Global Predicate Detection and Event Ordering

Our Problem

To compute predicates over the state of a distributed application

Model

- Message passing
- Ø No failures
- Two possible timing assumptions:
 1. Synchronous System
 2. Asynchronous System
 D No upper bound on message delivery time
 D No bound on relative process speeds
 - No centralized clock

Asynchronous systems

Weakest possible assumptions
cfr. "finite progress axiom"
Weak assumptions = less vulnerabilities
Asynchronous ≠ slow
"Interesting" model w.r.t. failures (ah ah ah!)

Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

S

A client requests a service by sending the server a message. The client blocks while waiting for a response

Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response

The server computes the response (possibly asking other servers) and returns it to the client

Goal

Design a protocol by which a processor can determine whether a global predicate (say, deadlock) holds

Wait-For Graphs

The second seco

Wait-For Graphs

Traw arrow from p_i to p_j if p_j has received a request but has not responded yet

 \bigcirc Cycle in WFG \Rightarrow deadlock

 \bigcirc Deadlock \Rightarrow \diamondsuit cycle in WFG

The protocol

O p_0 sends a message to $p_1 \dots p_3$

On receipt of p_0 's message, p_i replies with its state and wait-for info

An execution

 p_3

 p_2

 p_1

 p_1

An execution

An execution

Houston, we have a problem...

Asynchronous system
 no centralized clock, etc. etc.
 Synchrony useful to
 coordinate actions
 order events
 Mmmhhh...

Events and Histories

- Processes execute sequences of events
 Events can be of 3 types: local, send, and receive
 eⁱ_p is the *i*-th event of process p
- The local history h_p of process p is the sequence of events executed by process p
 - h_p^k : prefix that contains first k events h_p^0 : initial, empty sequence

The history H is the set $h_{p_0} \cup h_{p_1} \cup \ldots h_{p_{n-1}}$ NOTE: In H, local histories are interpreted as sets, rather than sequences, of events

Ordering events

Ø Observation 1:
Ø Events in a local history are totally ordered

Ordering events

Observation 1:
Events in a local history are <u>totally ordered</u>

Happened-before (Lamport[1978])

A binary relation \rightarrow defined over events 1. if $e_i^k, e_i^l \in h_i$ and k < l, then $e_i^k \rightarrow e_i^l$

2. if $e_i = send(m)$ and $e_j = receive(m)$, then $e_i \rightarrow e_j$

3. if $e \to e'$ and $e' \to e''$ then $e \to e''$

Space-Time diagrams

A graphic representation of a distributed execution

Space-Time diagrams

A graphic representation of a distributed execution

Space-Time diagrams

A graphic representation of a distributed execution

H and \rightarrow impose a partial order

 p_2

 $p_3 p_3$

 p_2

Runs and Consistent Runs

 A run is consistent if the total order imposed in the run is an extension of the partial order induced by →

A single distributed computation may correspond to several consistent runs!

Cuts

A cut C is a subset of the global history of H $C=h_1^{c_1}\cup h_2^{c_2}\cup\dots h_n^{c_n}$

Cuts

A cut C is a subset of the global history of H $C = h_1^{c_1} \cup h_2^{c_2} \cup \dots h_n^{c_n}$

The frontier of C is the set of events $e_1^{c_1}, e_2^{c_2}, \dots e_n^{c_n}$

Global states and cuts

The global state of a distributed computation is an n-tuple of local states

 $\Sigma = (\sigma_1, \dots \sigma_n)$

To each cut $(c_1 \dots c_n)$ corresponds a global state $(\sigma_1^{c_1}, \dots \sigma_n^{c_n})$

Consistent cuts and consistent global states

A cut is consistent if

 $\forall e_i, e_j : e_j \in C \land e_i \to e_j \Rightarrow e_i \in C$

A consistent global state is one corresponding to a consistent cut

What p_0 sees

What p_0 sees

Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by p_3 but not the corresponding send event

Our task

Develop a protocol by which a processor can build a consistent global state

Informally, we want to be able to take a snapshot of the computation

Ø Not obvious in an asynchronous system...

Our approach

Develop a simple synchronous protocol
Refine protocol as we relax assumptions
Record:

processor states
channel states

Assumptions:

FIFO channels
Each m timestamped with with T(send(m))
Snapshot I

i. p_0 selects t_{ss}

ii. p_0 sends "take a snapshot at t_{ss} " to all processes

- iii. when clock of p_i reads t_{ss} then p
 - a. records its local state σ_i
 - b. starts recording messages received on each of incoming channels
 - c. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Snapshot I

i. p_0 selects t_{ss}

ii. p_0 sends "take a snapshot at t_{ss} " to all processes

- iii. when clock of p_i reads t_{ss} then p
 - a. records its local state σ_i
 - b. sends an empty message along its outgoing channels
 - c. starts recording messages received on each of incoming channels
 - d. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Correctness

Theorem Snapshot I produces a consistent cut **Proof** Need to prove $e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$

< Definition >< 0 and 1>< 5 and 3> $0. e_j \in C \equiv T(e_j) < t_{ss}$ $3. T(e_j) < t_{ss}$ $6. T(e_i) < t_{ss}$ < Assumption >< Property of real time>< Definition > $1. e_j \in C$ $4. e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$ $7. e_i \in C$ < Assumption >< 2 and 4> $5. T(e_i) < T(e_j)$

Clock Condition

< Property of real time> 4. $e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$

Can the Clock Condition be implemented some other way?

