Wait-free registers
Randomized Consensus

Arvind Krishnamurthy
University of Washington

(Slides from: Ellis Michael)

Drawbacks of Paxos

e |eader is a single bottleneck, processes O(n)

messages on every request.
* FLP means that liveness not guaranteed.

* More practically, Paxos can have bad availability
during failure scenarios (e.g., if a leader fails, it
takes time to elect a new one).

Alternatives

* Weaken the safety guarantees and accept weaker
consistency (at your own peril).

* Constrain the problem (wait-free registers)

* Allow randomness (randomized algorithms)

Registers

e Hold a single value. Want
multiple values? Use multiple

bv
registers. ‘ ‘) al

* Allows reads and writes only. safe: a read not concurrent with
Does not allow appends or any write obtains the previously
other read-modify-write written value
operations.

P « regular: safe + a read that

* Provides safe, regular, and overlaps a write obtains either the
atomic/linearizable old ornew value
semantics

« atomic: safe + reads and writes
behave as if they occur in some
definite order

Implementing a Register

* \We will use the client/server model, where servers
are replicas storing the value and clients send reads
and writes.

* We want linearizability of reads and writes.

e As usual, we want to tolerate up to f server crash

failures. Clients can also fail by crashing, no limit on
number of client crashes.

Non-Blocking Algorithms

* Lock-free algorithms guarantee system-wide
progress.

* Wait-free algorithms guarantee per-client progress.
That is, no matter what steps other processes take,
a correct client's operations are always completed
in a finite number of steps.

Why No Appends?

Simple way to implement consensus:
* All processes append their input value.
* All processes read the value.

* They all decide the first value that was appended.

If you can wait-free implement an appendable

register; you can solve consensus (providing safety and
liveness), which is impossible.

How Many Servers Do We Need?

If we want to make progress even
when f servers crash, we can wait for
read

at most n - f responses. D

We need to send writes to > f

replicas, otherwise they could get write
lost forever. .

N\

v

&

So we need at least 2 f+1 servers.

And, in fact, we will use 2 f+1.

/

Read quorum size plus write quorum (f=1)
size should be greater than x (i.e.,

they should overlap). We'll use
simple majorities.

First Step: Single Reader, Single Writer (SWSR)

e Writer sends value to a

majority.
e Reader reads value from a ,
. . wrrter
majority.
* Since majorities intersect, -
reader reads writer's -
reader g

value.

Does this work?

First Step: Single Reader, Single Writer (SWSR)

e \Writer sends value to a
majority.

e Reader reads value from a
. . writer
majority.

* Since majorities intersect,
reader reads writer's
value.

Does this work?

SWSR 11

* Writer sends a timestamped
value to a majority.

* Reader reads value from a
majority, takes the one with
the highest timestamp.

writer

* Since majorities intersect,
reader reads writer's latest
written value.

reader

Does this work?

SWSR 11

* Writer sends a timestamped
value to a majority.

* Reader reads value from a
majority, takes the one with
the highest timestamp.

* Since majorities intersect,
reader reads writer's latest
written value.

Does this work?

Multiple Readers, Single Writer (MRSW)

Does this previous solution just work?

What happens if there are multiple reads by different
processes overlapping the same write?

MRSW: Inconsistent Reads

Red value not yet

written to a majority,
still finds it.

Reads from a different

= majority, doesn't find
reader A red value.

. w(Il
writer :W(>% b s <~)~ o

Not linearizable!

MRSW Il

Suppose a write is ongoing (or the
writer died).

Reader reads value from a majority,
takes the one with the highest
timestamp.

Reader then performs a write-back,
writing the value to a majority (not
necessarily the same one). Only
returns from read after write-back is
complete.

Later readers are guaranteed to read
a value at least as new as the
previously returned one.

2

— o

MRSW Il

Suppose a write is ongoing (or the
writer died).

Reader reads value from a majority,
takes the one with the highest
timestamp.

