
Distributed	Systems

Arvind	Krishnamurthy	

University	of	Washington

Today’s	Lecture

• Introduction	
• Role	of	knowledge	in	distributed	systems	

• Course	details	
• Start	discussion	on	key	building	blocks

Course	Notes

• Derived	from	research	papers	and	course	notes	
from	other	distributed	systems	classes,	particularly:	

• Tom	Anderson,	Doug	Woos,	Dan	Ports	(UW)	

• Lorenzo	Alvisi	(Cornell)	
• Robert	Morris	(MIT)	

• James	Aspnes	(Yale)	

Distributed	Systems	are	everywhere!

• Some	of	the	most	powerful	services	are	powered	
using	distributed	systems	

• systems	that	span	the	world,	

• serve	billions	of	users,	

• and	are	always	up!	

• …	but	also	pose	some	of	the	hardest	CS	problems

What	is	a	distributed	system?

• multiple	interconnected	computers	that	cooperate	
to	provide	some	service	

• what	are	some	examples	of	distributed	systems?

Why	distributed	systems?

• Higher	capacity	and	performance	

• Geographical	distribution	

• Build	reliable,	always-on	systems

• What	are	the	challenges	in	building	distributed	
systems?

(Partial)	List	of	Challenges

• Fault	tolerance	
• different	failure	models,	different	types	of	

failures	

• Consistency/correctness	of	distributed	state	

• Performance	

• Scaling	

• Security	

• System	design,	architecture,	testing

• We	want	to	build	distributed	systems	to	be	more	
scalable,	and	more	reliable	

• But	it’s	easy	to	make	a	distributed	system	that’s	less	
performant	and	less	reliable	than	a	centralized	one!

Challenge:	failure

• Want	to	keep	the	system	doing	useful	work	in	the	
presence	of	partial	failures

Consider	a	datacenter

• E.g.,	Facebook,	Prineville	OR	
• 10x	size	of	CSE	building,	$1B	cost,	30	MW	power	

• 200K+	servers	

• 500K+	disks	

• 10K	network	switches	

• 300K+	network	cables	

• What	is	the	likelihood	that	all	of	them	are	
functioning	correctly	at	any	given	moment?

Typical	first	year	for	a	cluster
• ~0.5	overheating	(power	down	most	machines	in	<5	mins,	~1-2	days	to	recover)	

• ~1	PDU	failure	(~500-1000	machines	suddenly	disappear,	~6	hours	to	come	back)	

• ~1	rack-move	(plenty	of	warning,	~500-1000	machines	powered	down,	~6	hours)	

• ~1	network	rewiring	(rolling	~5%	of	machines	down	over	2-day	span)	

• ~20	rack	failures	(40-80	machines	instantly	disappear,	1-6	hours	to	get	back)	

• ~5	racks	go	wonky	(40-80	machines	see	50%	packetloss)	

• ~8	network	maintenances	(4	might	cause	~30-minute	random	connectivity	losses)	

• ~12	router	reloads	(takes	out	DNS	and	external	vips	for	a	couple	minutes)	

• ~3	router	failures	(have	to	immediately	pull	traffic	for	an	hour)	

• ~dozens	of	minor	30-second	blips	for	dns	

• ~1000	individual	machine	failures	

• ~thousands	of	hard	drive	failures	

• slow	disks,	bad	memory,	misconfigured	machines,	flaky	machines,	etc

[Jeff Dean, Google, 2008]

• At	any	given	point	in	time,	there	are	many	failed	
components!	

• Leslie	Lamport	(c.	1990):	“A	distributed	system	is	
one	where	the	failure	of	a	computer	you	didn’t	
know	existed	renders	your	own	computer	useless”

Challenge:	Managing	State

• Question:	what	are	the	issues	in	managing	state?

State	Management

• Keep	data	available	despite	failures:		
• make	multiple	copies	in	different	places	

• Make	popular	data	fast	for	everyone:	

• make	multiple	copies	in	different	places	

• Store	a	huge	amount	of	data:	

• split	it	into	multiple	partitions	on	different	machines	

• How	do	we	make	sure	that	all	these	copies	of	data	are	
consistent	with	each	other?	

• How	do	we	“transactionally”	update	multiple	data	items?	

