditional	BFT	Protocols

• Replicas	agree	on	the	request	order	before	executing	

• Cost:	Agreement	protocol	overhead

Zyzzyva:	Speculative	execution

• Replicas	execute	requests	without	agreement	

• Cost:	No	explicit	replica	agreement

Avoid	explicit	replica	agreement

• Idea:	leverage	clients	to	avoid	explicit	agreement	

• Intuition:	output	commit	at	the	client	

• Sufficient:	client	knows	that	the	system	is	consistent	

• Not	required:	replicas	know	that	they	are	consistent

Client	Verification

• Client	verify	if	reply	is	stable	before	committing	operation	

• Request	history	allows	clients	to	verify	stable	reply	

• Replicas	include	request	history	in	the	replies	

• Replies	include	application	response	and	request	history	

• Request	history:	ordered	set	of	requests	executed	

• <Rik,	Hik>:	Reply	from	a	replica	i	after	executing	request	k			

Stable:	Unanimous	reply

• Client	commits	the	output	when	all	replies	match	

• All	correct	replicas	are	in	consistent	state

What	if	fast	path	is	not	successful?

• What	if	less	than	3f+1	responses	are	received?	

• What	if	2f+1	to	3f	responses	are	received?	

• What	if	less	than	2f+1	responses	are	received?	

• What	if	responses	don’t	match?

Replies:	Only	majority	match

• Majority	of	correct	replicas	share	the	same	history	

• Client	receives	at	least	2f+1	matching	replies

Stable	replies	with	failures

• Client	can	make	progress	with	additional	work	

• Sufficient:	majority	of	correct	replicas	can	prove	
that	they	share	request	history	to	other	replicas	

• Commit	phase:	client	deposits	commit	certificate	

• Commit	certificate	consists	of	2f+1	matching	
histories	

• Client	commits	after	2f+1	replicas	respond	with	
acks	to	the	commit	certificate

Stable	reply:	majority

Failures:	primary	or	network

• If	client	receives	fewer	than	2f+1	responses	
• Client	resends	its	request	to	all	replicas	

• Replicas	forward	the	request	to	the	primary	to	ensure	
that	the	request	is	assigned	a	sequence	number	

• If	this	results	in	a	successful	operation,	then	fine	

• Else,	initiate	a	view	change	

• If	client	receives	responses	indicating	inconsistent	ordering	

• Sends	a	proof	of	misbehavior	to	the	replicas,	which	
initiate	a	view	change

View	Change

1. Replica	initiates	it	by	sending	an	accusation	against	
the	primary	to	all	replicas	(“I	hate	primary”)	

2. Replica	receives	f+1	accusations	that	the	primary	is	
faulty	and	commits	to	the	view	change	

3. Replica	receives	2f+1	view	change	messages	

4. Replica	receives	a	valid	new	view	message	and	
sends	a	view	confirmation	message	to	all	other	
replicas	

5. Replica	receives	2f+1	matching	view-confirm	
messages	and	begins	accepting	requests

Algorand:	BFT	meets	
Blockchain

Cryptocurrencies	at	a	high	level

100

200

300

Network
							

50

150

150

300

public		
keys

signed	with	
private	key

Double	Spending	Challenge

Network							
200

							
50

100

200

300

Blue	doesn’t	actually	
have	250	credits

Users	might	not	see	both	transactions,	
or	see	them	in	different	order

public		
keys

Solved	by	a	public	ledger

The	blockchain	is	a	public	log	of	agreed-upon	transactions	
! Permissionless:	anyone	can	join	and	help	maintain	the	log

Network

batch	of	TXs

Today’s	predominant	cryptocurrency:	Bitcoin

! Proof	of	Work:	assume	honest	fraction	of	compute	power

Network

Eureka!

Problem	with	PoW	based	agreement:	partitions

! Eclipse	attacks	[Heilman	et	al.,	Usenix	Security15’]	
! Routing	hijacks	[Apostolaki	et	al.,	IEEE	S&P	17’]

Network

Eureka!

Eureka!

Problem	with	PoW	based	agreement:	forks

! Two	users	grow	the	block	chain	
! transient	divergent	views	

! To	contend	with	forks,	Bitcoin	makes	two	sacrifices:	
! long	time	to	produce	a	new	block	(10	minutes)	
! must	wait	for	to	be	sure	a	TX	not	“reverted’’	(60	minutes)

Energy	efficient? Throughput	
(MB/hour)

Latency	
(sec)

Confirm.	time

Bitcoin no	(uses	PoW) 6 600 ~hour

What	about	Byzantine	Agreement	(BA)?
! Allows	to	establish	agreement	on	each	block	despite	malicious	
participants	

! There	is	a	long	line	of	BA	research	
! Appealing	approach,	but	with	significant	challenges…

Network

Security	challenge

! Need	more	than	const	fraction	of	honest	users	
! Cryptocurrency	setting	is	open:	pseudonyms	are	a	problem

Network

Scale	challenge

! Byzantine	agreement	participants	broadcast	
! We	need	to	support	millions	of	users:	doesn’t	scale

Network

Availability	challenge

! Could	sample	committee	to	scale	Byzantine	agreement	
! but,	committee	members	can	be	targeted	and	taken	offline

Network

Algorand

! Algorand:	scalable	permissionless	cryptocurrency	using	BA	
! sybil-resilience:	users	weighted	by	money	(i.e.	proof-of-stake)	
! scalability:	non-interactive	committee	members	sampling	
! availability:	replace	committee	members	after	they	speak	

! Evaluation:	
! commit	block	in	under	1 min,	achieve	750MB/hour	throughput

Threat	model:	the	attacker	can…

partition	the	network	for	bounded	time

have	many	pseudonyms hold	up	to	1/3	of	the	wealth

X	is	Y

send	conflicting	messages	to	users

X	is	Z

target	some	users

Algorand’s	gossip	network

! Node	relays	msgs	to	a	few	peers,	who	relay	to	their	peers…	
! All	messages	are	signed	by	the	origin

Network

What	is	the	block	to	agree	on?

