
1

A Differential Approach to Undefined Behavior Detection

XI WANG, NICKOLAI ZELDOVICH, M. FRANS KAASHOEK,
and ARMANDO SOLAR-LEZAMA, Massachusetts Institute of Technology

This article studies undefined behavior arising in systems programming languages such as C/C++. Undefined
behavior bugs lead to unpredictable and subtle systems behavior, and their effects can be further amplified
by compiler optimizations. Undefined behavior bugs are present in many systems, including the Linux kernel
and the Postgres database. The consequences range from incorrect functionality to missing security checks.
This article proposes a formal and practical approach that finds undefined behavior bugs by finding “unstable
code” in terms of optimizations that leverage undefined behavior. Using this approach, we introduce a new
static checker called STACK that precisely identifies undefined behavior bugs. Applying STACK to widely used
systems has uncovered 161 new bugs that have been confirmed and fixed by developers.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages

General Terms: Languages, Reliability, Security

Additional Key Words and Phrases: Undefined behavior, compiler optimizations

ACM Reference Format:
Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2015. A differential approach
to undefined behavior detection. ACM Trans. Comput. Syst. 33, 1, Article 1 (March 2015), 29 pages.
DOI: http://dx.doi.org/10.1145/2699678

1. INTRODUCTION

Undefined behavior in systems programming languages is a dark side of systems pro-
gramming. It introduces unpredictable systems behavior and has a significant impact
on reliability and security. This article proposes a new approach that identifies unde-
fined behavior by finding code fragments that have divergent behavior under different
interpretations of the language specification. It is scalable, precise, and practical: The
STACK checker that implements this approach has uncovered 161 new bugs in real-
world software. This section introduces the problem and provides an overview of our
approach and tool.

1.1. Undefined Behavior

The specifications of many programming languages designate certain code fragments
as having undefined behavior [Ellison and Roşu 2012a, Section 2.3]. For instance, in

This article extends “Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behavior”
that appeared in the Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13)
[Wang et al. 2013], with minor reorganizations and clarifications.
This research was supported by the DARPA Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH)
program under contract #N66001-10-2-4089, and by NSF award CNS-1053143.
Authors’ addresses: X. Wang, University of Washington, 185 Stevens Way, Seattle WA 98195; email:
xi@cs.washington.edu; N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama, Massachusetts Institute of Tech-
nology, 32 Vassar Street, Cambridge, MA 02139; emails: {nickolai, kaashoek, asolar}@csail.mit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0734-2071/2015/03-ART1 $15.00

DOI: http://dx.doi.org/10.1145/2699678

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

http://dx.doi.org/10.1145/2699678
http://dx.doi.org/10.1145/2699678

1:2 X. Wang et al.

Fig. 1. A pointer overflow check found in several code bases. The code becomes vulnerable as gcc optimizes
away the second if statement [Dougherty and Seacord 2008].

C “use of a nonportable or erroneous program construct or of erroneous data” leads to
undefined behavior [ISO/IEC 2011, Section 3.4.3]. A comprehensive list of undefined
behavior in C is available in the language specification [ISO/IEC 2011, Section J.2].

One category of undefined behavior is simply programming mistakes, such as buffer
overflow, and null pointer dereference.

The other category is nonportable operations, the hardware implementations of
which often have subtle differences. For example, when signed integer overflow or
division by zero occurs, a division instruction traps on x86 [Intel 2013, Section 3.2],
while it silently produces an undefined result on PowerPC [IBM 2010, Section 3.3.8].
Another example is shift instructions: Left-shifting a 32-bit one by 32 bits produces
zero on ARM and PowerPC, but one on x86; however, left-shifting a 32-bit one by 64
bits produces zero on ARM, but one on x86 and PowerPC.

By designating certain programming mistakes and nonportable operations as having
undefined behavior, the specifications give compilers the freedom to generate instruc-
tions that behave in arbitrary ways in those cases, thus allowing compilers to generate
efficient and portable code without extra checks. For example, many higher level pro-
gramming languages (e.g., Java) have well-defined handling (e.g., runtime exceptions)
on buffer overflow, and the compiler would need to insert extra bounds checks for mem-
ory access operations. However, the C/C++ compiler does not to need to insert bounds
checks because out-of-bounds cases are undefined. It is the programmer’s responsibility
to avoid undefined behavior.

1.2. Risks of Undefined Behavior

According to the C/C++ specifications, programs that invoke undefined behavior can
have arbitrary problems. As one summarized, “permissible undefined behavior ranges
from ignoring the situation completely with unpredictable results, to having demons
fly out of your nose” [Woods 1992]. But what happens in practice?

One risk of undefined behavior is that a program will display different behavior
on different hardware architectures, operating systems, or compilers. For example, a
program that performs an oversized left-shift will display different results on ARM
and x86 processors. As another example, a simple SQL query caused signed integer
overflow in the Postgres database server; on a 32-bit Windows system, this did not
cause any problems, but on a 64-bit Windows system, it caused the server to crash due
to the different behavior of division instructions on the two systems (see Section 6.2.1
for details).

In addition, compiler optimizations can amplify the effects of undefined behavior.
For example, consider the pointer overflow check buf + len < buf shown in Figure 1,
where buf is a pointer and len is a positive integer. The programmer’s intention is to
catch the case when len is so large that buf+ len wraps around and bypasses the first
check in Figure 1. We have found similar checks in a number of systems, including the

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:3

Chromium browser [Chromium 2013], the Linux kernel [Wang et al. 2012a], and the
Python interpreter [Python 2013].

Although this check appears to work with a flat address space, it fails on a segmented
architecture [ISO/IEC 2003, Section 6.3.2.3]. Therefore, the C standard states that an
overflowed pointer is undefined [ISO/IEC 2011, Section 6.5.6/p8], which allows gcc to
simply assume that no pointer overflow ever occurs on any architecture. Under this
assumption, buf + len must be larger than buf, and thus the “overflow” check always
evaluates to false. Consequently, gcc removes the check, paving the way for an attack
to the system [Dougherty and Seacord 2008].

As we demonstrate in Section 2, many optimizing compilers make similar assump-
tions that programmers never invoke undefined behavior. Consequently, these compil-
ers turn each operation into an assumption about the arguments to that operation. The
compilers then proceed to optimize the rest of the program under these assumptions.

These optimizations can lead to baffling results even for veteran C programmers
because code unrelated to the undefined behavior gets optimized away or transformed
in unexpected ways. Such bugs lead to spirited debates between compiler developers
and practitioners who use the C language but do not adhere to the letter of the offi-
cial C specification. Practitioners describe these optimizations as ones that “make no
sense” [Torvalds 2007] and as being merely the compiler’s “creative reinterpretation of
basic C semantics” [Lane 2005]. On the other hand, compiler writers argue that the
optimizations are legal under the specification; it is the “broken code” [GCC 2007] that
programmers should fix. Worse yet, as compilers evolve, new optimizations are intro-
duced that may break code that used to work before; as we show in Section 2.2, many
compilers have become more aggressive over the past 20 years with such optimizations.

1.3. Status and Challenges of Undefined Behavior Detection

Given the wide range of problems that undefined behavior can cause, what should
programmers do about it? The naı̈ve approach is to require programmers to care-
fully read and understand the C language specification so that they can write careful
code that avoids invoking undefined behavior. Unfortunately, as we demonstrate in
Section 2.1, even experienced C programmers do not fully understand the intricacies
of the C language, and it is exceedingly difficult to avoid invoking undefined behavior
in practice.

Since optimizations often amplify the problems due to undefined behavior, some
programmers (such as the Postgres developers [Lane 2009]) have tried reducing the
compiler’s optimization level so that aggressive optimizations do not take advantage of
undefined behavior bugs in their code. As we see in Section 2.2, compilers are inconsis-
tent about the optimization levels at which they take advantage of undefined behavior,
and several compilers make undefined behavior optimizations even at optimization
level zero (which should, in principle, disable all optimizations).

Runtime checks can be used to detect certain undefined behaviors at runtime; for
example, gcc provides an -ftrapv option to trap on signed integer overflow, and clang
provides an -fsanitize=undefined option to trap several more undefined behaviors.
There have also been attempts at providing a more “programmer-friendly” refinement
of C [Cuoq et al. 2014; Miller 2012], which has less undefined behavior, although in
general it remains unclear how to outlaw undefined behavior from the specification
without incurring significant performance overhead [Wang et al. 2012a; Cuoq et al.
2014].

Certain static-analysis and model checkers identify classes of bugs due to undefined
behavior. For example, compilers can catch some obvious cases (e.g., using gcc’s -Wall),
but in general it is challenging [Lattner 2011, part 3]; tools that find buffer overflow
bugs [Chen et al. 2011] can be viewed as finding undefined behavior bugs because

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:4 X. Wang et al.

referencing a location outside of a buffer’s range is undefined behavior. See Section 7
for a more detailed discussion of related work.

1.4. Approach: Finding Divergent Behavior

Ideally, compilers would generate warnings for developers when an application invokes
undefined behavior, and this article takes a static analysis approach to finding unde-
fined behavior bugs. This boils down to deciding, for each operation in the program,
whether it can be invoked with arguments that lead to undefined behavior. Since many
operations in C can invoke undefined behavior (e.g., signed integer operations, pointer
arithmetic), producing a warning for every operation would overwhelm the developer,
so it is important for the analysis to be precise. Global reasoning can precisely deter-
mine what values an argument to each operation can take, but it does not scale to large
programs.

Instead of performing global reasoning, our goal is to find local invariants (or likely
invariants) on arguments to a given operation. We are willing to be incomplete: If there
are not enough local invariants, we are willing to not report potential problems. On
the other hand, we would like to ensure that every report is likely to be a real problem
[Bessey et al. 2010].

