
Byzantine	Fault	Tolerance

Arvind	Krishnamurthy	

University	of	Washington	



Fault	Tolerance

• We	have	so	far	assumed	“fail-stop”	failures	(e.g.,	
power	failures	or	system	crashes)	

• In	other	words,	if	the	server	is	up,	it	follows	the	
protocol	

• Hard	enough:	
• difficult	to	distinguish	between	crash	vs.	
network	down	

• difficult	to	deal	with	network	partition



Larger	Class	of	Failures

• Can	one	handle	a	larger	class	of	failures?	
• Buggy	servers	that	compute	incorrectly	rather	
than	stopping	

• Servers	that	do	not	follow	the	protocol	

• Servers	that	have	been	modified	by	an	attacker	

• Referred	to	as	Byzantine	faults



Model

• Provide	a	replicated	state	machine	abstraction	

• Assume	2f+1	of	3f+1	nodes	are	non-faulty	

• In	other	words,	one	needs	3f+1	replicas	to	
handle	f	faults	

• Asynchronous	system,	unreliable	channels	

• Use	cryptography	(both	public-key	and	secret-key	
crypto)



General	Idea

• Primary-backup	plus	quorum	system	

• Executions	are	sequences	of	views	

• Clients	send	signed	commands	to	primary	of	current	
view	

• Primary	assigns	sequence	number	to	client’s	command	

• Primary	writes	sequence	number	to	the	“register”	
implemented	by	the	quorum	system	defined	by	all	the	
servers



Attacker’s	Powers

• Worst	case:	a	single	attacker	controls	the	f	faulty	
replicas	

• Supplies	the	code	that	faulty	replicas	run	
• Knows	the	code	the	non-faulty	replicas	are	running	
• Knows	the	faulty	replicas’	crypto	keys	
• Can	read	network	messages	

• Can	temporarily	force	messages	to	be	delayed	via	
DoS



What	faults	cannot	happen?

• No	more	than	f	out	of	3f+1	replicas	can	be	faulty	

• No	client	failure	--	clients	can	never	do	anything	
bad	(or	rather	such	behavior	can	be	detected	using	
standard	techniques)	

• No	guessing	of	crypto	keys	or	breaking	of	
cryptography



• Question:	in	a	Paxos	RSM	setting,	what	could	the	
attackers	or	byzantine	nodes	do?



What	could	go	wrong?

• Primary	could	be	faulty!	

• Could	ignore	commands;	assign	same	sequence	number	
to	different	requests;	skip	sequence	numbers;	etc.	

• Can	equivocate	or	lie	differently	to	different	nodes	

• Backups	could	be	faulty!	
• Could	incorrectly	store	commands	forwarded	by	a	

correct	primary	

• Faulty	replicas	could	incorrectly	respond	to	the	
client!



Example	Use	Scenario

• Arvind:	

				echo	A	>	grade	

				echo	B	>	grade	

				tell	Lequn	"the	grade	file	is	ready"	

• 		Lequn:	

				cat	grade



Strawman	Design

• let	us	have	replicas	vote	

• 2f+1	servers,	assume	no	more	than	f	are	faulty	

• client	waits	for	f+1	matching	replies	

• if	only	f	are	faulty,	and	network	works	eventually,	must	
get	them!	

• what	is	wrong	with	this	design?



Issues	with	Design

• f+1	matching	replies	might	be	f	bad	nodes	&	1	good	

• so	maybe	only	one	good	node	got	the	operation!	

• next	operation	also	waits	for	f+1	

• might	not	include	that	one	good	node	that	saw	op1	

• example:	S1	S2	S3	(S1	is	bad)	

• everyone	hears	and	replies	to	write("A")	

• S1	and	S2	reply	to	write("B"),	but	S3	misses	it	

• client	can't	wait	for	S3	since	it	may	be	the	one	faulty	
server	

• S1	and	S3	reply	to	read(),	but	S2	misses	it;	read()	yields	"A"	

• result:	client	tricked	into	accepting	out-of-date	state



Improved	Design

• 3f+1	servers,	of	which	at	most	f	are	faulty	

• client	waits	for	2f+1	matching	replies	

• f	bad	nodes	plus	a	majority	of	the	good	nodes	

• so	all	sets	of	2f+1	overlap	in	at	least	one	good	node	

• does	design	3	have	everything	we	need?



