
2

Comprehensive Formal Verification of an OS Microkernel

GERWIN KLEIN, JUNE ANDRONICK, KEVIN ELPHINSTONE, TOBY MURRAY,
THOMAS SEWELL, RAFAL KOLANSKI, and GERNOT HEISER, NICTA and UNSW, Sydney,
Australia

We present an in-depth coverage of the comprehensive machine-checked formal verification of seL4, a
general-purpose operating system microkernel.

We discuss the kernel design we used to make its verification tractable. We then describe the functional
correctness proof of the kernel’s C implementation and we cover further steps that transform this result into
a comprehensive formal verification of the kernel: a formally verified IPC fastpath, a proof that the binary
code of the kernel correctly implements the C semantics, a proof of correct access-control enforcement, a
proof of information-flow noninterference, a sound worst-case execution time analysis of the binary, and
an automatic initialiser for user-level systems that connects kernel-level access-control enforcement with
reasoning about system behaviour. We summarise these results and show how they integrate to form a
coherent overall analysis, backed by machine-checked, end-to-end theorems.

The seL4 microkernel is currently not just the only general-purpose operating system kernel that is fully
formally verified to this degree. It is also the only example of formal proof of this scale that is kept current
as the requirements, design and implementation of the system evolve over almost a decade. We report on
our experience in maintaining this evolving formally verified code base.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; D.4.5
[Operating Systems]: Reliability—Verification

General Terms: Verification; Security; Reliability

Additional Key Words and Phrases: seL4, Isabelle/HOL, operating systems, microkernel, L4

ACM Reference Format:
Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski, and
Gernot Heiser. 2014. Comprehensive formal verification of an OS microkernel. ACM Trans. Comput. Syst.
32, 1, Article 2 (February 2014), 70 pages.
DOI:http://dx.doi.org/10.1145/2560537

1. INTRODUCTION
This article presents a detailed coverage of the comprehensive formal verification of
the seL4 microkernel, from its initial functional correctness proof to more recent re-
sults, which extend the assurance argument up to higher-level security properties and
down to the binary level of its implementation.

The target of our verification, the kernel, is the most critical part of a system, which
is our motivation for starting system verification with this component. The customary
definition of a kernel is the software that executes in the privileged mode of the hard-

NICTA is funded by the Australian Government as represented by the Department of Broadband, Communi-
cations and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence
program.
Authors’ address: NICTA, Level 4, 223 Anzac Pde, Sydney NSW 2052, Australia; Correspondence email:
gernot@nicta.com.au.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0734-2071/2014/02-ART2 $15.00
DOI:http://dx.doi.org/10.1145/2560537

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

mailto:gernot@nicta.com.au

2:2 Klein et al.

ware, meaning that there can be no protection from faults occurring in the kernel, and
every single bug can potentially cause arbitrary damage. Microkernels are motivated
by the desire to minimise the exposure to bugs by reducing the amount of privileged
code [Brinch Hansen 1970; Wulf et al. 1974; Accetta et al. 1986; Liedtke 1993; Shapiro
et al. 1996; Hohmuth et al. 2004]. This is also the primary motivation behind sep-
aration kernels [Rushby 1981; Information Assurance Directorate 2007], the MILS
approach [Alves-Foss et al. 2006], isolation kernels [Whitaker et al. 2002], the use of
small hypervisors as a minimal trust base [Garfinkel et al. 2003; Singaravelu et al.
2006; Seshadri et al. 2007; Criswell et al. 2007], as well as systems that require the
use of type-safe languages for all code except some “dirty” core [Bershad et al. 1995;
Fähndrich et al. 2006].

With truly small kernels it becomes possible to take security and robustness fur-
ther, to the point where it is possible to guarantee the absence of bugs [Tuch et al.
2005; Hohmuth and Tews 2005; Seshadri et al. 2007; Elphinstone et al. 2007] and
to establish the presence of high-level security properties [Klein et al. 2011; Sewell
et al. 2011; Murray et al. 2013; Sewell et al. 2013]. This can be achieved by formal,
machine-checked verification, providing mathematical proof that firstly the kernel im-
plementation is consistent with its specification and free from programmer-induced
implementation defects, and secondly that the specification satisfies desirable high-
level properties that carry through to the code and binary level.

The seL4 microkernel is a member of the L4 microkernel family [Liedtke 1996],
designed for providing provably strong security mechanisms while retaining the high
performance that is customary in the L4 family and considered essential for real-world
use. The radical size reduction in microkernels comes with a price in complexity. It re-
sults in a high degree of interdependency between different parts of the kernel, as
indicated in Figure 1. Despite this increased complexity, our work shows that with
modern techniques and careful design, an operating system (OS) microkernel is en-
tirely within the realm of full formal verification—not just for functional correctness,
but also for a full range of further formal analysis.