Lamport Clocks

Each process maintains a local variable LC $LC(e) \equiv$ value of LC for event e

Timestamp m with TS(m) = LC(send(m))

Space-Time Diagrams and Logical Clocks

A subtle problem

when LC = t do S

doesn't make sense for Lamport clocks! There is no guarantee that LC will ever be tS is anyway executed after LC = t

Fixes:

if e is internal/send and LC = t - 2execute e and then S
if $e = receive(m) \land (TS(m) \ge t) \land (LC \le t - 1)$ put message back in channel
re-enable e ; set LC = t - 1; execute S

An obvious problem

O No $t_{ss}!$

 ${\it \textcircled{O}}$ Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

An obvious problem

O No $t_{ss}!$

 ${\it \textcircled{O}}$ Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh...

An obvious problem

O No $t_{ss}!$

Schoose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh...

Doing so assumes
 upper bound on message delivery time
 upper bound relative process speeds
 We better relax it...

Snapshot II

 \odot processor p_0 selects Ω

 p_0 sends "take a snapshot at Ω " to all processes; it waits for
all of them to reply and then sets its logical clock to Ω

 ${}_{m{\oslash}}$ when clock of p_i reads Ω then p_i

 \square records its local state σ_i

 \Box sends an empty message along its outgoing channels

starts recording messages received on each incoming channel

 \square stops recording a channel when receives first message with timestamp greater than or equal to Ω

Relaxing synchrony

Use empty message to announce snapshot!

Snapshot III

O processor p_0 sends itself "take a snapshot"

O when p_i receives "take a snapshot" for the first time from p_j :

- \square records its local state σ_i
- □ sends "take a snapshot" along its outgoing channels
- \square sets channel from p_j to empty
- starts recording messages received over each of its other incoming channels

a when p_i receives "take a snapshot" beyond the first time from p_k :

 \square stops recording channel from p_k

So when p_i has received "take a snapshot" on all channels, it sends collected state to p_0 and stops.

Snapshots: a perspective

O The global state Σ^s saved by the snapshot protocol is a consistent global state

Snapshots: a perspective

The global state ∑^s saved by the snapshot protocol is a consistent global state
But did it ever occur during the computation?
□ a distributed computation provides only a partial order of events
□ many total orders (runs) are compatible with that partial order
□ all we know is that ∑^s could have occurred

Snapshots: a perspective

 \odot The global state Σ^s saved by the snapshot protocol is a consistent global state But did it ever occur during the computation? \square a distributed computation provides only a partial order of events □ many total orders (runs) are compatible with that partial order \Box all we know is that Σ^s could have occurred We are evaluating predicates on states that may have never occurred!

An Execution and its Lattice Σ^{00}

 Σ^{10}

 Σ^{kl} is reachable from Σ^{ij} if there is a path from Σ^{kl} to Σ^{ij} in the lattice

 Σ^{kl} is reachable from Σ^{ij} if there is a path from Σ^{kl} to Σ^{ij} in the lattice

 Σ^{kl} is reachable from Σ^{ij} if there is a path from Σ^{kl} to Σ^{ij} in the lattice

 Σ^{kl} is reachable from Σ^{ij} if there is a path from Σ^{kl} to Σ^{ij} in the lattice

 $\overline{\Sigma^{ij}}\rightsquigarrow\Sigma^{kl}$

So, why do we care about Σ^s again?

Deadlock is a stable property
Deadlock $\Rightarrow \Box$ Deadlock

If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \rightsquigarrow_R \Sigma^f$

So, why do we care about Σ^s again?

Teadlock is a stable property
Deadlock $\Rightarrow \Box$ Deadlock

If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \rightsquigarrow_R \Sigma^f$

O Deadlock in Σ^s implies deadlock in Σ^f

So, why do we care about Σ^s again?

Deadlock is a stable property
Deadlock $\Rightarrow \Box$ Deadlock

O If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \leadsto_R \Sigma^f$

O Deadlock in Σ^s implies deadlock in Σ^f

O No deadlock in Σ^s implies no deadlock in Σ^i

Same problem, different approach

Monitor process does not query explicitly

Instead, it passively collects information and uses it to build an observation. (reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.