The local likely invariant that we exploit in this article has to do with unnecessary
source code written by programmers. By “unnecessary source code” we mean dead code,
unnecessarily complex expressions that can be transformed into a simpler form, and
the like. We expect that all of the source code that programmers write should either
be necessary code, or it should be clearly unnecessary; that is, it should be clear from
local context that the code is unnecessary, without relying on subtle semantics of the
C language. For example, programmers might write if (0) { ... }, which is clearly
unnecessary code. However, our likely invariant tells us that programmers would never
write a = b << c; if (c >= 32) {...}, where b is a 32-bit integer. The if statement
in this code snippet is unnecessary code because the value of c could never be 32 or
greater due to undefined behavior in the preceding left-shift. The core of our invariant
is that programmers are unlikely to write such subtly unnecessary code.

To formalize this invariant, we need to distinguish “live code” (code that is always
necessary), “dead code” (code that is always unnecessary), and “unstable code” (code
that is subtly unnecessary). We do this by considering the different possible interpreta-
tions that the programmer might have for the C language specification. In particular,
we consider C to be the language’s official specification and C′ to be a specification that
the programmer believes C has. For the purposes of this article, C′ differs from C in
which operations lead to undefined behavior. For example, a programmer might expect
shifts to be well-defined for all possible arguments; this is one such possible C′. In other
words, C′ is a relaxed version of the official C in that it assigns certain interpretations
to operations that are undefined in C.

Using the notion of different language specifications, we say that a piece of code is
live if, for every possible C′, the code is necessary. Conversely, a piece of code is dead if,
for every possible C′, the code is unnecessary; this captures code like if (0) { ... }.
Finally, a piece of code is unstable if, for some C′ variants, it is unnecessary, but in other
C′ variants, it is necessary. This means that two programmers who do not precisely
understand the details of the C specification might disagree about what the code is
doing. As we demonstrate in the rest of this article, this heuristic often indicates the
presence of a bug.

Building on this invariant, we can now detect when a program is likely invoking
undefined behavior. In particular, given an operation o in a function f , we compute the
set of unnecessary code in f under different interpretations of undefined behavior at o.
If the set of unnecessary code is the same for all possible interpretations, we cannot say

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:5

anything about whether o is likely to invoke undefined behavior. However, if the set of
unnecessary code varies depending on what undefined behavior o triggers, this means
that the programmer wrote unstable code. However, by our assumption, this should
never happen, and we conclude that the programmer was likely thinking that he was
writing live code and simply did not realize that o would trigger undefined behavior for
the same set of inputs that are required for the code to be live.

1.5. The Stack Tool

To find undefined behavior bugs using this approach, we built a static analysis tool
called STACK. In practice, it is difficult to enumerate and consider all possible C′ vari-
ants. Thus, to build a practical tool, we pick a single variant, called C�. C� defines
a null pointer that maps to address zero and wrap-around semantics for pointer and
integer arithmetic [Ranise et al. 2013]. We believe this captures the common semantics
that programmers (mistakenly) believe C provides. Although our C� deals with only a
subset of undefined behaviors in the C specification, a different C� could capture other
semantics that programmers might implicitly assume or handle undefined behavior
for other operations that our C� does not address.

STACK relies on an optimizer O to implicitly flag unnecessary code. STACK’s O elimi-
nates dead code and performs expression simplifications under the semantics of C and
C�, respectively. For code fragment e, if O is not able to rewrite e under either seman-
tics, STACK considers e as “live code”; if O is able to rewrite e under both semantics, e is
“dead code”; if O is able to rewrite e under C but not C�, STACK reports it as “unstable
code.” We describe this approach more precisely in Section 3.

Since STACK uses just two interpretations of the language specification (namely, C and
C�), it might miss bugs that could arise under different interpretations. For instance,
any code eliminated by O under C� would never trigger a warning from STACK even if
there might exist another C′ that would not allow eliminating that code. STACK’s ap-
proach could be extended to support multiple interpretations to address this potential
shortcoming.

1.6. Contributions

This article makes several contributions, as follows:

(1) The first detailed study of the impact and prevalence of undefined behavior bugs
in real-world software and of how compilers amplify the problems. This study finds
that undefined behavior is prevalent, has many risks, and is increasingly exploited
by compiler optimizations.

(2) A scalable approach to detecting undefined behavior in large programs through
differential interpretation.

(3) A formalization of this approach that can be applied in practice.
(4) A practical static analysis tool, called STACK, based on this formalization.
(5) A large-scale evaluation of STACK, which demonstrates that STACK can find 161 real

bugs in a wide range of widely used software. We reported these bugs to developers,
and almost all of them were fixed, suggesting that STACK’s reports are precise.

Overall, this article demonstrates that undefined behavior bugs are much more
prevalent than was previously believed and that they lead to a wide range of significant
problems.

1.7. Roadmap

The rest of the article is organized as follows. Section 2 provides a detailed case study
of unstable code in real systems and compilers. Section 3 presents a formalization of
unstable code. Section 4 describes the design and implementation of the STACK checker

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:6 X. Wang et al.

Fig. 2. A null pointer dereference vulnerability (CVE-2009-1897). The dereference of pointer tun comes
before the null pointer check. The code becomes exploitable as gcc optimizes away the null pointer check
[Corbet 2009].

for identifying unstable code. Section 6 reports our experience of applying STACK to
identify unstable code and evaluates STACK’s techniques. Section 7 covers related work.
Section 8 concludes the article.

2. CASE STUDIES

This section provides case studies of undefined behavior and how it can lead to unstable
code. It builds on earlier surveys [Wang et al. 2012a; Krebbers and Wiedijk 2012;
Seacord 2010] and blog posts [Lattner 2011; Regehr 2010, 2012] that describe unstable
code examples and extends them by investigating the evolution of optimizations in
compilers. From the evolution, we conclude that unstable code will grow as future
compilers implement more aggressive optimization algorithms.

2.1. Examples of Unstable Code

It is well known that compiler optimizations may produce undesirable behavior for im-
perfect code [IBM 2009]. Recent advances in optimization techniques further increase
the likelihood of such undesired consequences because they exploit undefined behavior
aggressively, exposing unstable code as a side effect. This section reviews representa-
tive cases that have sparked interest among programmers and compiler writers.

2.1.1. Pointer Overflow and a Disputed Vulnerability Note. As described in Section 1.2,
the C language standard states that an overflowed pointer is undefined [ISO/IEC
2011, Section 6.5.6/p. 8], which voids any pointer “overflow” check, such as the check
buf + len < buf shown in Figure 1. This allows the compiler to perform aggressive
optimizations, including removing the check.

The earliest report of such an optimization that we are aware of is a gcc bug filed
in 2006, in which a programmer reported that gcc removed a pointer overflow check
intended for validating network packets, even “without optimizer” (i.e., using -O0) [GCC
2006]. This bug was marked as a “duplicate” with no further action.

The issue received much attention in 2008 when the US-CERT published a vulnera-
bility note regarding a crash bug in plan9port (Plan 9 from User Space), suggesting that
programmers “avoid newer versions of gcc” in the original security alert [Dougherty
and Seacord 2008]. The crash was caused by gcc removing a pointer overflow check in
a string formatting function [Cox 2008]. The gcc developers disputed the vulnerability
note and argued that this optimization is allowed by the specification and performed
by many other compilers as well. The vulnerability note was revised later, with “gcc”
changed to “some C compilers” [Dougherty and Seacord 2008].

2.1.2. Null Pointer Dereference and a Kernel Exploit. In addition to introducing new vulner-
abilities, optimizations that remove unstable code can amplify existing weaknesses in
the system. Figure 2 shows a mild defect in the Linux kernel, where the programmer

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:7

Fig. 3. A signed integer overflow check offset + len < 0. The intention was to prevent the case when
offset + len overflows and becomes negative.

incorrectly placed the dereference tun->sk before the null pointer check !tun. Normally,
the kernel forbids access to page zero; a null tun pointing to page zero causes a kernel
oops at tun->sk and terminates the current process. Even if page zero is made acces-
sible (e.g., via mmap or some other exploits [Jack 2007; Tinnes 2009]), the check !tun
would catch a null tun and prevent any further exploits. In either case, an adversary
should not be able to go beyond the null pointer check.

Unfortunately, this simple bug becomes an exploitable vulnerability. When gcc first
sees the dereference tun->sk, it concludes that the pointer tunmust be non-null because
the C standard states that dereferencing a null pointer is undefined [ISO/IEC 2011,
Section 6.5.3]. Since tun is non-null, gcc further determines that the null pointer check
is unnecessary and eliminates the check, thus making a privilege escalation exploit
possible that otherwise would not be [Corbet 2009].

2.1.3. Signed Integer Overflow from Day One. Signed integer overflow has been present
in C even before there was a standard for the language—the Version 6 Unix used the
check mpid + 1 < 0 to detect whether it runs out of process identifiers, where mpid is
a non-negative counter [Lions 1977, Section 7.13]. Such overflow checks are unstable
code and unlikely to survive with today’s optimizing compilers. For example, both gcc
and clang conclude that the “overflow check” x + 100 < x with a signed integer x is
always false. Some programmers were shocked that gcc turned the check into a no-op,
leading to a harsh debate between the C programmers and the gcc developers [GCC
2007].

A common misbelief is that signed integer operations always silently wrap around
on overflow using two’s complement, just like unsigned operations. This is false at the
instruction set level, including older mainframes that use one’s complement, embed-
ded processors that use saturation arithmetic, and even architectures that use two’s
complement. For example, although most x86 signed integer instructions do silently
wrap around, there are exceptions, such as signed division that traps for INT MIN/−1
[Intel 2014, Section 3.2]. In C, signed integer overflow is undefined behavior [ISO/IEC
2011, Section 6.5].

Figure 3 shows another example from the fallocate system call implementation in
the Linux kernel. Both offset and len are provided by a user-space application; they
cannot be trusted and must be validated by the kernel. Note that they are of the signed
integer type loff_t.

