Distributed Systems

Arvind Krishnamurthy
University of Washington



Today’s Lecture

Introduction
Role of knowledge in distributed systems
Course details

Start discussion on key building blocks



Course Notes

* Derived from research papers and course notes
from other distributed systems classes, particularly:

* Tom Anderson, Doug Woos, Dan Ports (UW)
* Lorenzo Alvisi (Cornell)
* Robert Morris (MIT)

* James Aspnes (Yale)



Distributed Systems are everywhere!

* Some of the most powerful services are powered
using distributed systems

* systems that span the world,
* serve billions of users,
* and are always up!

* .. butalso pose some of the hardest CS problems



What is a distributed system?

* multiple interconnected computers that cooperate
to provide some service

* what are some examples of distributed systems?



Why distributed systems?

* Higher capacity and performance
* Geographical distribution

* Build reliable, always-on systems



* What are the challenges in building distributed
systems?



(Partial) List of Challenges

Fault tolerance

o different failure models, different types of
failures

Consistency/correctness of distributed state
Performance

Scaling

Security

System design, architecture, testing



* We want to build distributed systems to be more
scalable, and more reliable

* But it’s easy to make a distributed system that’s less
performant and less reliable than a centralized one!



Challenge: failure

* Want to keep the system doing useful work in the
presence of partial failures



Consider a datacenter

e E.g., Facebook, Prineville OR
e 10x size of CSE building, S1B cost, 30 MW power
* 200K+ servers
* 500K+ disks
* 10K network switches
* 300K+ network cables

* What is the likelihood that all of them are
functioning correctly at any given moment?



Typical first year for a cluster

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc



* At any given point in time, there are many failed
components!

* Leslie Lamport (c. 1990): “A distributed system is
one where the failure of a computer you didn’t
know existed renders your own computer useless”



Challenge: Managing State

* Question: what are the issues in managing state?



State Management

Keep data available despite failures:
* make multiple copies in different places
Make popular data fast for everyone:
e make multiple copies in different places
Store a huge amount of data:
e splititinto multiple partitions on different machines

How do we make sure that all these copies of data are
consistent with each other?

How do we “transactionally” update multiple data items?

How do we do all of this efficiently?



Lot of subtleties

* Simple idea: make two copies of data so you can
tolerate one failure

* |Lots of subtleties in how to do this correctly!

What if one replica fails?

What if one replica just thinks the other has
failed?

What if each replica thinks the other has failed?



The Two Generals Problem

Two armies are encamped on two hills surrounding a
city in a valley

The generals must agree on the same time to attack
the city.

Their only way to communicate is by sending a
messenger through the valley, but that messenger
could be captured (and the message lost)



The Two-Generals Problem

* No solution is possible!
* |f a solution were possible:
* it must have involved sending some messages

* but the last message could have been lost, so
we must not have really needed it

* so we cah remove that message entirely

* We can apply this logic to any protocol, and remove
all the messages — contradiction



e \What does this have to do with distributed
systems?



e \What does this have to do with distributed
systems?

* “Common knowledge” cannot be achieved by
communicating through unreliable channels



Another Example: Muddy Foreheads

* “n” children go playing

* Children are truthful, perceptive, intelligent

* Mom says: “don’t get muddy”

* Some number (say k) get mud on their foreheads

* but a child doesn’t know if there is mud on his/
her forehead

® cach child can look at others’ foreheads



Muddy Foreheads (contd.)

* Dad comes, looks around, and says:
* “Some of you got a muddy forehead”
* Dad then asks repeatedly:

* “Do you know whether you have mud on your
own forehead?”

* What happens?



Muddy Foreheads (contd.)

* Claim:
e The first k-1 times the dad asks, all children will reply “No”
 The k-th time all dirty children will reply “Yes”
e Reasoning by considering cases and using induction:
e k=1: the child with a muddy forehead will say yes
e k=2:let X and Y have muddy foreheads

e Each sees exactly one other person with muddy
forehead

* Inround 1, X noticed Y didn’t say “Yes”

* Possibly only because Y must have seen a child with
a muddy forehead ==> X must have mud



Distributed Systems are Hard

e Distributed systems are hard because many things we want
to do are provably impossible

* consensus: get a group of nodes to agree on a value
(say, which request to execute next)

e Dbe certain about which machines are alive and which
ones are just slow

* build a storage system that is always consistent and
always available (the “CAP theorem”)

e We need to make the right assumptions and also resort to
“best effort” guarantees



This Course

* |ntroduction to the major challenges in building
distributed systems

* Will cover key ideas, algorithms, and abstractions in
building distributed system

* Will also cover some well-known systems that
embody such as ideas




Topics

Implementing distributed systems: system and protocol design
Understanding the global state of a distributed system
Building reliable systems from unreliable components

Building scalable systems

Managing concurrent accesses to data with transactions
Abstractions for big data analytics

Building secure systems from untrusted components

Latest research in distributed systems



Course Components

* Assignments (40%)

* Deep dive into some of the papers; done
individually

* (lass participation (10%)

* Project (50%)

* course-long project; done as a group



