
Wait-free	registers	
Randomized	Consensus

Arvind	Krishnamurthy	

University	of	Washington	

(Slides	from:	Ellis	Michael)

Drawbacks	of	Paxos

• Leader	is	a	single	bottleneck,	processes	𝑂(𝑛)	
messages	on	every	request.	

• FLP	means	that	liveness	not	guaranteed.	

• More	practically,	Paxos	can	have	bad	availability	
during	failure	scenarios	(e.g.,	if	a	leader	fails,	it	
takes	time	to	elect	a	new	one).

Alternatives

• Weaken	the	safety	guarantees	and	accept	weaker	
consistency	(at	your	own	peril).	

• Constrain	the	problem	(wait-free	registers)	

• Allow	randomness	(randomized	algorithms)

Registers

• Hold	a	single	value.	Want	
multiple	values?	Use	multiple	
registers.		

• Allows	reads	and	writes	only.	
Does	not	allow	appends	or	
other	read-modify-write	
operations.	

• Provides	safe,	regular,	and	
atomic/linearizable	
semantics

write()
ack

read()

• safe: a read not concurrent with
any write obtains the previously
written value

• regular: safe + a read that
overlaps a write obtains either the
old or new value

• atomic: safe + reads and writes
behave as if they occur in some
definite order

Implementing	a	Register

• We	will	use	the	client/server	model,	where	servers	
are	replicas	storing	the	value	and	clients	send	reads	
and	writes.	

• We	want	linearizability	of	reads	and	writes.	

• As	usual,	we	want	to	tolerate	up	to	𝑓	server	crash	
failures.	Clients	can	also	fail	by	crashing,	no	limit	on	
number	of	client	crashes.

Non-Blocking	Algorithms

• Lock-free	algorithms	guarantee	system-wide	
progress.	

• Wait-free	algorithms	guarantee	per-client	progress.	
That	is,	no	matter	what	steps	other	processes	take,	
a	correct	client's	operations	are	always	completed	
in	a	finite	number	of	steps.

Why	No	Appends?

Simple	way	to	implement	consensus:	

• All	processes	append	their	input	value.	
• All	processes	read	the	value.	
• They	all	decide	the	first	value	that	was	appended.

If you can wait-free implement an appendable
register, you can solve consensus (providing safety and

liveness), which is impossible.

How	Many	Servers	Do	We	Need?

• If	we	want	to	make	progress	even	
when	𝑓	servers	crash,	we	can	wait	for	
at	most	𝑛	-	𝑓	responses.	

• We	need	to	send	writes	to	>𝑓	
replicas,	otherwise	they	could	get	
lost	forever.	

• So	we	need	at	least	2𝑓+1	servers.	
And,	in	fact,	we	will	use	2𝑓+1.	

• Read	quorum	size	plus	write	quorum	
size	should	be	greater	than	𝑛	(i.e.,	
they	should	overlap).	We'll	use	
simple	majorities.

(𝑓=1)

write
???

read

First	Step:	Single	Reader,	Single	Writer	(SWSR)

• Writer	sends	value	to	a	
majority.	

• Reader	reads	value	from	a	
majority.	

• Since	majorities	intersect,	
reader	reads	writer's	
value.	

Does	this	work?

writer

reader

First	Step:	Single	Reader,	Single	Writer	(SWSR)

• Writer	sends	value	to	a	
majority.	

• Reader	reads	value	from	a	
majority.	

• Since	majorities	intersect,	
reader	reads	writer's	
value.	

Does	this	work?

writer

reader

???

SWSR	II

• Writer	sends	a	timestamped	
value	to	a	majority.	

• Reader	reads	value	from	a	
majority,	takes	the	one	with	
the	highest	timestamp.	

• Since	majorities	intersect,	
reader	reads	writer's	latest	
written	value.	

Does	this	work?

writer

reader

1

1

1

SWSR	II

• Writer	sends	a	timestamped	
value	to	a	majority.	

• Reader	reads	value	from	a	
majority,	takes	the	one	with	
the	highest	timestamp.	

• Since	majorities	intersect,	
reader	reads	writer's	latest	
written	value.	

Does	this	work?

writer

reader

1

1

12

2

2

2

Multiple	Readers,	Single	Writer	(MRSW)

Does	this	previous	solution	just	work?	

What	happens	if	there	are	multiple	reads	by	different	
processes	overlapping	the	same	write?

MRSW:	Inconsistent	Reads

writer w()

reader

r→
reader

w()

r→

Red value not yet
written to a majority,

still finds it.
Reads from a different
majority, doesn't find

red value.