The code first rejects negative values of offset and len and checks whether
offset + len exceeds some limit. The comment says “[c]heck for wrap through zero
too,” indicating that the programmer realized that the addition may overflow and

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:8 X. Wang et al.

Fig. 4. An uninitialized variable misuse for pseudorandom number generation. It was in the libc of FreeBSD
and OS X; clang optimizes away the entire seed computation (CVE-2013-5180).

bypass the limit check. The programmer then added the overflow check offset + len <
0 to prevent the bypass.

However, gcc is able to infer that both offset and len are non-negative at the
point of the overflow check. Along with the knowledge that signed addition overflow
is undefined, gcc concludes that the sum of two non-negative integers must be non-
negative. This means that the check offset + len < 0 is always false and gcc removes
it. Consequently, the generated code is vulnerable: An adversary can pass in two large
positive integers from user space, the sum of which overflows, and bypass all the sanity
checks.

2.1.4. Uninitialized Read and Less Randomness. A local variable in C is not initialized
to zero by default. A misconception is that such an uninitialized variable lives on the
stack, holding a “random” value. This is not true. A compiler may assign the variable to
a register (e.g., if its address is never taken), where its value is from the last instruction
that modified the register rather than from a stack location. Moreover, on Itanium if
the register happens to hold a special not-a-thing value, reading the register traps
except for a few instructions [Intel 2010, Section 3.4.3].

Reading an uninitialized variable is undefined behavior in C [ISO/IEC 2011, Sec-
tion 6.3.2.1]. A compiler can assign any value to the variable and also to expressions
derived from the variable.

Figure 4 shows such a problem in the srandomdev function of FreeBSD’s libc, which
also appears in DragonFly BSD and Mac OS X. The corresponding commit message
says that the programmer’s intention of introducing junk was to “use stack junk value,”
which is left uninitialized intentionally as a source of entropy for pseudorandom num-
ber generation. Along with current time from gettimeofday and the process identifica-
tion from getpid, the code computes a seed value for srandom.

Unfortunately, the use of junk does not introduce more randomness from the stack:
Both gcc and clang assign junk to a register; clang further eliminates computation
derived from junk completely and generates code that does not use either gettimeofday
or getpid.

2.2. An Evolution of Optimizations

To understand the evolution of compilers with respect to optimizing unstable code, we
conduct a study using six representative examples in the form of sanity checks, as
shown in the top row of Figure 5. All of these checks may evaluate to false and become
dead code under optimizations because they invoke undefined behavior. We use them
to test existing compilers next.

—The check p + 100 < p resembles Figure 1 in Section 2.1.1.
—The null pointer check !p with an earlier dereference is from Figure 2 in

Section 2.1.2.
—The check x + 100 < x with a signed integer x is from Section 2.1.3.
—Another check x+ + 100 < 0 tests whether optimizations perform more elaborate

reasoning; x+ is known to be positive.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:9

Fig. 5. Optimizations of unstable code in popular compilers. This includes gcc, clang, aCC, armcc, icc, msvc,
open64, pathcc, suncc, TI’s TMS320C6000, Wind River’s Diab compiler, and IBM’s XL C compiler. In the
examples, p is a pointer, x is a signed integer, and x+ is a positive signed integer. In each cell, “On” means
that the specific version of the compiler optimizes the check into false and discards it at optimization level n
whereas “–” means that the compiler does not discard the check at any level.

—The shift check !(1 << x) was intended to catch a large shifting amount x, from a
patch to the ext4 file system [Linux kernel 2009].

—The check abs(x) < 0, intended to catch the most negative value (i.e., −2n−1), tests
whether optimizations understand library functions [GCC 2011].

We chose 12 well-known C/C++ compilers to see what they do with the unstable code
examples: two open-source compilers (gcc and clang) and 10 recent commercial compil-
ers (HP’s aCC, ARM’s armcc, Intel’s icc, Microsoft’s msvc, AMD’s open64, PathScale’s
pathcc, Oracle’s suncc, TI’s TMS320C6000, Wind River’s Diab compiler, and IBM’s XL
C compiler). For every unstable code example, we test whether a compiler optimizes
the check into false, and, if so, we find the lowest optimization level -On at which it
happens. The result is shown in Figure 5.

We further use gcc and clang to study the evolution of optimizations because the
history is easily accessible. For gcc, we chose the following representative versions that
span more than a decade:

—gcc 2.95.3, the last 2.x, released in 2001;
—gcc 3.4.6, the last 3.x, released in 2006;
—gcc 4.2.1, the last GPLv2 version, released in 2007 and still widely used in BSD

systems;
—gcc 4.9.1, the latest version, released in 2014.

For comparison, we chose two versions of clang, 1.0 released in 2009 and the latest 3.4,
released in 2014.

We make the following observations of existing compilers from Figure 5. First, elim-
inating unstable code is common among compilers, not just in recent gcc versions as
some programmers have claimed [Lane 2005]. Even gcc 2.95.3 eliminates x + 100 < x.
Some compilers discard unstable code that gcc does not (e.g., clang on 1 << x).

Second, from different versions of gcc and clang, we see more unstable code discarded
as the compilers evolve to adopt new optimizations. For example, gcc 4.x is more
aggressive in discarding unstable code compared to gcc 2.x because it uses a new value
range analysis [Novillo 2005].

Third, discarding unstable code occurs with standard optimization options, mostly at
-O2, the default optimization level for release builds (e.g., autoconf [MacKenzie et al.
2012, Section 5.10.3]); some compilers even discard unstable code at the lowest level of

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:10 X. Wang et al.

optimization -O0. Hence, lowering the optimization level as Postgres did [Lane 2009]
is an unreliable way of working around unstable code.

Fourth, optimizations even exploit undefined behavior in library functions (e.g., abs
[GCC 2011] and realloc [Regehr 2012]) as the compilers evolve to understand them.

As compilers improve their optimizations, for example, by implementing new algo-
rithms (e.g., gcc 4.x’s value range analysis) or by exploiting undefined behavior from
more constructs (e.g., library functions), we anticipate an increase in bugs due to un-
stable code.

3. FORMALIZING UNSTABLE CODE

Discarding unstable code, as the compilers surveyed in Section 2 do, is legal as per
the language standard, and thus is not a compiler bug [Regehr 2010, Section 3]. But it
is baffling to programmers. Our goal is to identify such unstable code fragments and
generate warnings for them. As we see in Section 6.2, these warnings often identify
code that programmers want to fix instead of having the compiler remove it silently.
This goal requires a precise model for understanding unstable code so as to generate
warnings only for code that is unstable and not for code that is trivially dead and can
be safely removed. This section introduces a model for thinking about unstable code
and a framework with two algorithms for identifying it.

3.1. A Definition of Unstable Code

To formalize a programmer’s misunderstanding of the C specification that leads to
unstable code, let C� denote a C dialect that assigns well-defined semantics to code
fragments that have undefined behavior in C. For example, C� is defined for a flat
address space, a null pointer that maps to address zero, and wrap-around semantics
for pointer and integer arithmetic [Ranise et al. 2013]. A code fragment e is a statement
or expression at a particular source location in programP. If the compiler can transform
the fragment e in a way that would change P ’s behavior under C� but not under C, then
e is unstable code.

Let P[e/e′] be a program formed by replacing e with some fragment e′ at the same
source location. When is it legal for a compiler to transform P into P[e/e′], denoted
as P � P[e/e′]? In a language specification without undefined behavior, the answer is
straightforward: it is legal if for every input, bothP andP[e/e′] produce the same result.
In a language specification with undefined behavior, the answer is more complicated;
namely, it is legal if, for every input, one of the following is true:

—both P and P[e/e′] produce the same results without invoking undefined behavior, or
—P invokes undefined behavior, in which case it does not matter what P[e/e′] does.

Using this notation, we define unstable code thus:

Definition 1 (Unstable Code). A code fragment e in program P is unstable without
regard to language specifications C and C� if and only if there exists a fragment e′ such
that P � P[e/e′] is legal under C but not under C�.

For example, for the sanity checks listed in Figure 5, a C compiler is entitled to
replace them with false because this is legal according to the C specification, whereas
a hypothetical C� compiler cannot do the same. Therefore, these checks are unstable
code.

3.2. Approach for Identifying Unstable Code

Definition 1 captures what unstable code is, but it does not provide a way of finding
unstable code because it is difficult to reason about how an entire program will behave.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:11

Fig. 6. Examples of C/C++ code fragments and their undefined behavior conditions. We describe their
sufficient (although not necessary) conditions under which the code is undefined [ISO/IEC 2011, Section J.2].
Here p, p′, q are n-bit pointers; x, y are n-bit integers; a is an array, the capacity of which is denoted as
ARRAY SIZE(a); ops refers to binary operators +, -, *, /, % over signed integers; x∞ means to consider x as
infinitely ranged; NULL is the null pointer; alias(p, q) predicates whether p and q point to the same object.

As a proxy for a change in program behavior, STACK looks for code that can be trans-
formed by some optimizer O under C but not under C�. In particular, STACK does this
using a two-phase scheme:

(1) run O without taking advantage of undefined behavior, which captures optimiza-
tions under C�; and

(2) run O again, this time taking advantage of undefined behavior, which captures
(more aggressive) optimizations under C.

If O optimizes extra code in the second phase, we assume the reason O did not do so
in the first phase is because it would have changed the program’s semantics under C�,
and so STACK considers that code to be unstable.

STACK’s optimizer-based approach to finding unstable code will miss unstable code
that a specific optimizer cannot eliminate in the second phase even if there exists some
optimizer that could. This approach will also generate false reports if the optimizer is
not aggressive enough in eliminating code in the first phase. Thus, one challenge in
STACK’s design is coming up with an optimizer that is sufficiently aggressive to minimize
these problems.

