
Global Predicate Detection
and Event Ordering

Our Problem

To compute predicates
over the state of

a distributed application

Model

Message passing

No failures

Two possible timing assumptions:
1. Synchronous System
2. Asynchronous System

No upper bound on message delivery time
No bound on relative process speeds
No centralized clock

Asynchronous systems

Weakest possible assumptions

cfr. “finite progress axiom”

Weak assumptions less vulnerabilities

Asynchronous ≠ slow

“Interesting” model w.r.t. failures (ah ah ah!)

≡

Client-Server

Processes exchange messages using
Remote Procedure Call (RPC)

A client requests a service by
sending the server a message.
The client blocks while waiting

for a response

sc

Client-Server

Processes exchange messages using
Remote Procedure Call (RPC)

The server computes the
response (possibly asking other
servers) and returns it to the

client

A client requests a service by
sending the server a message.
The client blocks while waiting

for a response

s
#!?%!

c

Deadlock!

p2

p1

p3

Goal

Design a protocol by which a
processor can determine whether
a global predicate (say, deadlock)

holds

Draw arrow from to if has received a
request but has not responded yet

Wait-For Graphs

pi pj pj

Draw arrow from to if has received a
request but has not responded yet

Cycle in WFG deadlock

Deadlock cycle in WFG

Wait-For Graphs

⇒ ♦

⇒ ·

pi pj pj

The protocol

 sends a message to

On receipt of ’s message, replies with its
state and wait-for info

p1 . . . p3p0

p0 pi

An execution

p1p1

p2 p2p3 p3

An execution

p1p1

p2 p2p3 p3

An execution

Ghost Deadlock!

p2 p2

p1p1

p3 p3

Houston,
we have a problem...
Asynchronous system

no centralized clock, etc. etc.

Synchrony useful to

coordinate actions

order events

Mmmmhhh...

Events and Histories
Processes execute sequences of events
Events can be of 3 types: local, send, and receive
 is the -th event of process

The local history of process is the sequence
of events executed by process

 : prefix that contains first k events
 : initial, empty sequence

The history H is the set

hp

h
k
p

h
0

p

e
i
p

hp0
∪ hp1

∪ . . . hpn−1

NOTE: In H, local histories are interpreted as sets, rather than sequences, of events

p

p

p

i

Ordering events

Observation 1:
Events in a local history are totally ordered

time
pi

Ordering events

Observation 1:
Events in a local history are totally ordered

Observation 2:
For every message , precedes

time
pi

time
pi

time

m receive(m)send(m)

m

pj

Happened-before
(Lamport[1978])

A binary relation defined over events

1. if and , then

2. if and ,
then

3. if and then

→

ek
i , el

i ∈ hi k < l e
k
i → e

l
i

ei = send(m) ej = receive(m)
ei → ej

e → e
′

e
′
→ e

′′
e → e

′′

Space-Time diagrams

A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

Space-Time diagrams

A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

Space-Time diagrams

A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

Space-Time diagrams

A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

Space-Time diagrams

A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

Space-Time diagrams

A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

Space-Time diagrams

A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

Space-Time diagrams

A graphic representation of a distributed execution

time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

Runs and
Consistent Runs

A run is a total ordering of the events in H
that is consistent with the local histories of
the processors

Ex: is a run

A run is consistent if the total order imposed
in the run is an extension of the partial
order induced by

A single distributed computation may
correspond to several consistent runs!

h1, h2, . . . , hn

→

Cuts

A cut C is a subset of the global history of H

p1

p2

p3

C = h
c1

1
∪ h

c2

2
∪ . . . h

cn

n

A cut C is a subset of the global history of H

The frontier of C is the set of events

Cuts

p1

p2

p3

C = h
c1

1
∪ h

c2

2
∪ . . . h

cn

n

e
c1

1
, e

c2

2
, . . . e

cn

n

Global states and cuts

The global state of a distributed computation
is an -tuple of local states

To each cut corresponds a global
state

Σ = (σ1, . . .σn)

(σc1

1
, . . .σ

cn

n
)

(c1 . . . cn)

n

Consistent cuts and
consistent global states

A cut is consistent if

A consistent global state is one corresponding
to a consistent cut

∀ei, ej : ej ∈ C ∧ ei → ej ⇒ ei ∈ C

What seesp0

p1

p2

p3

What sees

Not a consistent global state: the cut contains
the event corresponding to the receipt of the
last message by but not the corresponding
send event

p1

p2

p3

p3

p0

Our task

Develop a protocol by which a processor can build
a consistent global state

Informally, we want to be able to take a snapshot
of the computation

Not obvious in an asynchronous system...