Refined	Approach

• let	us	have	a	primary	to	pick	order	for	concurrent	client	
requests	

• use	a	quorum	of	2f+1	out	of	3f+1	nodes	

• have	a	mechanism	to	deal	with	faulty	primary	

• replicas	send	results	directly	to	client	

• replicas	exchange	info	about	ops	sent	by	primary	

• clients	notify	replicas	of	each	operation,	as	well	as	
primary;	if	no	progress,	force	change	of	primary



PBFT:	Overview

• Normal	operation:	how	the	protocol	works	in	the	absence	of	
failures;	hopefully,	the	common	case	

• View	changes:	how	to	depose	a	faulty	primary	and	elect	a	
new	one	

• Garbage	collection:	how	to	reclaim	the	storage	used	to	keep	
various	certificates



Normal	Operation

• Three	phases:	

• Pre-prepare:	assigns	sequence	number	to	request	

• Prepare:	ensures	fault-tolerant	consistent	ordering	of	
requests	within	views	

• Commit:	ensures	fault-tolerant	consistent	ordering	of	
requests	across	views	

• Each	replica	maintains	the	following	state:	

• Service	state	

• Message	log	with	all	messages	sent/received	

• Integer	representing	the	current	view	number



Client	issues	request

• o:	state	machine	operation	

• t:	timestamp	

• c:	client	id



Pre-prepare

• v:	view	

• n:	sequence	number	

• d:	digest	of	m	

• m:	client’s	request



Pre-prepare	Receipt

• Correct	backup	accepts	pre-prepare	if:	
• it	is	well-formed	

• in	the	current	view	
• it	hasn’t	accepted	a	different	pre-prepare	
• sequence	number	is	between	a	low	and	a	high	
water-mark	

• Pre-prepare	is	logged	in	a	durable	log



Prepare

• Correct	backup	accepts	prepare	message	with	usual	checks:	

• Well-formed,	in	current	view,	between	water-marks	

• It	is	logged	in	a	durable	log



Prepare	Certificate

• P-certificates	ensure	total	order	within	views	

• Replica	produces	P-certificate(m,v,n)	iff	its	log	holds:	

• The	request	m	

• A	PRE-PREPARE	for	m	in	view	v	with	sequence	number	
n	

• 2f	PREPAREs	from	different	backups	that	match	the	
pre-prepare	

• A	P-certificate(m,v,n)	means	that	a	quorum	agrees	with	
assigning	sequence	number	n	to	m	in	view	v	

• No	two	non-faulty	replicas	with	P-certificate(m1,v,n)	
and	P-certificate(m2,v,n)



P-certificates	are	not	enough

• A	P-certificate	proves	that	a	majority	of	correct	replicas	has	
agreed	on	a	sequence	number	for	a	client’s	request	

• Yet	that	order	could	be	modified	by	a	new	leader	elected	in	
a	view	change



Commit



Commit	Certificate

• C-certificates	ensure	total	order	across	views	

• can’t	miss	P-certificate	during	a	view	change	

• A	replica	has	a	C-certificate(m,v,n)	if:		

• it	had	a	P-certificate(m,v,n)	

• log	contains	2f	+1	matching	COMMIT	from	different	
replicas	(including	itself)	

• Replica	executes	a	request	after	it	gets	a	C-certificate	for	it,	
and	has	cleared	all	requests	with	smaller	sequence	numbers



Reply



Common	Case	Analysis

• How	does	this	compare	to	normal	Paxos?	

• What	are	missing	loose	ends	in	getting	this	to	work?



Backups	Displace	Primary

• A	disgruntled	backup	mutinies:	

• stops	accepting	messages	(but	for	VIEW-CHANGE	&	
NEW-VIEW)	

• multicasts	<VIEW-CHANGE,v+1,	P>	

• P	contains	all	P-Certificates	known	to	replica	i		

• A	backup	joins	mutiny	after	seeing	f+1	distinct	VIEW-
CHANGE	messages	

• Mutiny	succeeds	if	new	primary	collects	a	new-view	
certificate	V,	indicating	support	from	2f	+1	distinct	replicas	
(including	itself)



View	Change:	New	Primary

• The	“primary	elect”	p’	(replica	v+1	mod	N	)	extracts	from	
the	new-view	certificate	V	:	

• the	highest	sequence	number	h	of	any	message	for	
which	V	contains	a	P-certificate	

• two	sets	O	and	N:		

• if	there	is	a	P-certificate	for	n,m	in	V,	n	≤	h	

• O	=	O	∪	<PRE-PREPARE,v+1,n,m>	

• Otherwise,	if	n	≤	h	but	no	P-certificate:	

• N	=	N	∪	<PRE-PREPARE,v+1,n,null>	

• p’	multicasts	<NEW-VIEW,v+1,V,O,N>



View	Change:	Backup

• Backup	accepts	NEW-VIEW	message	for	v+1	if	

• it	is	signed	properly	

• it	contains	in	V	a	valid	VIEW-CHANGE	message	for	v+1	

• it	can	verify	locally	that	O	is	correct	(repeating	the	
primary’s	computation)	

• Adds	all	entries	in	O	to	its	log	(so	did	p’)	

• Multicasts	a	PREPARE	for	each	message	in	O	

• Adds	all	PREPARE	to	log	and	enters	new	view



BFT	Discussion

• Is	PBFT	practical?	

• Does	it	address	the	concerns	that	enterprise	users	would	like	
to	be	addressed?