For this approach to work, STACK requires an optimizer that can selectively take ad-
vantage of undefined behavior. To build such optimizers, we formalize what it means to
“take advantage of undefined behavior” in Section 3.2.1, by introducing the well-defined
program assumption, which captures C’s assumption that programmers never write
programs that invoke undefined behavior. Given an optimizer that can take explicit
assumptions as input, STACK can turn on (or off) optimizations based on undefined
behavior by supplying (or not) the well-defined program assumption to the optimizer.
We build two aggressive optimizers that follow this approach: one that eliminates
unreachable code (Section 3.2.2) and one that simplifies unnecessary computation
(Section 3.2.3).

3.2.1. Well-Defined Program Assumption. We formalize what it means to take advantage
of undefined behavior in an optimizer as follows. Consider a program with input x.
Given a code fragment e, let Re(x) denote its reachability condition, which is true if
and only if e will execute under input x; and let Ue(x) denote its undefined behavior
condition, or UB condition for short, which indicates whether e exhibits undefined
behavior on input x, as summarized in Figure 6.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:12 X. Wang et al.

Fig. 7. The elimination algorithm. It reports unstable code that becomes unreachable with the well-defined
program assumption.

Both Re(x) and Ue(x) are boolean expressions. For example, given a pointer derefer-
ence ∗p in expression e, one UB condition Ue(x) is p = NULL (i.e., causing a null pointer
dereference).

Intuitively, in a well-defined program to dereference pointer p, p must be non-null.
In other words, the negation of its UB condition, p �= NULL, must hold whenever the
expression executes. We generalize this thus:

Definition 2 (Well-Defined Program Assumption). A code fragment e is well-defined
on an input x if and only if executing e never triggers undefined behavior at e:

Re(x) → ¬Ue(x). (1)

Furthermore, a program is well-defined on an input if and only if every fragment of the
program is well-defined on that input, denoted as �:

�(x) =
∧
e∈P

Re(x) → ¬Ue(x). (2)

3.2.2. Eliminating Unreachable Code. The first algorithm identifies unstable statements
that can be eliminated (i.e., P � P[e/∅] where e is a statement). For example, if
reaching a statement requires triggering undefined behavior, then that statement must
be unreachable. We formalize this in Theorem 1:

THEOREM 1 (ELIMINATION). In a well-defined program P, an optimizer can eliminate
code fragment e if there is no input x that both reaches e and satisfies the well-defined
program assumption �(x):

�x : Re(x) ∧ �(x). (3)

The boolean expression Re(x) ∧ �(x) is referred as the elimination query.

PROOF. Assuming �(x) is true, if the elimination query Re(x)∧�(x) always evaluates
to false, then Re(x) must be false, meaning that e must be unreachable. One can then
safely eliminate e.

Consider Figure 2 as an example. There is one input tun in this program. To pass
the earlier if check, the reachability condition of the return statement is !tun. There
is one UB condition tun = NULL, from the pointer dereference tun->sk, the reachability
condition of which is true. As a result, the elimination query Re(x)∧�(x) for the return
statement is:

!tun ∧ (true → ¬(tun = NULL)).

Clearly, there is no tun that satisfies this query. Therefore, one can eliminate the return
statement.

With Definition 2, it is easy to construct an algorithm to identify unstable code due
to code elimination (see Figure 7). The algorithm first removes unreachable fragments

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:13

without the well-defined program assumption, and then warns against fragments that
become unreachable with this assumption. The latter are unstable code.

3.2.3. Simplifying Unnecessary Computation. The second algorithm identifies unstable ex-
pressions that can be optimized into a simpler form (i.e., P � P[e/e′] where e and e′
are expressions). For example, if evaluating a boolean expression to true requires trig-
gering undefined behavior, then that expression must evaluate to false. We formalize
this in Theorem 2:

THEOREM 2 (SIMPLIFICATION). In a well-defined program P, an optimizer can simplify
expression e with another e′, if there is no input x that evaluates e(x) and e′(x) to different
values while both reaching e and satisfying the well-defined program assumption �(x):

∃e′�x : e(x) �= e′(x) ∧ Re(x) ∧ �(x). (4)

The boolean expression e(x) �= e′(x)∧ Re(x)∧�(x) is referred as the simplification query.

PROOF. Assuming �(x) is true, if the simplification query e(x) �= e′(x) ∧ Re(x) ∧ �(x)
always evaluates to false, then either e(x) = e′(x), meaning that they evaluate to the
same value; or Re(x) is false, meaning that e is unreachable. In either case, one can
safely replace e with e′.

Simplification relies on an oracle to propose e′ for a given expression e. Note that
there is no restriction on the proposed expression e′. In practice, it should be simpler
than the original e since compilers tend to simplify code. STACK currently implements
two oracles:

—Boolean oracle: propose true and false in turn for a boolean expression, enumerating
possible values.

—Algebra oracle: propose to eliminate common terms on both sides of a comparison
if one side is a subexpression of the other. It is useful for simplifying nonconstant
expressions, such as proposing y < 0 for x + y < x, by eliminating x from both sides.

As an example, consider simplifying p + 100 < p using the boolean oracle, where p
is a pointer. For simplicity assume its reachability condition is true. From Figure 6, the
UB condition of p + 100 is p∞ + 100∞ /∈ [0, 2n − 1]. The boolean oracle first proposes
true. The corresponding simplification query is:

(p + 100 < p) �= true
∧ true ∧ (true → ¬(p∞ + 100∞ /∈ [0, 2n − 1])) .

Clearly, this is satisfiable. The boolean oracle then proposes false. This time the sim-
plification query is:

(p + 100 < p) �= false
∧ true ∧ (true → ¬(p∞ + 100∞ /∈ [0, 2n − 1])) .

Since there is no pointer p that satisfies this query, one can fold p+ 100 < p into false.
Section 6.2.2 will show more examples of identifying unstable code using simplification.

With this definition, it is straightforward to construct an algorithm to identify un-
stable code due to simplification (see Figure 8). The algorithm consults an oracle for
every possible simpler form e′ for expression e. Similarly to elimination, it warns if it
finds e′ that is equivalent to e only with the well-defined program assumption.

3.3. Discussion

The model focuses on discarding unstable code by exploring two basic optimiza-
tions: elimination because of unreachability and simplification because of unnecessary

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:14 X. Wang et al.

Fig. 8. The simplification algorithm. It asks an oracle to propose a set of possible e′ and reports if any of
them is equivalent to e with the well-defined program assumption.

Fig. 9. STACK’s workflow. It invokes clang to convert a C/C++ program into LLVM IR and then detects
unstable code based on the IR.

computation. It is possible to exploit the well-defined program assumption in other
forms. For example, instead of discarding code, some optimizations reorder instruc-
tions and produce unwanted code due to memory aliasing [Tourrilhes 2003] or data
races [Boehm 2005], which STACK does not model.

STACK implements two oracles, boolean and algebra, for proposing new expressions
for simplification. One can extend it by introducing new oracles.

4. THE STACK CHECKER

This section describes the design and implementation of the STACK checker that detects
unstable code by mimicking an aggressive compiler. A challenge in designing STACK

is to make it scale to large programs. To address this challenge, STACK uses variants
of the algorithms presented in Section 3 that work on individual functions. A further
challenge is to avoid reporting false warnings for unstable code that is generated by
the compiler itself, such as macros and inlined functions.

4.1. Overview

STACK works in four stages, as illustrated in Figure 9. In the first stage, a user prepends
a script stack-build to the actual building command, such as:

% stack-build make

The script stack-build intercepts invocations to gcc and invokes clang instead to
compile source code into the LLVM intermediate representation (IR). The remaining
three stages work on the IR.

In the second stage, STACK inserts UB conditions listed in Figure 6 into the IR. In the
third stage, it performs a solver-based optimization using a variant of the algorithms
described in Section 3.2. In the fourth stage, STACK generates a bug report of unstable
code discarded by the solver-based optimization, with the corresponding set of UB
conditions. For example, for Figure 2, STACK links the null pointer check !tun to the
earlier pointer dereference tun->sk.

4.2. Compiler Front-End

STACK invokes clang to compile C-family source code to the LLVM IR for the rest of
the stages. Furthermore, to detect unstable code across functions, it invokes LLVM to
inline functions and works on individual functions afterward for better scalability.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:15

A challenge is that STACK should focus on unstable code written by programmers
and ignore code generated by the compiler (e.g., from macros and inline functions).
Consider the code snippet here:

Assume p is a pointer passed from the caller. Ideally, STACK could inspect the callers
and check whether p can be null. However, STACK cannot do this because it works on
individual functions. STACK would consider the null pointer check p != NULL unstable
due to the earlier dereference p->tag. In our experience, this causes a large number of
false warnings because programmers do not directly write the null pointer check but
simply reuse the macro IS_A.

To reduce false warnings, STACK ignores such compiler-generated code by tracking
code origins at the cost of missing possible bugs (see Section 4.6). To do so, STACK

implements a clang plugin to record the original macro for macro-expanded code in
the IR during preprocessing and compilation. Similarly, it records the original function
for inlined code in the IR during inlining. The final stage uses the recorded origin
information to avoid generating bug reports for compiler-generated unstable code (see
Section 4.5).

4.3. UB Condition Insertion

STACK implements the UB conditions listed in Figure 6. For each UB condition, STACK

inserts a special function call into the IR at the corresponding instruction:

void bug on(bool expr);

This function takes one boolean argument: the UB condition of the instruction.
It is straightforward to represent UB conditions as a boolean argument in the IR.

For example, for a division x/y, STACK inserts bug on(y = 0) for division by zero. The
next stage uses these bug_on calls to compute the well-defined program assumption.

4.4. Solver-Based Optimization

To detect unstable code, STACK runs the algorithms described in Section 3.2 in the
following order:

—elimination,
—simplification with the boolean oracle, and
—simplification with the algebra oracle.