Reader then performs a write-back,
writing the value to a majority (not
necessarily the same one). Only
returns from read after write-back is
complete.

Later readers are guaranteed to read
a value at least as new as the
previously returned one.

reader

reader

—

P

P

N

—

MRSW 11

reader

SUOAISS

vVVvyFVvyFvevy v

N\ N/
N/ N/
\¥
¥
read phase write-back phase

Do we always need to execute the write-back phase?

Putting It All Together: MRMW

Prevented by
breaking ties using

i] . writers 1D, same as
Does the previous solution just work? PMMC.

What if writers use the same timestamp?

What if a write that starts after a previous write
ended uses a smaller timestamp?

MRMW: Untimely Timestamps

Reads from a majority,

sees blue value has
the highest timestamp.

r—
reader s e
writer : W(.ful) i »
. w(i, 2)
wrrter fomernie o

Not linearizable!

MRMW lI: Ensuring Timestamp Ordering

e Writer first queries a majority,
updates its timestamp to be
larger than largest timestamp
found.

e Writer then writes value to
majority as usual.

e Written value guaranteed to have
a timestamp larger than
previously written values, readers
will read latest value (again,
writer IDs break timestamp ties).

MRMW lI: Ensuring Timestamp Ordering

* Writer first queries a majority,
updates its timestamp to be
larger than largest timestamp
found.

e Writer then writes value to
majority as usual.

* Written value guaranteed to have
a timestamp larger than
previously written values, readers
will read latest value (again,
writer IDs break timestamp ties).

writer

SUOAISS

MRMW i1

NN W/
\VA—\7,
1

vVVvyFVvyFvevy v

query phase

write phase

Read/writes almost the same!

* The methods for reading and writing are now the
same.

* The only difference is that a read writes and returns
the value that was read, but a write writes the
value to be written.

* Also, for the record, there's no reason that clients
can't be both readers and writers.

ABD vs. Paxos

Paxos doesn't guarantee liveness when the network
is asynchronous. ABD guarantees wait-freedom,
even when there are multiple writers.

Paxos-based state-machine replication (SMR) can
support arbitrary state machines. The ABD
algorithm only allows a read/write interface.

ABD removes the leader bottleneck.

How does its cost compare to leader-based Paxos?

What Can We Do With Registers?

* Implement a read/write key-value store
* Emulate shared memory

Consensus isn't always the right problem! Don't solve
it if you don't have to!

Randomized Consensus

FLP Impossibility

Theorem: In an asynchronous environment in which a
single process can fail by crashing, there does not
exist a protocol which solves binary consensus.

Paxos doesn't save us. It doesn't guarantee liveness.

Result assumed a deterministic computation model.

Let's go random!

Ben-Or's algorithm uses randomization to guarantee
consensus for crash failures when f < n/2.

A variant even works for Byzantine faults!

Intuition

At first every process
proposes their input value.

After that, they propose
random values.

When enough processes
propose the same value,
the value is chosen.

Eventually, that will
happen!

Setup

Again, we're considering binary consensus.

Protocol proceeds in asynchronous rounds, where
each round has two phases.

For each phase, processes broadcast their input
values and wait for n — f messages from the other
processes.

Each message is tagged with the round and phase
number. (And messages can be resent to deal with a
lossy network. But once a message is sent, that value
is locked in for that process for that phase/round.)

Ben-Or Algorithm

Processes send proposals for each
phase and then block and wait for

the requisite n — f messages
(including their own).

During the first phase, processes
make a preliminary proposal.

If they receive matching responses
from a majority in the first phase,
they propose that value in the
second phase. Otherwise, they
propose L (a special null value).