Our approach

Develop a simple synchronous protocol

Refine protocol as we relax assumptions

Record:
processor states
channel states

Assumptions:
FIFO channels
Each timestamped with with m T (send(m))

Snapshot I
i. selects

ii. sends “take a snapshot at ” to all processes

iii. when clock of reads then
a. records its local state
b. starts recording messages received on each of incoming

channels
c. stops recording a channel when it receives first message

with timestamp greater than or equal to

p0 tss

p0 tss

tss

tss

pi

σi

p

Snapshot I
i. selects

ii. sends “take a snapshot at ” to all processes

iii. when clock of reads then
a. records its local state
b. sends an empty message along its outgoing channels
c. starts recording messages received on each of incoming

channels
d. stops recording a channel when it receives first message

with timestamp greater than or equal to

p0 tss

p0 tss

tss

tss

pi

σi

p

Correctness
Theorem Snapshot I produces a consistent cut

< Assumption >

< Assumption >

< 0 and 1>

Proof Need to prove

< Definition >

< Property of real time>

< 2 and 4>

< 5 and 3>

< Definition >

ej ∈ C ∧ ei → ej ⇒ ei ∈ C

2. ei → ej

1. ej ∈ C

0. ej ∈ C ≡ T (ej) < tss 3. T (ej) < tss

4. ei → ej ⇒ T (ei) < T (ej)

6. T (ei) < tss

5. T (ei) < T (ej)

7. ei ∈ C

Clock Condition

< Property of real time>

Can the Clock Condition be
implemented some other way?

4. ei → ej ⇒ T (ei) < T (ej)

Lamport Clocks

Each process maintains a local variable
 value of for event

LC

LC(e) ≡ LC e

e
i
p e

i+1
p

e
i
p

LC(ei
p) < LC(ei+1

p)

LC(ei
p) < LC(ej

q)
e
j
q

p

q

p

Increment Rules
e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q), LC(ei
p)) + 1

Timestamp with m TS(m) = LC(send(m))

Space-Time Diagrams
and Logical Clocks

2

1

3

4 5 6

6

7

7

8

8

9

p1

p2

p3

A subtle problem

when do S
doesn’t make sense for Lamport clocks!

there is no guarantee that will ever be
S is anyway executed after

Fixes:
if is internal/send and

execute and then S

if
put message back in channel
re-enable ; set ; execute S

LC

e

LC = t

LC = t

t

LC = t − 2

LC = t − 1e

e

e = receive(m) ∧ (TS(m) ≥ t) ∧ (LC ≤ t − 1)

An obvious problem

No !

Choose large enough that it cannot be
reached by applying the update rules of logical
clocks

tss

Ω

An obvious problem

No !

Choose large enough that it cannot be
reached by applying the update rules of logical
clocks

mmmmhhhh...

tss

Ω

An obvious problem

No !

Choose large enough that it cannot be
reached by applying the update rules of logical
clocks

mmmmhhhh...

Doing so assumes
upper bound on message delivery time
upper bound relative process speeds

We better relax it...

tss

Ω

Snapshot II

processor selects

 sends “take a snapshot at ” to all processes; it waits for
all of them to reply and then sets its logical clock to

when clock of reads then

records its local state
sends an empty message along its outgoing channels
starts recording messages received on each incoming
channel
stops recording a channel when receives first message
with timestamp greater than or equal to

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi

Relaxing synchrony

Process does nothing
for the protocol
during this time!

pi

 take a
snapshot at Ω

empty message:
TS(m) ≥ Ω

monitors
channels records

local state σi

sends empty message:
TS(m) ≥ Ω

Use empty message to announce snapshot!

Snapshot III
processor sends itself “take a snapshot “

when receives “take a snapshot” for the first time from :
records its local state
sends “take a snapshot” along its outgoing channels
sets channel from to empty

starts recording messages received over each of its other incoming
channels

when receives “take a snapshot” beyond the first time from :

stops recording channel from

when has received “take a snapshot” on all channels, it sends
" collected state to and stops.

p0

pi pj

σi

pkpi

pi

pj

pk

p0

Snapshots: a perspective
The global state saved by the snapshot
protocol is a consistent global state

Σ
s

Snapshots: a perspective
The global state saved by the snapshot
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a
partial order of events
many total orders (runs) are compatible
with that partial order
all we know is that could have occurred

Σ
s

Σ
s

Snapshots: a perspective
The global state saved by the snapshot
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a
partial order of events
many total orders (runs) are compatible
with that partial order
all we know is that could have occurred

We are evaluating predicates on states that
may have never occurred!

Σ
s

Σ
s

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

Σ
42

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

Σ
42

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
55

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Σ
ij

Σ
kl

Σ
kl

Σ
ij

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
ij

Σ
kl

Σ
kl

Σ
ij

Σ
55

Σ
21

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
55

Σ
21

Σ
ij

Σ
kl

Σ
kl

Σ
ij

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
55

Σ
21

Σ
ij

! Σ
kl

Σ
ij

Σ
kl

Σ
kl

Σ
ij

So, why do we care
about again?

Deadlock is a stable property

Deadlock Deadlock

If a run of the snapshot protocol starts
in and terminates in , then

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f

So, why do we care
about again?

Deadlock is a stable property

Deadlock Deadlock

If a run of the snapshot protocol starts
in and terminates in , then

Deadlock in implies deadlock in

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f

Σ
f

Σ
s

So, why do we care
about again?

Deadlock is a stable property

Deadlock Deadlock

If a run of the snapshot protocol starts
in and terminates in , then

Deadlock in implies deadlock in

No deadlock in implies no deadlock in

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f

Σ
i

Σ
f

Σ
s

Σ
s

Same problem,
different approach

Monitor process does not query explicitly

Instead, it passively collects information and
uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the
distributed computation based on the order in
which the receiver is notified of the events.

