
Global Predicate Detection 
and Event Ordering



Our Problem

To compute predicates
over the state of 

a distributed application



Model

Message passing

No failures

Two possible timing assumptions:
1. Synchronous System
2. Asynchronous System

No upper bound on message delivery time
No bound on relative process speeds
No centralized clock



Asynchronous systems

Weakest possible assumptions

cfr. “finite progress axiom”

Weak assumptions    less vulnerabilities

Asynchronous ≠ slow

“Interesting” model w.r.t. failures (ah ah ah!) 

≡



Client-Server

Processes exchange messages using 
Remote Procedure Call (RPC)

A client requests a service by 
sending the server a message. 
The client blocks while waiting 

for a response
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Client-Server

Processes exchange messages using 
Remote Procedure Call (RPC)

The server computes the 
response (possibly asking other 
servers) and returns it to the 

client

A client requests a service by 
sending the server a message. 
The client blocks while waiting 

for a response
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Deadlock!
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Goal

Design a protocol by which a 
processor can determine whether 
a global predicate (say, deadlock) 

holds



Draw arrow from    to    if    has received a 
request but has not responded yet

Wait-For Graphs
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Draw arrow from    to    if    has received a 
request but has not responded yet

Cycle in WFG          deadlock

Deadlock               cycle in WFG

Wait-For Graphs
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The protocol

    sends a message to 

On receipt of   ’s message,    replies with its 
state and wait-for info

p1 . . . p3p0

p0 pi



An execution
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An execution

Ghost Deadlock!
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Houston,
we have a problem...
Asynchronous system

no centralized clock, etc. etc.

Synchrony useful to

coordinate actions

order events

Mmmmhhh...



Events and Histories
Processes execute sequences of events
Events can be of 3 types: local, send, and receive
   is the  -th event of process 

The local history    of process   is the sequence 
of events executed by process 

     : prefix that contains first k events
     : initial, empty sequence

The history H is the set 
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NOTE: In H, local histories are interpreted as sets, rather than sequences, of events 
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Ordering events

Observation 1: 
Events in a local history are totally ordered

time
pi



Ordering events

Observation 1: 
Events in a local history are totally ordered

Observation 2: 
For every message   ,           precedes 

time
pi
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Happened-before
(Lamport[1978])

A binary relation    defined over events

1. if             and       , then

2. if                and                    , 
then

3. if         and           then 

→

ek
i , el

i ∈ hi k < l e
k
i → e

l
i

ei = send(m) ej = receive(m)
ei → ej

e → e
′

e
′
→ e

′′
e → e

′′



Space-Time diagrams

A graphic representation of a distributed execution
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Space-Time diagrams

A graphic representation of a distributed execution
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Runs and
Consistent Runs

A run is a total ordering of the events in H 
that is consistent with the local histories of 
the processors

Ex:                 is a run

A run is consistent if the total order imposed 
in the run is an extension of the partial 
order induced by

A single distributed computation may 
correspond to several consistent runs!

h1, h2, . . . , hn

→



Cuts

A cut C is a subset of the global history of H
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A cut C is a subset of the global history of H

The frontier of C is the set of events 

Cuts
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Global states and cuts

The global state of a distributed computation 
is an  -tuple of local states

To each cut           corresponds a global 
state 

Σ = (σ1, . . .σn)

(σc1

1
, . . .σ

cn

n
)

(c1 . . . cn)
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Consistent cuts and 
consistent global states

A cut is consistent if

A consistent global state is one corresponding 
to a consistent cut 

∀ei, ej : ej ∈ C ∧ ei → ej ⇒ ei ∈ C



What    seesp0
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What    sees

Not a consistent global state: the cut contains 
the event corresponding to the receipt of the 
last message by    but not the corresponding 
send event

p1

p2

p3

p3

p0



Our task

Develop a protocol by which a processor can build 
a consistent global state

Informally, we want to be able to take a snapshot 
of the computation

Not obvious in an asynchronous system...