If they get enough non-_1L responses

from the second phase, they decide.

a<input

loop:

send_phasel(a)
A<«receive_phasel()
if (3a’e A:|A,] > n/2):

/

b<a
else:
b—1

send_phase2(b)

B<receive_phase2()

if (3b’e B:b'=L A |By| > f):
decide(d)

if(3b’e B:b'=1):

a<b’
else:

a<—choose_random({0,1})

Do We Have Consensus?

e Agreement: No two a«input
processes decide different '°°'°5:en § phaserta
Va I ues. A<receive_phasel()
if (Ja’e A:|A| > n/2):
o Integrity: Every process bea

else:

decides at most one el

value, and if a process

) send_phase2(b)
decides a value, some

B<«receive_phase2()

process had it as its input. if 3b'c B:b%L A |By] > f):
decide(d)
e Termination: Every if(3b'e B:bL):
a<b’

correct process eventually e
decides a value. a«choose_random({0,1})

Integrity |

If both 0 and 1 are input values to
processes, integrity is trivially
satisfied.

Suppose all processes have the
same input value.

* Then, they all send the
same phase 1 value in
round 1.

e So they all send that same
value in phase 2.

* So they all decide that

value at the end of round 1.

a<input

loop:
send_phasel(a)
A<receive_phasel()
if (3a’e A:|A| > n/2):

/

b<a
else:
b1

send_phase2(b)

B<receive_phase2()

if (3b’e B:b'=L A |By| > f):
decide(b’)

if(@3b’e B:b'#1):

a<b’
else:

a<choose_random({0,1})

Fun Fact

Lemma: No two processes acinput

. . loop:
receive different non-_L send_phase1(a
phase 2 values in the Acrecelve_phasel0

if (a’e A:|A,|>n/2):
same round. pea

else:
Suppose they did. That bl
means that one process send_phase2(b)

. B<receive_phase2()
received Os from a f(abe B:beL A |By|> 1)
majority in phase 1 and decide(b)

. if(@b’e B:b'#1):
another received 1s. o

else:

But majorities intersect! a<choose_random({0,1)

Agrement + Integrity Il

Let round r be the first round any
process decides a value, 0 w.l.o.g.

If a process decided a value, it must
have received > f Os in phase 2.

Which means that every process
received at least one 0 because they

all wait for n — f messages. No

process received a 1 by the previous
lemma.

Therefore, on round r + 1 (and all
subsequent rounds), all processes

propose 0 and all processes decide 0.

a<input

loop:

send_phasel(a)
A<«receive_phasel()
if (3a’e A:|A,] > n/2):

/

b<a
else:
b—1

send_phase2(b)
B<receive_phase2()
if (3b’e B:b'=L A |By| > f):
decide(d)
if(3b’e B:b=1):
a<b’
else:

a<—choose_random({0,1})

Termination

We know that if all processes
propose the same value for a round,
they all decide that value that
round.

At worst, the probability of this
happening on any particular round is
1/2n.

Why? By the previous lemma, all the
non-random values are identical.

Over time, the probability of this
happening on at least one round
converges to 1.

a<input

loop:
send_phasel(a)
A<receive_phasel()
if (Ja’e A:|A| > n/2):

b<—a’
else:
b—1

send_phase2(b)
B<receive_phase2()
if (3b’e B:b'=L A|By| > f):
decide(b)
if(3b’e B:b'#L1):
a<b’
else:

a<choose_random({0,1})

Other Values?

Binary consensus is conceptually
simple but not as useful. However, the
algorithm can be to support larger
domains, even when the processes
don't know the domains a priori and
even when some processes don't
receive input values.

* Processes without input values start
by proposing L.

* |nstead of randomly choosing from
{0,1}, processes randomly choose
from all non-_L values they've seen

so far (in any message). Only choose
1 as a last resort.

a<input

loop:

send_phasel(a)
A<«receive_phasel()
if (3a’e A:|Al| > n/2):

/

b<a
else:
b—_1

send_phase2(b)

B<receive_phase2()

if (3b’e B:b'=L A |By| > f):
decide(b’)

if(@b'e B:b'=L):

a<—b’
else:

a<—choose_random({0,1})

Takeaways

* Randomization can actually solve consensus*

* You can structure an asynchronous protocol using
rounds. It's potentially useful and certainly an
interesting way to think about asynchronous
computation.

