Byzantine Fault Tolerance

Arvind Krishnamurthy
University of Washington



Fault Tolerance

* We have so far assumed “fail-stop” failures (e.g.,
power failures or system crashes)

* |n other words, if the server is up, it follows the
protocol

* Hard enough:

o difficult to distinguish between crash vs.
network down

e difficult to deal with network partition



Larger Class of Failures

* Can one handle a larger class of failures?

* Buggy servers that compute incorrectly rather
than stopping

* Servers that do not follow the protocol
* Servers that have been modified by an attacker

* Referred to as Byzantine faults



Model

Provide a replicated state machine abstraction
Assume 2f+1 of 3f+1 nodes are non-faulty

* |n other words, one needs 3f+1 replicas to
handle f faults

Asynchronous system, unreliable channels

Use cryptography (both public-key and secret-key
crypto)



General Idea

* Primary-backup plus guorum system

Executions are sequences of views

Clients send signed commands to primary of current
view

Primary assigns sequence number to client’s command

Primary writes sequence number to the “register”
implemented by the quorum system defined by all the
servers



Attacker’s Powers

Worst case: a single attacker controls the f faulty
replicas

Supplies the code that faulty replicas run

Knows the code the non-faulty replicas are running
Knows the faulty replicas’ crypto keys

Can read network messages

Can temporarily force messages to be delayed via
DoS



What faults cannot happen?

* No more than f out of 3f+1 replicas can be faulty

* No client failure -- clients can never do anything
bad (or rather such behavior can be detected using
standard techniques)

* No guessing of crypto keys or breaking of
cryptography



* Question: in a Paxos RSM setting, what could the
attackers or byzantine nodes do?



What could go wrong?

* Primary could be faulty!

®* Could ignore commands; assign same sequence number
to different requests; skip sequence numbers; etc.

e (Can equivocate or lie differently to different nodes

* Backups could be faulty!

e Could incorrectly store commands forwarded by a
correct primary

* Faulty replicas could incorrectly respond to the
client!



Example Use Scenario

* Arvind:

echo A > grade

echo B > grade

tell Lequn "the grade file is ready"
e Lequn:

cat grade



Strawman Design

let us have replicas vote
2f+1 servers, assume no more than f are faulty
client waits for f+1 matching replies

e if only f are faulty, and network works eventually, must
get them!

what is wrong with this design?



Issues with Design

e f+1 matching replies might be f bad nodes & 1 good

e so maybe only one good node got the operation!

* next operation also waits for f+1

e might not include that one good node that saw op1
e example: S1S2S3 (S1is bad)

e everyone hears and replies to write("A")

e S1and S2 reply to write("B"), but S3 misses it

e client can't wait for S3 since it may be the one faulty
server

e S1 and S3reply to read(), but S2 misses it; read() yields "A"

e result: client tricked into accepting out-of-date state



Improved Design

e 3f+1 servers, of which at most f are faulty
e client waits for 2f+1 matching replies
e fbad nodes plus a majority of the good nodes

e 5o all sets of 2f+1 overlap in at least one good node

e does design 3 have everything we need?



Refined Approach

e |et us have a primary to pick order for concurrent client
requests

* use a quorum of 2f+1 out of 3f+1 nodes
* have a mechanism to deal with faulty primary
e replicas send results directly to client
e replicas exchange info about ops sent by primary

e clients notify replicas of each operation, as well as
primary; if no progress, force change of primary



PBFT: Overview

e Normal operation: how the protocol works in the absence of
failures; hopefully, the common case

e View changes: how to depose a faulty primary and elect a
new one

e Garbage collection: how to reclaim the storage used to keep
various certificates



Normal Operation

Pre-prepare: assigns sequence number to request

Prepare: ensures fault-tolerant consistent ordering of
requests within views

Commit: ensures fault-tolerant consistent ordering of
requests across views

Service state
Message log with all messages sent/received

Integer representing the current view number



Client issues request

<REQUEST,o,t,c >,

Primary

Backup 1

- >
Backup 2

Backup 3

e 0: state machine operation
* t: timestamp

e c:clientid



Pre-prepare

Primary multicasts <«PRE-PREPARE,v,n,d>q,, m>

Primary \
\

Backup 1

Backup 2

Backup 3

* V:view
* n:sequence number
e d: digest of m

* m: client’s request



Pre-prepare Receipt

* Correct backup accepts pre-prepare if:
* it is well-formed
* in the current view
* it hasn’t accepted a different pre-prepare

* sequence number is between a low and a high
water-mark

* Pre-prepare is logged in a durable log



Prepare

Backup i multicasts <PREPARE,v,n,d,i>g;

" A
X/

Backup 1

Backup 2 %

Backup 3

e Correct backup accepts prepare message with usual checks:
e Well-formed, in current view, between water-marks

* |tislogged in a durable log




Prepare Certificate

P-certificates ensure total order within views
Replica produces P-certificate(m,v,n) iff its log holds:
e Therequest m

e A PRE-PREPARE for min view v with sequence number
n

e 2f PREPAREs from different backups that match the
pre-prepare

A P-certificate(m,v,n) means that a quorum agrees with
assigning sequence number nto min view v

e No two non-faulty replicas with P-certificate(m1,v,n)
and P-certificate(m2,v,n)



P-certificates are not enough

e A P-certificate proves that a majority of correct replicas has
agreed on a sequence number for a client’s request

* Yet that order could be modified by a new leader elected in
a view change



Commit

After collecting a P-certificate,
replica ¢ multicasts <COMMIT,v,n,d,i>ai

Primary

Backup 1

Backup 2

Backup 3

Commit phase




Commit Certificate

® C-certificates ensure total order across views

e can’t miss P-certificate during a view change
e Areplica has a C-certificate(m,v,n) if:

e it had a P-certificate(m,v,n)

e |og contains 2f +1 matching COMMIT from different
replicas (including itself)

* Replica executes a request after it gets a C-certificate for it,
and has cleared all requests with smaller sequence numbers



After executing request,
replica i replies with <REPLY,v,t,c,i,r >

pm T/ i
i

Backup 2

G
/

>

Backup 3
' > Reply phase




Common Case Analysis

e How does this compare to normal Paxos?

e \WWhat are missing loose ends in getting this to work?



Backups Displace Primary

e A disgruntled backup mutinies:

* stops accepting messages (but for VIEW-CHANGE &
NEW-VIEW)

* multicasts <VIEW-CHANGE,v+1, P>
* P contains all P-Certificates known to replica i

e A backup joins mutiny after seeing f+1 distinct VIEW-
CHANGE messages

e Mutiny succeeds if new primary collects a new-view
certificate V, indicating support from 2f +1 distinct replicas
(including itself)



View Change: New Primary

e The “primary elect” p’ (replica v+1 mod N ) extracts from
the new-view certificate V :

* the highest sequence number h of any message for
which V contains a P-certificate

* twosetsOandN:
e f thereis a P-certificate fornminV,n<h
* O=0U<PRE-PREPARE,v+1,n,m>
e QOtherwise, if n < h but no P-certificate:
e N =N u<PRE-PREPARE,v+1,n,null>
¢ p’ multicasts <NEW-VIEW,v+1,V,0,N>



View Change: Backup

Backup accepts NEW-VIEW message for v+1 if
* itis signed properly
® it containsinV a valid VIEW-CHANGE message for v+1

e it can verify locally that O is correct (repeating the
primary’s computation)

Adds all entries in O to its log (so did p’)
Multicasts a PREPARE for each message in O
Adds all PREPARE to log and enters new view



BFT Discussion

* |s PBFT practical?

* Does it address the concerns that enterprise users would like
to be addressed?