To implement these algorithms, STACK consults the Boolector solver [Brummayer and
Biere 2009] to decide satisfiability for elimination and simplification queries, as shown
in Equations (3) and (4). Both queries need to compute the terms Re(x)∧�(x). However,
it is practically infeasible to precisely compute them for large programs. By definition,
computing the reachability condition Re(x) requires inspecting all paths from the start
of the program, and computing the well-defined program assumption �(x) requires
inspecting the entire program for UB conditions. Neither scales to a large program.

To address this challenge, STACK computes approximate queries by limiting the com-
putation to a single function. To describe the impact of this change, we use the following
two terms. First, let R′

e(x) denote fragment e’s reachability condition from the start of
current function; STACK replaces Re(x) with R′

e. Second, let dom(e) denote e’s dominators
[Muchnick 1997, Section 7.3], the set of fragments that every execution path reaching
e must have reached; STACK replaces the well-defined program assumption �(x) over
the entire program with that over dom(e).

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:16 X. Wang et al.

With these terms, we describe the variant of the algorithms for identifying unstable
code by computing approximate queries. STACK eliminates fragment e if the following
query is unsatisfiable:

R′
e(x) ∧

∧
d∈dom(e)

¬Ud(x). (5)

Similarly, STACK simplifies e into e′ if the following query is unsatisfiable:

e(x) �= e′(x) ∧ R′
e(x) ∧

∧
d∈dom(e)

¬Ud(x). (6)

Appendix A provides a proof that using both approximate queries still correctly identi-
fies unstable code.

STACK computes the approximate queries as follows. To compute the reachability
condition R′

e(x) within current function, STACK uses Tu and Padua’s algorithm [Tu and
Padua 1995]. To compute the UB condition

∧
d∈dom(e) ¬Ud(x), STACK collects them from

the bug_on calls within e’s dominators.

4.5. Bug Report Generation

STACK generates a bug report for unstable code based on the solver-based optimization.
First, it inspects the recorded origin of each unstable code case in the IR and ignores
code that is generated by the compiler, rather than written by the programmer.

To help users understand the bug report, STACK reports the minimal set of UB con-
ditions that make each report’s code unstable [Cimatti et al. 2011] using the following
greedy algorithm.

Let Qe be the query with which STACK decided that fragment e is unstable. The query
Qe then must be unsatisfiable. From Equations (5) and (6), we know that the query
must be in the following form:

Qe = H ∧
∧

d∈dom(e)

¬Ud(x). (7)

H denotes the term(s) excluding
∧

d∈dom(e) ¬Ud(x) in Qe. The goal is to find the minimal
set of UB conditions that help make Qe unsatisfiable.

To do so, STACK masks out each UB condition in e’s dominators from Qe individually
to form a new query Q′

e; if the new query Q′
e becomes satisfiable, then the UB condition

masked out is crucial for making fragment e unstable. The complete algorithm is listed
in Figure 10.

4.6. Limitations

The list of undefined behavior STACK implements (see Figure 6) is incomplete. For
example, it misses violations of strict aliasing [ISO/IEC 2011, Section 6.5] and uses of
uninitialized variables [ISO/IEC 2011, Section 6.3.2.1]. We decided not to implement
them because gcc already issues decent warnings for both cases. It would be easy to
extend STACK to do so as well.

Moreover, since our focus is to find subtle code changes due to optimizations, we
choose not to catch undefined behavior that occurs in the front end. One example is
evaluating (x = 1) + (x = 2); this fragment has undefined behavior due to “unse-
quenced side effects” [ISO/IEC 2011, Section 6.5/p2].

As discussed in Section 4.4, STACK implements approximation algorithms for better
scalability, using approximate reachability and UB conditions. STACK may miss un-
stable code due to these approximations. As STACK consults a constraint solver with

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:17

Fig. 10. Algorithm for computing the minimal set of UB conditions. These UB conditions lead to unstable
code given query Qe for fragment e.

elimination and simplification queries, STACK will also miss unstable code if the solver
times out. See Section 6.6 for a completeness evaluation.

STACK reports false warnings when it flags redundant code as unstable because
programmers sometimes simply write useless checks that have no effects (see Sec-
tion 6.2.4). Note that even though such redundant code fragments are false warnings,
discarding them is allowed by the specification.

5. IMPLEMENTATION

We implemented STACK using the LLVM compiler framework [Lattner and Adve 2004]
and the Boolector solver [Brummayer and Biere 2009]. STACK consists of approximately
4,000 lines of C++ code.

6. EVALUATION

This section answers the following questions:

—Is STACK useful for finding new bugs? (Section 6.1)
—What kinds of unstable code does STACK find? (Section 6.2)
—How precise are STACK’s bug reports? (Section 6.3)
—How long does STACK take to analyze a large system? (Section 6.4)
—How prevalent is unstable code in real systems, and what undefined behavior causes

it? (Section 6.5)
—What unstable code does STACK miss? (Section 6.6)

6.1. New Bugs

From July 2012 to March 2013, we periodically applied STACK to systems software
written in C/C++ to identify unstable code. The systems STACK analyzed are listed
in Figure 11 and include OS kernels, virtual machines, databases, multimedia en-
coders/decoders, language runtimes, and security libraries. Based on STACK’s bug re-
ports, we submitted patches to the corresponding developers. The developers confirmed
and fixed 161 new bugs. The results show that unstable code is widespread, and that
STACK is useful for identifying unstable code.

Figure 11 also breaks down the bugs by type of undefined behavior. The results show
that several kinds of undefined behavior contribute to the unstable code bugs.

6.2. Analysis of Bug Reports

This section reports our experience of finding and fixing unstable code with the aid of
STACK.

We manually classify STACK’s bug reports into the following four categories based on
the impact:

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:18 X. Wang et al.

Fig. 11. New bugs identified by STACK. We also break down the number of bugs by undefined behavior from
Figure 6: “pointer” (pointer overflow), “null” (null pointer dereference), “integer” (signed integer overflow),
“div” (division by zero), “shift” (oversized shift), “buffer” (buffer overflow), “abs” (absolute value overflow),
“memcpy” (overlapped memory copy), “free” (use after free), and “realloc” (use after realloc).

Fig. 12. An invalid signed division overflow check in Postgres. Note that the division precedes the check. A
malicious SQL query will crash it on x86-64 by exploiting signed division overflow.

—nonoptimization bugs causing problems regardless of optimizations;
—urgent optimization bugs, in which existing compilers are known to cause problems

with optimizations turned on but not with optimizations turned off;
—time bombs, in which no known compilers listed in Section 2.2 cause problems with

optimizations, although STACK does and future compilers may do so as well; and
—redundant code: false warnings, such as useless checks that compilers can safely

discard.

The remainder of this section illustrates each category using examples from STACK’s
bug reports. All the bugs described next were previously unknown but now have been
confirmed and fixed by the corresponding developers.

6.2.1. Nonoptimization Bugs. Nonoptimization bugs are unstable code that causes prob-
lems even without optimizations, such as the null pointer dereference bug shown in
Figure 2, which directly invokes undefined behavior.

To illustrate the subtle consequences of invoking undefined behavior, consider the im-
plementation of the 64-bit signed division operator for SQL in the Postgres database,
as shown in Figure 12. The code first rejects the case where the divisor is zero. Since
64-bit integers range from −263 to 263 −1, the only overflow case is −263/−1, where the

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:19

Fig. 13. An incorrect null pointer check in Linux’s sysctl. A correct null check should test the result of
strchr, rather than that plus one, which is always non-null.

expected quotient 263 exceeds the range and triggers undefined behavior. The Postgres
developers incorrectly assumed that the quotient must wrap around to −263 in this
case, as in some higher level languages (e.g., Java), and tried to catch it by examining
the overflowed quotient after the division using the following check:

arg2 == -1 && arg1 < 0 && arg1 / arg2 <= 0.

STACK identifies this check as unstable code: The division implies that the overflow must
not occur to avoid undefined behavior, and thus the overflow check after the division
must be false.

Although signed division overflow is undefined behavior in C, the corresponding x86-
64 instruction IDIV traps on overflow. One can exploit this to crash the database server
on x86-64 by submitting a SQL query that invokes −263/−1, such as:

Interestingly, we notice that the Postgres developers tested the −263/−1 crash in
2006, but incorrectly concluded that this “seemed OK” [Momjian 2006]. We believe
the reason is that they tested Postgres on x86-32, where there was no 64-bit IDIV
instruction. In that case, the compiler would generate a call to a library function lldiv
for 64-bit signed division, which returns −263 for −263/−1 rather than a hardware trap.
The developers thus overlooked the crash issue.

To fix this bug, we submitted a straightforward patch that checks whether arg1 is
−263 and arg2 is −1 before arg1/arg2. However, the Postgres developers designed their
own fix. Particularly, instead of directly comparing arg1 with −263, they chose the
following check:

arg1 != 0 && (-arg1 < 0) == (arg1 < 0).

STACK identifies this check as unstable code for similar reasons: the negation −arg1
implies that arg1 cannot be −263 to avoid undefined behavior, and thus the check must
be false. We further analyze this check in Section 6.2.3.

By identifying unstable code, STACK is also useful for uncovering programming errors
that do not directly invoke undefined behavior. Figure 13 shows an incorrect null
pointer check from the Linux kernel. The intention of this check was to reject a network
address without any dots. Since strchr(buf, ’.’) returns null if it cannot find any
dots in buf, a correct check should check whether its result is null, rather than that
plus one. One can bypass the check !nodep with a malformed network address from
user space and trigger an invalid read at page zero. STACK identifies the check !nodep
as unstable code because under the no-pointer-overflow assumption nodep (a pointer
plus one) must be non-null.

6.2.2. Urgent Optimization Bugs. Urgent optimization bugs are unstable code that ex-
isting compilers already optimize to cause problems. Section 2.1 described a set of
examples in which compilers either discard the unstable code or rewrite it into some
vulnerable form.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:20 X. Wang et al.