Our approach

Develop a simple synchronous protocol

Refine protocol as we relax assumptions 

Record:
processor states
channel states 

Assumptions:
FIFO channels
Each    timestamped with with m T (send(m))



Snapshot I
i.      selects 

ii.     sends “take a snapshot at     ” to all processes

iii. when clock of     reads       then 
a. records its local state 
b. starts recording messages received on each of incoming 

channels 
c. stops recording a channel when it receives first message 

with timestamp greater than or equal to 
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Snapshot I
i.      selects 

ii.     sends “take a snapshot at     ” to all processes

iii. when clock of     reads       then 
a. records its local state 
b. sends an empty message along its outgoing channels
c. starts recording messages received on each of incoming 

channels 
d. stops recording a channel when it receives first message 

with timestamp greater than or equal to 

p0 tss

p0 tss

tss

tss

pi

σi

p



Correctness
Theorem     Snapshot I produces a consistent cut

< Assumption >

< Assumption >

< 0 and 1>

Proof Need to prove  

< Definition >

< Property of real time>

< 2 and 4>

< 5 and 3>

< Definition >

ej ∈ C ∧ ei → ej ⇒ ei ∈ C

2. ei → ej

1. ej ∈ C

0. ej ∈ C ≡ T (ej) < tss 3. T (ej) < tss

4. ei → ej ⇒ T (ei) < T (ej)

6. T (ei) < tss

5. T (ei) < T (ej)

7. ei ∈ C



Clock Condition

< Property of real time>

Can the Clock Condition be 
implemented some other way?

4. ei → ej ⇒ T (ei) < T (ej)



Lamport Clocks

Each process maintains a local variable
                 value of     for event 

LC

LC(e) ≡ LC e
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Increment Rules
e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p ) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q ), LC(ei
p)) + 1

Timestamp    with m TS(m) = LC(send(m))



Space-Time Diagrams             
and Logical Clocks
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A subtle problem

when          do S   
doesn’t make sense for Lamport clocks! 

there is no guarantee that     will ever be 
S is anyway executed after 

Fixes: 
if   is internal/send and                   

execute    and then S

if
put message back in channel
re-enable   ; set              ; execute S

LC

e

LC = t

LC = t

t

LC = t − 2

LC = t − 1e

e

e = receive(m) ∧ (TS(m) ≥ t) ∧ (LC ≤ t − 1)



An obvious problem

No    ! 

Choose     large enough that it cannot be 
reached by applying the update rules of logical 
clocks

tss
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An obvious problem

No    ! 

Choose     large enough that it cannot be 
reached by applying the update rules of logical 
clocks

mmmmhhhh...

Doing so assumes 
upper bound on message delivery time
upper bound relative process speeds

We better relax it...

tss

Ω



Snapshot II

processor    selects 

    sends “take a snapshot at  ” to all processes; it waits for 
all of them to reply and then sets its logical clock to 

when clock of    reads    then 

records its local state 
sends an empty message along its outgoing channels
starts recording messages received on each incoming 
channel
stops recording a channel when receives first message 
with timestamp greater than or equal to 

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi



Relaxing synchrony

Process does nothing 
for the protocol 
during this time!

pi

 take a 
snapshot at   Ω

empty message: 
TS(m) ≥ Ω

monitors
channels records 

local state σi

sends empty message: 
TS(m) ≥ Ω

Use empty message to announce snapshot!



Snapshot III
processor    sends itself “take a snapshot “

when   receives “take a snapshot” for the first time from    :
records its local state 
sends “take a snapshot” along its outgoing channels
sets channel from    to empty

starts recording messages received over each of its other incoming 
channels

when   receives “take a snapshot” beyond the first time from    :

stops recording channel from  

when    has received “take a snapshot” on all channels, it sends 
" collected state to    and stops. 

p0

pi pj

σi

pkpi

pi

pj

pk

p0



Snapshots: a perspective
The global state    saved by the snapshot 
protocol is a consistent global state

Σ
s



Snapshots: a perspective
The global state    saved by the snapshot 
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a 
partial order of events
many total orders (runs) are compatible 
with that partial order
all we know is that    could have occurred
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Snapshots: a perspective
The global state    saved by the snapshot 
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a 
partial order of events
many total orders (runs) are compatible 
with that partial order
all we know is that    could have occurred

We are evaluating predicates on states that 
may have never occurred!  

Σ
s

Σ
s



An Execution and its 
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Reachability

    is reachable from     if 
there is a path from     to 
in the lattice 
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So, why do we care 
about    again?

Deadlock is a stable property

Deadlock       Deadlock

If a run    of the snapshot protocol starts 
in    and terminates in    , then
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So, why do we care 
about    again?

Deadlock is a stable property

Deadlock       Deadlock

If a run    of the snapshot protocol starts 
in    and terminates in    , then

Deadlock in    implies deadlock in 

No deadlock in    implies no deadlock in 
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Same problem,   
different approach

Monitor process does not query explicitly

Instead, it passively collects information and 
uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the 
distributed computation based on  the order in 
which the receiver is notified of the events.