! Users	have	different	views	of	pending	TX

Network

Someone	proposes	a	block.	Who?

! Can’t	have	everyone	propose	
! high	overhead,	doesn’t	scale	

! Can’t	have	one	user	in	charge	
! single	point	of	failure	

! Solution:	non-interactive	verifiable	sampling

Money	as	weights

! PKs	assigned	to	weights	by	relative	fraction	of	money	
! attacker	has	to	split	wealth	between	pseudonyms

Network

100

200

300

100

250

150

200

100

200

Non-interactive	verifiable	sampling

! Crypto	tool:	verifiable	random	functions	
! 	pseudorandom	value	(unpredictable	without)	

! 	proof	that	 	was	computed	correctly	
! VRF	is	deterministic:	a	public	key	maps	x	to	one	hash

hash: 𝑠𝑘
π: h𝑎𝑠h

Prover,	has	secret	key	sk Verifier,	has	public	key	pk

verify𝑝𝑘(x,	hash,	π)

h𝑎𝑠h, 𝜋 ← VRF𝑠𝑘(x)

Block	proposers

! Choose	which	transactions	go	in	the	next	block	
! We	need:	not	too	many,	but	at	least	one	(at	least	often)

Network

selected?

selected?

selected?
selected? selected?

selected?

	selected?

h𝑎𝑠h, 𝜋

h𝑎𝑠h′ , 𝜋′

Take	block	from	user	with	
lowest	hash

Algorand	blocks	contain…

! New	transactions	
! Proof	that	the	proposer	was	selected		

! 	 		

! A	seed	for	next	round	 +1:		
!

h𝑎𝑠h, 𝜋
𝑟

𝑠𝑒𝑒𝑑𝑟+1,	πseed ← 𝑉𝑅𝐹𝑠𝑘(𝑠𝑒𝑒𝑑𝑟 | | ``𝑛𝑒𝑥𝑡 𝑠𝑒𝑒𝑑′ ′)

h𝑎𝑠h, 𝜋

,		𝑠𝑒𝑒𝑑𝑟+1
πseed

Can	we	take	proposed	block	and	be	done?

! The	block	proposer	may	be	malicious	
! proposer	might	send	different	blocks	to	different	users	

! Need	a	Byzantine	agreement

h𝑎𝑠h, 𝜋

,		𝑠𝑒𝑒𝑑𝑟+1
πseed

Scale	Byzantine	agreement	by	sampling
! Recall:	in	traditional	BA	everyone	broadcasts	! doesn’t	scale	
! Sample	a	random	committee	using	weights	to	scale	BA	

! computation	using	private	key,	produces	non-interactive	proof	
! selected	users	originate	messages,	everyone	gossips

Network

selected?

selected?

selected?
selected? selected?

selected?

	selected?

Scale	Byzantine	agreement	by	sampling

! How	large	should	the	committee	be?	
! need	 	participants	to	deal	with	 	bad	users	
! but,	selection	is	pseudorandom!	

! so	we	don’t	know	 	or	have	bound	on	 	

! But	BAs	require	constant	decision	thresholds	
! how	can	we	set	the	threshold?	(without	knowing	 	and)

𝑛 ≥ 3𝑓 + 1 𝑓

𝑛 𝑓

𝑓 𝑛

Scale	Byzantine	agreement	by	sampling

! We	need	to	find	a	 	that	satisfies:	
! 	

! 	

! need	more	than	½	of	good	users	to	“vote	for”	the	same	value	
! therefore,	cannot	agree	on	two	values

𝑡h𝑟𝑒𝑠h
#𝑔𝑜𝑜𝑑 > 𝑡h𝑟𝑒𝑠h
1
2

#𝑔𝑜𝑜𝑑 + #𝑏𝑎𝑑 ≤ 𝑡h𝑟𝑒𝑠h

failure	prob.

To	avoid	forks

To	reach	agreement

! Replace	committee	members	after	they	send	a	message	
! Requirement:	no	private	state	(except	static	keys)

Network

Everyone	runs	the	protocol,	
but	only	committee	
members	send	messages

1

1 1

1

2

2

2

2

2

Resisting	targeted	attacks

Design	summary

! Weighing	by	money	
! Sample	committee	based	on	weights	using	VRFs	
! Replace	committee	at	every	step	of	Byzantine	agreement	

! More	in	the	paper:	
! details	of	Byzantine	agreement	with	participant	replacement	
! selection	procedure	
! theorems	and	analysis

Algorand	achieves	low	latency

! 50	users	per	virtual	machine,	1MB	block	of	transactions	
! average	bandwidth	use	is	10mbps

Evaluation:	scalability

! 500	users	per	virtual	machine,	1MB	block

Algorand	achieves	high	throughput

Algorand:	up	to	10MB/48sec	! 750MB/hour														

Bitcoin:														1MB/10min	! 6MB/hour

50	users	X	1,000	
virtual	machines

Algorand	Takeaways

• Algorand doesn't utilize proof-of-work and instead weights
users based on how much money they have in the system.

• Algorand is more communication efficient since it is
committee based.

• However, it is not clear what incentives users have to
participate in the protocol (their stake in the system
notwithstanding).

• Algorand requires money holders to be online and
broadcasting their address to the world.

• Algorand is really complicated.