Fig. 14. Unstable bounds checks in the form data + x < data from FFmpeg/Libav. For these checks, gcc
optimizes them into x < 0.

To illustrate the consequences, consider the code snippet from FFmpeg/Libav for
parsing Adobe’s Action Message Format, shown in Figure 14. The parsing code starts
with two pointers, data pointing to the head of the input buffer and data_end pointing
to one past the end. It first reads in an integer size from the input buffer and fails if
the pointer data + size falls out of the bounds of the input buffer (i.e., between data
and data_end). The intent of the check data + size < data is to reject a large size
that causes data + size to wrap around to a smaller pointer and bypass the earlier
check data+size >= data end. The parsing code later reads in another integer len and
performs similar checks.

STACK identifies the two pointer overflow checks in the form data + x < data as
unstable code, where x is a signed integer (e.g., size and len). Specifically, with the
algebra oracle STACK simplifies the check data+ x < data into x < 0 and warns against
this change. Note that this is slightly different from Figure 1: x is a signed integer,
rather than unsigned, so the check is not always false under the well-defined program
assumption.

Both gcc and clang perform similar optimizations by rewriting data+x < data
into x < 0. As a result, a large size or len from malicious input is able to
bypass the checks, leading to an out-of-bounds read. A correct fix is to replace
data+x >= data end || data+x < data with x >= data end − data, which is sim-
pler and also avoids invoking undefined behavior; one should also add the check x < 0
if x can be negative.

Figure 15 shows an urgent optimization bug that leads to an infinite loop from
plan9port. The function pdec is used to print a signed integer k; if k is negative, the
code prints the minus symbol and then invokes pdec again with the negation −k.
Assuming k is an n-bit integer, one special case is k being −2n−1 (i.e., INT_MIN), the
negation of which is undefined. The programmers incorrectly assumed that -INT_MIN
would wrap around to INT_MIN and remain negative, so they used the check −k >= 0 to
filter out INT_MIN when k is known to be negative.

STACK identifies the check −k >= 0 as unstable code; gcc also optimizes the check
into true as it learns that k is negative from the earlier k < 0. Consequently, invoking
pdec with INT_MIN will lead to an infinite loop, printing the minus symbol repeatedly.
A simple fix is to replace −k >= 0 with a safe form k != INT MIN.

6.2.3. Time Bombs. A time bomb is unstable code that is harmless at present because
no compiler listed in Section 2.2 can currently optimize it. But this situation may
change over time. Section 2.2 already showed how past compiler changes trigger time

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:21

Fig. 15. An unstable integer check in plan9port. The function pdec prints a signed integer k; gcc optimizes
the check -k >= 0 into true when it learns that k is negative, leading to an infinite loop if the input k is
INT_MIN.

Fig. 16. A time bomb in Postgres. The intention is to check whether arg1 is the most negative value −2n−1,
similar to Figure 15.

Fig. 17. Redundant code from the Linux kernel. The caller of this code snippet ensures that c must be
non-null and the null pointer check against c is always true.

bombs to become urgent optimization bugs. Section 6.2.1 illustrated how a time bomb
in Postgres emerged as the x86 processor evolved: The behavior of 64-bit signed division
on overflow changed from silent wraparound to trap, allowing one to crash the database
server with malicious SQL queries.

Figure 16 shows a time bomb example from Postgres. As mentioned in Section 6.2.1,
the Postgres developers chose this approach to check whether arg1 is −263 without
using the constant value of −263; their assumption was that the negation of a non-zero
integer would have a different sign unless it is −263.

The code currently works; the time bomb does not go off, and does not cause any
problems, unlike its “equivalent” form in Figure 15. This luck relies on the fact that
no production compilers discard it. Nonetheless, STACK identifies the check as unstable
code, and we believe that some research compilers such as Bitwise [Stephenson et al.
2000] already discard the check. Relying on compilers to not optimize time bombs for
system security is risky, and we recommend fixing problems flagged by STACK to avoid
this risk.

6.2.4. Redundant Code. Figure 17 shows an example of redundant code from the Linux
kernel. STACK identifies the null pointer check against the pointer c in the if condition
as unstable code due to the earlier dereference c->trans. The caller of the code snippet
ensures that the pointer c must be non-null, so the check is always true. Our experience
shows that redundant code comprises only a small portion of unstable code that STACK

reports (see Section 6.3).

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:22 X. Wang et al.

Fig. 18. STACK’s performance of analyzing Kerberos, Postgres, and the Linux kernel. This includes the build
time, analysis time, number of files, number of total queries STACK made, and number of queries that timed
out.

Depending on their coding conventions, it is up to programmers to decide whether to
keep redundant code. Based on the feedback from STACK’s users, we learned that pro-
grammers often prefer to remove such redundant checks or convert them to assertions
for better code quality, even if they are not real bugs.

6.3. Precision

To understand the precision of STACK’s results, we further analyzed every bug report
STACK produced for Kerberos and Postgres. The results here show that STACK has a low
rate of false warnings (i.e., redundant code).

Kerberos. STACK reported 11 bugs in total, all of which were confirmed and fixed by
the developers. In addition, the developers determined that one of them was remotely
exploitable and requested a CVE identifier (CVE-2013-1415) for this bug. After the
developers fixed these bugs, STACK produced zero reports.

Postgres. STACK reported 68 bugs in total. The developers promptly fixed nine of them
after we demonstrated how to crash the database server by exploiting these bugs, as
described in Section 6.2.1. We further discovered that Intel’s icc and PathScale’s pathcc
compilers discarded 29checks, which STACK identified as unstable code (i.e., urgent
optimization bugs) and reported these problems to the developers.

STACK found 26 time bombs (see Section 6.2.3 for one example); we did not submit
patches to fix these time bombs given the developers’ hesitation in fixing urgent opti-
mization bugs. STACK also produced 4 bug reports that identified redundant code, which
did not need fixing.

6.4. Performance

To measure the running time of STACK, we ran it against Kerberos, Postgres, and the
Linux kernel (with all modules enabled) using their source code from March 23, 2013.
The experiments were conducted on a 64-bit Ubuntu Linux machine with an Intel Core
i7-980 3.3GHz CPU and 24GB of memory. The processor has six cores, and each core
has two hardware threads.

STACK built and analyzed each package using 12 processes in parallel. We set a
timeout of 5 seconds for each query to the solver (including computing the UB condition
set as described in Section 5.6). Figure 18 lists the build time, analysis time, number of
files, number of total queries to the solver, and number of query timeouts. The results
show that STACK can finish analyzing a large system within a reasonable amount of
time.

We noticed a small number of solver timeouts (<0.5%) due to complex reachability
conditions, often at the end of a function. STACK would miss unstable code in such cases.
To avoid this, one can increase the timeout.

6.5. Prevalence of Unstable Code

We applied STACK to all 17,432 packages in the Debian Wheezy archive as of March
24, 2013. STACK checked 8,575 of them that contained C/C++ code. Building and

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:23

Fig. 19. Number of reports generated by each of STACK’s algorithms. This is from Section 3.2 for all Debian
Wheezy packages. We also include the number of packages for which at least one such report was generated.

Fig. 20. Number of reports that involve each of STACK’s UB conditions. This is from Figure 6 for all Debian
Wheezy packages. We also include the number of packages for which at least one such report was generated.

analyzing these packages took approximately 150 CPU-days on Intel Xeon E7-8870
2.4GHz processors.

For 3,471 out of these 8,575 packages, STACK detected at least one instance of unstable
code. This suggests that unstable code is a widespread problem.

Figure 19 shows the number of reports generated by each of STACK’s algorithms.
These results suggest that they are all useful for identifying unstable code.

Each of STACK’s reports contains a set of UB conditions that cause the code to be
unstable. Figure 20 shows the number of times each kind of UB condition showed up
in a report. These numbers confirm that many kinds of undefined behavior lead to
unstable code in practice.

As described in Section 4.5, STACK computes a minimal set of UB conditions neces-
sary for each instance of unstable code. Most unstable code reports (69,301) were the
result of just one UB condition, but there were also 2,579 reports with more than one
UB condition, and there were even four reports involving eight UB conditions. These
numbers confirm that some unstable code is caused by multiple undefined behaviors,
which suggests that automatic tools such as STACK are necessary to identify them.
Programmers are unlikely to find them by manual inspection.

6.6. Completeness

STACK is able to identify all the unstable code examples described in Section 2.2. How-
ever, it is difficult to know precisely how much unstable code STACK would miss in
general. Instead, we analyze what kind of unstable code STACK misses. To do so, we col-
lected all examples from Regehr’s “undefined behavior consequences contest” winners
[Regehr 2012] and Wang et al.’s undefined behavior survey [Wang et al. 2012a] as a
benchmark, a total of 10 tests from real systems.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:24 X. Wang et al.

STACK identified unstable code in 7 out of the 10 tests. STACK missed three for the
following reasons. As described in Section 4.6, STACK missed two because we chose not to
implement their UB conditions for violations of strict aliasing and uses of uninitialized
variables; it would be easy to extend STACK to do so. The other case STACK missed was
due to approximate reachability conditions, also mentioned in Section 4.6.

7. RELATED WORK

To the best of our knowledge, we present the first definition and static checker to find
unstable code, but we build on several pieces of related work. In particular, earlier
surveys [Wang et al. 2012a; Krebbers and Wiedijk 2012; Seacord 2010] and blog posts
[Lattner 2011; Regehr 2010, 2012] collect examples of unstable code, which motivated
us to tackle this problem. We were also motivated by related techniques that can help
with addressing unstable code, which we discuss next.