• How	do	we	do	all	of	this	efficiently?

Lot	of	subtleties

• Simple	idea:	make	two	copies	of	data	so	you	can	
tolerate	one	failure	

• Lots	of	subtleties	in	how	to	do	this	correctly!	
• What	if	one	replica	fails?	

• What	if	one	replica	just	thinks	the	other	has	
failed?	

• What	if	each	replica	thinks	the	other	has	failed?

The	Two	Generals	Problem

• Two	armies	are	encamped	on	two	hills	surrounding	a	
city	in	a	valley	

• The	generals	must	agree	on	the	same	time	to	attack	
the	city.	

• Their	only	way	to	communicate	is	by	sending	a	
messenger	through	the	valley,	but	that	messenger	
could	be	captured	(and	the	message	lost)

The	Two-Generals	Problem

• No	solution	is	possible!	
• If	a	solution	were	possible:	
• it	must	have	involved	sending	some	messages	

• but	the	last	message	could	have	been	lost,	so	
we	must	not	have	really	needed	it	

• so	we	can	remove	that	message	entirely	

• We	can	apply	this	logic	to	any	protocol,	and	remove	
all	the	messages	—	contradiction

• What	does	this	have	to	do	with	distributed	
systems?

• What	does	this	have	to	do	with	distributed	
systems?	

• “Common	knowledge”	cannot	be	achieved	by	
communicating	through	unreliable	channels

Another	Example:	Muddy	Foreheads

• “n”	children	go	playing	
• Children	are	truthful,	perceptive,	intelligent	
• Mom	says:	“don’t	get	muddy”	

• Some	number	(say	k)	get	mud	on	their	foreheads	

• but	a	child	doesn’t	know	if	there	is	mud	on	his/
her	forehead	

• each	child	can	look	at	others’	foreheads

Muddy	Foreheads	(contd.)

• Dad	comes,	looks	around,	and	says:	

• “Some	of	you	got	a	muddy	forehead”	

• Dad	then	asks	repeatedly:	
• “Do	you	know	whether	you	have	mud	on	your	
own	forehead?”	

• What	happens?

Muddy	Foreheads	(contd.)

• Claim:		

• The	first	k-1	times	the	dad	asks,	all	children	will	reply	“No”	

• The	k-th	time	all	dirty	children	will	reply	“Yes”	

• Reasoning	by	considering	cases	and	using	induction:	

• k=1:	the	child	with	a	muddy	forehead	will	say	yes	

• k=2:	let	X	and	Y	have	muddy	foreheads	

• Each	sees	exactly	one	other	person	with	muddy	
forehead	

• In	round	1,	X	noticed	Y	didn’t	say	“Yes”	

• Possibly	only	because	Y	must	have	seen	a	child	with	
a	muddy	forehead	==>	X	must	have	mud

Distributed	Systems	are	Hard

• Distributed	systems	are	hard	because	many	things	we	want	
to	do	are	provably	impossible	

• consensus:	get	a	group	of	nodes	to	agree	on	a	value	
(say,	which	request	to	execute	next)	

• be	certain	about	which	machines	are	alive	and	which	
ones	are	just	slow	

• build	a	storage	system	that	is	always	consistent	and	
always	available	(the	“CAP	theorem”)	

• We	need	to	make	the	right	assumptions	and	also	resort	to	
“best	effort”	guarantees

This	Course

• Introduction	to	the	major	challenges	in	building	
distributed	systems	

• Will	cover	key	ideas,	algorithms,	and	abstractions	in	
building	distributed	system	

• Will	also	cover	some	well-known	systems	that	
embody	such	as	ideas

Topics

• Implementing	distributed	systems:	system	and	protocol	design	

• Understanding	the	global	state	of	a	distributed	system	

• Building	reliable	systems	from	unreliable	components	

• Building	scalable	systems	

• Managing	concurrent	accesses	to	data	with	transactions	

• Abstractions	for	big	data	analytics	

• Building	secure	systems	from	untrusted	components	

• Latest	research	in	distributed	systems

Course	Components

• Assignments	(40%)	

• Deep	dive	into	some	of	the	papers;	done	
individually	

• Class	participation	(10%)	

• Project	(50%)	

• course-long	project;	done	as	a	group