Not linearizable!

MRSW	II

Suppose	a	write	is	ongoing	(or	the	
writer	died).	

• Reader	reads	value	from	a	majority,	
takes	the	one	with	the	highest	
timestamp.	

• Reader	then	performs	a	write-back,	
writing	the	value	to	a	majority	(not	
necessarily	the	same	one).	Only	
returns	from	read	after	write-back	is	
complete.	

• Later	readers	are	guaranteed	to	read	
a	value	at	least	as	new	as	the	
previously	returned	one.

reader

1

1

1

2

1

2

MRSW	II

reader

1

1

1

2

1

2

2

2

reader

Suppose	a	write	is	ongoing	(or	the	
writer	died).	

• Reader	reads	value	from	a	majority,	
takes	the	one	with	the	highest	
timestamp.	

• Reader	then	performs	a	write-back,	
writing	the	value	to	a	majority	(not	
necessarily	the	same	one).	Only	
returns	from	read	after	write-back	is	
complete.	

• Later	readers	are	guaranteed	to	read	
a	value	at	least	as	new	as	the	
previously	returned	one.

MRSW	III

reader

servers

read phase write-back phase

Do we always need to execute the write-back phase?

Putting	It	All	Together:	MRMW

Does	the	previous	solution	just	work?	

What	if	writers	use	the	same	timestamp?	

What	if	a	write	that	starts	after	a	previous	write	
ended	uses	a	smaller	timestamp?

Prevented by
breaking ties using
writers ID, same as

PMMC.

MRMW:	Untimely	Timestamps

r→

writer

reader

writer w(, 2)

w(, 1)

Reads from a majority,
sees blue value has

the highest timestamp.

Not linearizable!

MRMW	II:	Ensuring	Timestamp	Ordering

• Writer	first	queries	a	majority,	
updates	its	timestamp	to	be	
larger	than	largest	timestamp	
found.	

• Writer	then	writes	value	to	
majority	as	usual.	

• Written	value	guaranteed	to	have	
a	timestamp	larger	than	
previously	written	values,	readers	
will	read	latest	value	(again,	
writer	IDs	break	timestamp	ties).

writer

1

1

2

2

2

31

MRMW	II:	Ensuring	Timestamp	Ordering

• Writer	first	queries	a	majority,	
updates	its	timestamp	to	be	
larger	than	largest	timestamp	
found.	

• Writer	then	writes	value	to	
majority	as	usual.	

• Written	value	guaranteed	to	have	
a	timestamp	larger	than	
previously	written	values,	readers	
will	read	latest	value	(again,	
writer	IDs	break	timestamp	ties).

writer

1

1

2

2

3

3

3

3

2

MRMW	III

writer

servers

query phase write phase

Read/writes	almost	the	same!

• The	methods	for	reading	and	writing	are	now	the	
same.	

• The	only	difference	is	that	a	read	writes	and	returns	
the	value	that	was	read,	but	a	write	writes	the	
value	to	be	written.	

• Also,	for	the	record,	there's	no	reason	that	clients	
can't	be	both	readers	and	writers.

ABD	vs.	Paxos

• Paxos	doesn't	guarantee	liveness	when	the	network	
is	asynchronous.	ABD	guarantees	wait-freedom,	
even	when	there	are	multiple	writers.	

• Paxos-based	state-machine	replication	(SMR)	can	
support	arbitrary	state	machines.	The	ABD	
algorithm	only	allows	a	read/write	interface.	

• ABD	removes	the	leader	bottleneck.	

• How	does	its	cost	compare	to	leader-based	Paxos?

What	Can	We	Do	With	Registers?

• Implement	a	read/write	key-value	store	

• Emulate	shared	memory	

Consensus	isn't	always	the	right	problem!	Don't	solve	
it	if	you	don't	have	to!

Randomized	Consensus

FLP	Impossibility

Theorem:	In	an	asynchronous	environment	in	which	a	
single	process	can	fail	by	crashing,	there	does	not	
exist	a	protocol	which	solves	binary	consensus.	

Paxos	doesn't	save	us.	It	doesn't	guarantee	liveness.	

Result	assumed	a	deterministic	computation	model.

Let's	go	random!

Ben-Or's	algorithm	uses	randomization	to	guarantee	
consensus	for	crash	failures	when	𝑓	<	𝑛/2.	

A	variant	even	works	for	Byzantine	faults!

Intuition

• At	first	every	process	
proposes	their	input	value.	

• After	that,	they	propose	
random	values.	