7.1. Testing Strategies

Our experience with unstable code shows that, in practice, it is difficult for program-
mers to notice certain critical code fragments disappearing from the running system
as they are silently discarded by the compiler. Maintaining a comprehensive test suite
may help catch “vanished” code in such cases, although doing so often requires a sub-
stantial effort to achieve high code coverage through manual test cases. Programmers
may also need to prepare a variety of testing environments because unstable code can
be hardware- and compiler-dependent.

Automated tools such as KLEE [Cadar et al. 2008] can generate test cases with high
coverage using symbolic execution. These tools, however, often fail to model undefined
behavior correctly. Thus, they may interpret the program differently from the language
standard and miss bugs. Consider a check x+100 < x, where x is a signed integer. KLEE
considers x + 100 to wrap around given a large x; in other words, the check catches
a large x when executing in KLEE, even though gcc discards the check. Therefore,
to detect unstable code, these tools need to be augmented with a model of undefined
behavior, such as the one we proposed in this article.

7.2. Optimization Strategies

We believe that programmers should avoid undefined behavior, and we provide sug-
gestions for fixing unstable code in Section 6.2. However, overly aggressive compiler
optimizations are also responsible for triggering these bugs. Traditionally, compilers
focused on producing fast and small code, even at the price of sacrificing security,
as shown in Section 2.2. Compiler writers should rethink optimization strategies for
generating secure code.

Consider x+100 < x with a signed integer x again. The language standard does allow
compilers to consider the check to be false and discard it. In our experience, however,
it is unlikely that the programmer intended the code to be removed. A programmer-
friendly compiler could instead generate efficient overflow checking code, for example,
by exploiting the overflow flag available on many processors after evaluating x + 100.
This strategy, also allowed by the language standard, produces more secure code than
discarding the check. Alternatively, the compiler could produce warnings when exploit-
ing undefined behavior in a potentially surprising way [GCC 2013].

Currently, gcc provides several options to alter the compiler’s assumptions about
undefined behavior, such as

—-fwrapv, assuming signed integer wraparound for addition, subtraction, and
multiplication;

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

A Differential Approach to Undefined Behavior Detection 1:25

—-fno-strict-overflow, assuming pointer arithmetic wraparound in addition to
-fwrapv; and

—-fno-delete-null-pointer-checks [Teo 2009], assuming unsafe null pointer
dereferences.

These options can help reduce surprising optimizations at the price of generating
slower code. However, they cover an incomplete set of undefined behavior that may
cause unstable code (e.g., no options for shift or division). Another downside is that
these options are specific to gcc; other compilers may not support them or may interpret
them in a different way [Wang et al. 2012a].

7.3. Checkers

Many existing tools can detect undefined behavior as listed in Figure 6. For example,
gcc provides the -ftrapv option to insert runtime checks for signed integer overflows
[Stallman and the GCC Developer Community 2013, Section 3.18]; IOC [Dietz et al.
2012] (now part of clang’s sanitizers [Clang 2014]) and KINT [Wang et al. 2012b] cover
a more complete set of integer errors; Saturn [Dillig et al. 2007] finds null pointer
dereferences; several dedicated C interpreters such as kcc [Ellison and Roşu 2012b]
and Frama-C [Canet et al. 2009] perform checks for undefined behavior. See Chen
et al.’s survey [Chen et al. 2011] for a summary.

In complement to these checkers that directly target undefined behavior, STACK finds
unstable code that becomes dead due to undefined behavior. In this sense, STACK can
be considered as a generalization of Engler et al.’s inconsistency cross-checking frame-
work [Engler et al. 2001; Dillig et al. 2007]. STACK, however, supports more expressive
assumptions, such as pointer and integer operations.

As explored by existing checkers [Blackshear and Lahiri 2013; Tomb and Flanagan
2012; Hoenicke et al. 2009], dead code is an effective indicator of likely bugs. STACK

finds undefined behavior bugs by finding subtly unnecessary code under different in-
terpretations of the language specification.

7.4. Language Design

Language designers may reconsider whether it is necessary to declare certain con-
structs as undefined behavior since reducing undefined behavior in the specification
is likely to avoid unstable code. One example is left-shifting a signed 32-bit one by 31
bits. This is undefined behavior in C [ISO/IEC 2011, Section 6.5.7], even though the
result is consistently 0x80000000 on most modern processors. The committee for the
C++ language standard has assigned well-defined semantics to this operation in the
latest specification [Miller 2012].

8. CONCLUSION

This article presented the first systematic study of unstable code, an emerging class of
system defects that manifest themselves when compilers discard code due to undefined
behavior. Our experience shows that unstable code is subtle and often misunderstood by
system programmers, that unstable code prevails in systems software, and that many
popular compilers already perform unexpected optimizations, leading to misbehaving
or vulnerable systems. We introduced a new approach for reasoning about unstable
code and developed a static checker, STACK, to help system programmers identify un-
stable code. We hope that compiler writers will also rethink optimization strategies
against unstable code. Finally, we hope this article encourages language designers to
be careful with using undefined behavior in the language specification. Almost every
language allows a developer to write programs that have undefined meaning according

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

1:26 X. Wang et al.

to the language specification. This research indicates that being liberal with what is
undefined can lead to subtle bugs.

All of STACK’s source code is publicly available at http://css.csail.mit.edu/stack/.

APPENDIX

A. CORRECTNESS OF APPROXIMATION

As discussed in Section 3.2, STACK performs an optimization if the corresponding query
Q is unsatisfiable. Using an approximate query Q′ yields a correct optimization if Q′ is
weaker than Q (i.e., Q → Q′): If Q′ is unsatisfiable, which enables the optimization, the
original query Q must also be unsatisfiable.

To prove the correctness of approximation, it suffices to show that the approximate
elimination query in Equation (5) is weaker than the original query in Equation (3);
the simplification queries in Equations (6) and (4) are similar. Formally, given code
fragment e, it suffices to show the following:

Re(x) ∧ �(x) → R′
e(x) ∧

∧
d∈dom(e)

¬Ud(x). (8)

PROOF. Since e’s dominators are a subset of the program, the well-defined program
assumption over dom(e) must be weaker than �(x) over the entire program:

�(x) →
∧

d∈dom(e)

(Rd(x) → ¬Ud(x)). (9)

From the definition of dom(e), if fragment e is reachable, then its dominators must
be reachable as well:

∀d ∈ dom(e) : Re(x) → Rd(x). (10)

Combining Equations (9) and (10) gives:

�(x) →
⎛
⎝Re(x) →

∧
d∈dom(e)

¬Ud(x)

⎞
⎠ . (11)

With Re(x), we have:

Re(x) ∧ �(x) → Re(x) ∧
∧

d∈dom(e)

¬Ud(x). (A5)

By definition Re(x) → R′
e(x), so Equation (12) implies Equation (8).

REFERENCES

Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and Christos Kozyrakis. 2012.
Dune: Safe user-level access to privileged CPU features. In Proceedings of the 10th Symposium on
Operating Systems Design and Implementation (OSDI’12). 335–348.

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky,
Scott McPeak, and Dawson Engler. 2010. A few billion lines of code later: Using static analysis to find
bugs in the real world. Communication of the ACM 53, 2 (Feb. 2010), 66–75.

Sam Blackshear and Shuvendu Lahiri. 2013. Almost-correct specifications: A modular semantic framework
for assigning confidence to warnings. In Proceedings of the 2013 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’13). 209–218.

Hans-J. Boehm. 2005. Threads cannot be implemented as a library. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). Chicago, IL, 261–268.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

http://css.csail.mit.edu/stack/

A Differential Approach to Undefined Behavior Detection 1:27

Robert Brummayer and Armin Biere. 2009. Boolector: An efficient SMT solver for bit-vectors and arrays.
In Proceedings of the 15th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 174–177.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI’08).

Géraud Canet, Pascal Cuoq, and Benjamin Monate. 2009. A value analysis for C programs. In Proceedings
of the 9th IEEE International Working Conference on Source Code Analysis and Manipulation. 123–124.

Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M. Frans Kaashoek. 2011.
Linux kernel vulnerabilities: State-of-the-art defenses and open problems. In Proceedings of the 2nd
Asia-Pacific Workshop on Systems.

Chromium 2013. Issue 12079010: Avoid Undefined Behavior When Checking for Pointer Wraparound. Re-
trieved from https://codereview.chromium.org/12079010/.

Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. 2011. Computing small unsatisfiable cores in
satisfiability modulo theories. Journal of Artificial Intelligence Research 40 (2011), 701–728.

Clang. 2014. Clang Compiler User’s Manual: Controlling Code Generation. Retrieved from http://clang.llvm.
org/docs/UsersManual.html#controlling-code-generation.

Jonathan Corbet. 2009. Fun with NULL Pointers, Part 1. (July 2009). http://lwn.net/Articles/342330/.
Russ Cox. 2008. Re: plan9port build failure on Linux (debian). (March 2008). http://9fans.net/archive/2008/

03/89.
Pascal Cuoq, Matthew Flatt, and John Regehr. 2014. Proposal for a Friendly Dialect of C. Retrieved from

http://blog.regehr.org/archives/1180.
Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2012. Understanding integer overflow in C/C++. In

Proceedings of the 34th International Conference on Software Engineering (ICSE’12). 760–770.
Isil Dillig, Thomas Dillig, and Alex Aiken. 2007. Static error detection using semantic inconsistency infer-

ence. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’07). 435–445.

Chad R. Dougherty and Robert C. Seacord. 2008. C compilers may silently discard some wraparound checks.
Vulnerability Note VU#162289. US-CERT. Retrieved from http://www.kb.cert.org/vuls/id/162289, origi-
nal version http://www.isspcs.org/render.html?it=9100.

Chucky Ellison and Grigore Roşu. 2012a. Defining the Undefinedness of C. Technical Report. University of
Illinois. Retrieved from http://hdl.handle.net/2142/30780.

Chucky Ellison and Grigore Roşu. 2012b. An executable formal semantics of C with applications. In Proceed-
ings of the 39th ACM Symposium on Principles of Programming Languages (POPL’12). 533–544.

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. 2001. Bugs as deviant
behavior: A general approach to inferring errors in systems code. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP’01). 57–72.

GCC. 2006. Bug 27180—Pointer Arithmetic Overflow Handling Broken. Retrieved from http://gcc.gnu.
org/bugzilla/show_bug.cgi?id=27180.

GCC. 2007. Bug 30475—assert(int+100 > int) Optimized Away. Retrieved from http://gcc.gnu.org/
bugzilla/show_bug.cgi?id=30475.

GCC 2011. Bug 49820—Explicit Check for Integer Negative after abs Optimized Away. Retrieved from http://
gcc.gnu.org/bugzilla/show_bug.cgi?id=49820.

GCC. 2013. Bug 53265—Warn When Undefined Behavior Implies Smaller Iteration Count. Retrieved from
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53265.

Jochen Hoenicke, K. Rustan M. Leino, Andreas Podelski, Martin Schäf, and Thomas Wies. 2009. It’s doomed;
we can prove it. In Proceedings of the 16th International Symposium on Formal Methods (FM’09).
Eindhoven, the Netherlands, 338–353.

IBM. 2009. Optimizing C Code at Optimization Level 2. White paper.
IBM. 2010. Power ISA Version 2.06 Revision B, Book I: Power ISA User Instruction Set Architecture.
Intel. 2010. Intel Itanium Architecture Software Developer’s Manual, Volume 1: Application Architecture.
Intel. 2013. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2: Instruction Set Refer-

ence, A–Z.
Intel. 2014. Intel 64 and IA-32 Architectures Software Developer’s Manual.
ISO/IEC. 2003. Rationale for International Standard - Programming Languages - C.
ISO/IEC. 2011. ISO/IEC 9899:2011, Programming languages - C.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

https://codereview.chromium.org/12079010/
http://clang.llvm.org/docs/UsersManual.htmlcontrolling-code-generation
http://clang.llvm.org/docs/UsersManual.htmlcontrolling-code-generation
http://lwn.net/Articles/342330/
http://9fans.net/archive/2008/03/89
http://9fans.net/archive/2008/03/89
http://blog.regehr.org/archives/1180
http://www.kb.cert.org/vuls/id/162289
http://www.isspcs.org/render.html?it$=$9100
http://hdl.handle.net/2142/30780
http://gcc.gnu.org/bugzilla/showbug.cgi?id=27180
http://gcc.gnu.org/bugzilla/showbug.cgi?id=27180
http://gcc.gnu.org/bugzilla/showbug.cgi?id=30475
http://gcc.gnu.org/bugzilla/showbug.cgi?id=30475
http://gcc.gnu.org/bugzilla/showbug.cgi?id=49820
http://gcc.gnu.org/bugzilla/showbug.cgi?id=49820
http://gcc.gnu.org/bugzilla/showbug.cgi?id=53265

1:28 X. Wang et al.

Barnaby Jack. 2007. Vector Rewrite Attack: Exploitable NULL Pointer Vulnerabilities on ARM and XScale
Architectures. White paper. Juniper Networks.

Robbert Krebbers and Freek Wiedijk. 2012. Subtleties of the ANSI/ISO C Standard. Document N1639.
ISO/IEC.

Tom Lane. 2005. Anyone for Adding -fwrapv to Our Standard CFLAGS? Retrieved from http://www.
postgresql.org/message-id/1689.1134422394@sss.pgh.pa.us.

Tom Lane. 2009. Re: gcc versus Division-by-Zero Traps. Retrieved from http://www.postgresql.org/
message-id/19979.1251998812@sss.pgh.pa.us.

Chris Lattner. 2011. What Every C Programmer Should Know About Undefined Behavior. Retrieved from
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis &
transformation. In Proceedings of the 2004 International Symposium on Code Generation and Optimiza-
tion (CGO’04). 75–86.

Linux Kernel. 2009. Bug 14287—ext4: Fixpoint Divide Exception at ext4_fill_super. Retrieved from
https://bugzilla.kernel.org/show_bug.cgi?id=14287.

John Lions. 1977. A Commentary on the Sixth Edition UNIX Operating System.
David MacKenzie, Ben Elliston, and Akim Demaille. 2012. Autoconf: Creating Automatic Configuration

Scripts for Version 2.69. Free Software Foundation.
William M. Miller. 2012. C++ Standard Core Language Defect Reports and Accepted Issues, Is-

sue 1457: Undefined Behavior in Left-Shift. Retrieved from http://www.open-std.org/jtc1/sc22/wg21/
docs/cwg_defects.html#1457.

Bruce Momjian. 2006. Re: Fix for Win32 Division Involving INT_MIN. Retrieved from http://www.postgresql.
org/message-id/200606090240.k592eUj23952@candle.pha.pa.us.

Steven S. Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann.
Diego Novillo. 2005. A propagation engine for GCC. In Proceedings of the 2005 GCC & GNU Toolchain

Developers’ Summit. 175–184.
Python. 2013. Issue 17016:_sre: Avoid Relying on Pointer Overflow. Retrieved from http://bugs.python.org/

issue17016.
Silvio Ranise, Cesare Tinelli, and Clark Barrett. 2013. QF_BV logic. Retrieved from http://smtlib.cs.

uiowa.edu/logics/QF_BV.smt2.
John Regehr. 2010. A Guide to Undefined Behavior in C and C++. Retrieved from http://blog.regehr.

org/archives/213.
John Regehr. 2012. Undefined behavior consequences contest winners. (July 2012). http://blog.regehr.

org/archives/767.
Robert C. Seacord. 2010. Dangerous Optimizations and the Loss of Causality. Retrieved from https://www.

securecoding.cert.org/confluence/download/attachments/40402999/Dangerous+Optimizations.pdf.
Richard M. Stallman and the GCC Developer Community. 2013. Using the GNU Compiler Collection for

GCC 4.8.0. Free Software Foundation.
Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. 2000. Bitwidth analysis with application to

silicon compilation. In Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’00). 108–120.

Eugene Teo. 2009. [PATCH] Add -fno-delete-null-pointer-checks to gcc CFLAGS. Retrieved from
https://lists.ubuntu.com/archives/kernel-team/2009-July/006609.html.

Julien Tinnes. 2009. Bypassing Linux NULL Pointer Dereference Exploit Prevention (mmap_min_addr). Re-
trieved from http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html.

Aaron Tomb and Cormac Flanagan. 2012. Detecting inconsistencies via universal reachability analysis. In
Proceedings of the 2012 International Symposium on Software Testing and Analysis. 287–297.

Linus Torvalds. 2007. Re: [patch] CFS Scheduler, -v8. Retrieved from https://lkml.org/lkml/2007/5/7/213.
Jean Tourrilhes. 2003. Invalid Compilation without -fno-strict-aliasing. Retrieved from https://lkml.org/

lkml/2003/2/25/270.
Peng Tu and David Padua. 1995. Gated SSA-based demand-driven symbolic analysis for parallelizing com-

pilers. In Proceedings of the 9th ACM International Conference on Supercomputing. 414–423.
Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek. 2012a.

Undefined behavior: What happened to my code? In Proceedings of the 3rd Asia-Pacific Workshop on
Systems.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

http://www.postgresql.org/message-id/1689.1134422394@sss.pgh.pa.us
http://www.postgresql.org/message-id/1689.1134422394@sss.pgh.pa.us
http://www.postgresql.org/message-id/19979.1251998812@sss.pgh.pa.us
http://www.postgresql.org/message-id/19979.1251998812@sss.pgh.pa.us
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://bugzilla.kernel.org/show_bug.cgi?id$=$14287
http://www.open-std.org/jtc1/sc22/wg21/docs/cwgdefects.html1457
http://www.open-std.org/jtc1/sc22/wg21/docs/cwgdefects.html1457
http://www.postgresql.org/message-id/200606090240.k592eUj23952@ candle.pha.pa.us
http://www.postgresql.org/message-id/200606090240.k592eUj23952@ candle.pha.pa.us
http://bugs.python.org/issue17016
http://bugs.python.org/issue17016
http://smtlib.cs.uiowa.edu/logics/QFBV.smt2
http://smtlib.cs.uiowa.edu/logics/QFBV.smt2
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/767
http://blog.regehr.org/archives/767
https://www.securecoding.cert.org/confluence/download/attachments/40402999/Dangerous+Optimizations.pdf
https://www.securecoding.cert.org/confluence/download/attachments/40402999/Dangerous+Optimizations.pdf
https://lists.ubuntu.com/archives/kernel-team/2009-July/006609.html
http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html
https://lkml.org/lkml/2007/5/7/213
https://lkml.org/lkml/2003/2/25/270
https://lkml.org/lkml/2003/2/25/270

A Differential Approach to Undefined Behavior Detection 1:29

Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek. 2012b. Improving integer
security for systems with KINT. In Proceedings of the 10th Symposium on Operating Systems Design and
Implementation (OSDI’12). 163–177.

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2013. Towards optimization-
safe systems: Analyzing the impact of undefined behavior. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP’13). 260–275.

Keith Winstein and Hari Balakrishnan. 2012. Mosh: An interactive remote shell for mobile clients. In
Proceedings of the 2012 USENIX Annual Technical Conference. 177–182.

John F. Woods. 1992. Re: Why is This Legal? Retrieved from http://groups.google.com/group/comp.std.c/msg/
dfe1ef367547684b.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. 2006. Making information flow
explicit in HiStar. In Proceedings of the 7th Symposium on Operating Systems Design and Implementa-
tion (OSDI’06). 263–278.

Received September 2014; accepted October 2014

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 1, Publication date: March 2015.

http://groups.google.com/group/comp.std.c/msg/dfe1ef367547684b
http://groups.google.com/group/comp.std.c/msg/dfe1ef367547684b