• When	enough	processes	
propose	the	same	value,	
the	value	is	chosen.	

• Eventually,	that	will	
happen!

𝑝1 𝑝2 𝑝3 𝑝n...
0→ → → →1 0 1

0 1 0 1

𝑝1 𝑝2 𝑝3 𝑝n...
1 0 1 1

𝑝1 𝑝2 𝑝3 𝑝n...
0 0 0 0

0 0 0 0

Setup

• Again,	we're	considering	binary	consensus.	

• Protocol	proceeds	in	asynchronous	rounds,	where	
each	round	has	two	phases.	

• For	each	phase,	processes	broadcast	their	input	
values	and	wait	for	𝑛	–	𝑓	messages	from	the	other	
processes.	

• Each	message	is	tagged	with	the	round	and	phase	
number.	(And	messages	can	be	resent	to	deal	with	a	
lossy	network.	But	once	a	message	is	sent,	that	value	
is	locked	in	for	that	process	for	that	phase/round.)

Ben-Or	Algorithm
𝑎←input

loop:

 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:

 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Processes	send	proposals	for	each	
phase	and	then	block	and	wait	for	
the	requisite	𝑛	–	𝑓	messages	
(including	their	own).	

During	the	first	phase,	processes	
make	a	preliminary	proposal.	

If	they	receive	matching	responses	
from	a	majority	in	the	first	phase,	
they	propose	that	value	in	the	
second	phase.	Otherwise,	they	
propose	⊥	(a	special	null	value).	

If	they	get	enough	non-⊥	responses	
from	the	second	phase,	they	decide.

Do	We	Have	Consensus?

• Agreement: No two
processes decide different
values.

• Integrity: Every process
decides at most one
value, and if a process
decides a value, some
process had it as its input.

• Termination: Every
correct process eventually
decides a value.

𝑎←input

loop:

 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Integrity	I

If	both	0	and	1	are	input	values	to	
processes,	integrity	is	trivially	
satisfied.	

Suppose	all	processes	have	the	
same	input	value.	

• Then,	they	all	send	the	
same	phase	1	value	in	
round	1.	

• So	they	all	send	that	same	
value	in	phase	2.	

• So	they	all	decide	that	
value	at	the	end	of	round	1.

𝑎←input

loop:

 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:

 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Fun	Fact

Lemma:	No	two	processes	
receive	different	non-⊥	
phase	2	values	in	the	
same	round.	

Suppose	they	did.	That	
means	that	one	process	
received	0s	from	a	
majority	in	phase	1	and	
another	received	1s.	

But	majorities	intersect!

𝑎←input

loop:

 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:

 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Agrement	+	Integrity	II

Let	round	𝑟	be	the	first	round	any	
process	decides	a	value,	0	w.l.o.g.	

If	a	process	decided	a	value,	it	must	
have	received	>𝑓	0s	in	phase	2.	

Which	means	that	every	process	
received	at	least	one	0	because	they	
all	wait	for	𝑛	–	𝑓	messages.	No	
process	received	a	1	by	the	previous	
lemma.	

Therefore,	on	round	𝑟	+	1	(and	all	
subsequent	rounds),	all	processes	
propose	0	and	all	processes	decide	0.

𝑎←input

loop:

 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:

 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Termination

We	know	that	if	all	processes	
propose	the	same	value	for	a	round,	
they	all	decide	that	value	that	
round.	

At	worst,	the	probability	of	this	
happening	on	any	particular	round	is	
1/2𝑛.	

Why?	By	the	previous	lemma,	all	the	
non-random	values	are	identical.	

Over	time,	the	probability	of	this	
happening	on	at	least	one	round	
converges	to	1.

𝑎←input

loop:

 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Other	Values?
Binary	consensus	is	conceptually	
simple	but	not	as	useful.	However,	the	
algorithm	can	be	to	support	larger	
domains,	even	when	the	processes	
don't	know	the	domains	a	priori	and	
even	when	some	processes	don't	
receive	input	values.	

• Processes	without	input	values	start	
by	proposing	⊥.	

• Instead	of	randomly	choosing	from	
{0,1},	processes	randomly	choose	
from	all	non-⊥	values	they've	seen	
so	far	(in	any	message).	Only	choose	
⊥	as	a	last	resort.

𝑎←input

loop:

 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:

 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Takeaways

• Randomization	can	actually	solve	consensus*		

• You	can	structure	an	asynchronous	protocol	using	
rounds.	It's	potentially	useful	and	certainly	an	
interesting	way	to	think	about	asynchronous	
computation.