Most of the key results summarised here have appeared previously in separate pub-
lications [Klein et al. 2009b; Sewell et al. 2011; Blackham et al. 2011; Murray et al.
2013; Sewell et al. 2013; Boyton et al. 2013]. The main contribution of this article is
to give an overall picture and an in-depth coverage of the entire, comprehensive ver-
ification of seL4. We tie the individual results together, and extensively analyse our
experience in sustained long-term verification.

The central piece of this work is still the initial functional correctness verification
of seL4 [Klein et al. 2009b] in the theorem prover Isabelle/HOL [Nipkow et al. 2002].
This property is stronger and more precise than what automated techniques such as
model checking, static analysis or kernel implementations in type-safe languages can
achieve. It not only analyses specific aspects of the kernel, such as safe execution, but
also provides a full specification and proof for the kernel’s precise behaviour down to
its C implementation on the ARM platform.

The following additional results, summarised here, extend this proof in the strongest
sense: they directly compose with the formal functional correctness statement and
yield end-to-end theorems about the C source code semantics in the theorem prover
Isabelle/HOL:

— a functional correctness proof for a high-performance, hand-optimised inter-process
communication (IPC) fastpath;

— a proof of correct access-control enforcement, in particular integrity and authority
confinement [Sewell et al. 2011];

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:3

Fig. 1. Call graph of the seL4 microkernel. Vertices represent functions, and edges invocations.

— a proof of information-flow noninterference, which shows that seL4 can be configured
as a separation kernel to provide strong isolation [Murray et al. 2013];

— a proof of user-level system initialisation that connects to the access-control model of
the two security proofs above [Boyton et al. 2013].

The last three of these proofs reduce the gap between requirements as understood
by humans, and the formal functional specification: they more directly and obviously
describe properties we want this kernel to have. As we will discuss in the experience
section, these additional proofs connect to appropriately abstract functional specifica-
tion layers of seL4, and can thus be conducted with significantly less effort than the
initial functional correctness proof.

Two further results on seL4 strengthen the assurance argument we can give on the
binary level of the kernel:

— an automatic proof of refinement between the semantics of the kernel binary after
compilation/linking and the C source code semantics used in the functional correct-
ness proof [Sewell et al. 2013];

— an automatic static analysis of the seL4 binary to provide a sound worst-case execu-
tion time (WCET) profile of all system calls [Blackham et al. 2011].

To achieve a higher degree of automation, both of these analyses leave the logi-
cal framework of Isabelle/HOL. While the WCET analysis is a separate tool with its
own highly detailed hardware model, the binary correctness verification stays logically
compatible, using the Cambridge ARM semantics [Fox 2003; Fox and Myreen 2010] in
the HOL4 prover [Slind and Norrish 2008], connecting directly to the Isabelle/HOL C
semantics of the functional correctness proof. Since it hands off proof obligations to au-

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:4 Klein et al.

tomatic SMT solvers such as Z3 [de Moura and Bjørner 2008], the resulting theorem is
strictly speaking not an end-to-end theorem in Isabelle/HOL. Even so, the result is still
a refinement statement that composes logically with the other functional correctness
results.

With this, the functional correctness and security proofs do not need to assume the
correctness of compiler and linker any more. We still assume correctness of hand-
written assembly code, boot code, management of caches, and the hardware; we prove
everything else. Information-flow noninterference comes with its own set of additional
hardware assumptions that we detail in Section 5.4.

This verification makes seL4 the only kernel analysed to the degree of assurance and
detail presented here, and still, to our knowledge, the only general-purpose OS kernel
that is fully formally verified for functional correctness with machine-checked end-to-
end theorems. It is also the only evolving formally-verified code base of the order of
10 000 lines of code and we report on maintaining it for almost a decade together with
its now 480 000 lines of Isabelle proofs and specifications.

The remainder of this article is structured as follows. In Section 2, we give an
overview of seL4, of the design approach, and of the verification approach. In Section 3,
we describe how to design a kernel for formal verification. Section 4 summarises the
extended functional correctness verification and identifies the assumptions we make
there. Section 5 does the same for the security theorems, and Section 6 discusses how
to build trustworthy systems on top of seL4, including worst-case execution time and
correct user-level initialisation of systems. In Section 7, we describe lessons we learnt
in this work and in maintaining a code base with increasing large-scale formal proofs
over an extended period of time.

2. OVERVIEW
Before diving into the details of how the kernel has been designed and verified, this
section describes the kernel’s main features and the general design and verification
processes and artefacts. It is largely based on our previous article [Klein et al. 2009b],
updated in the light of recent progress.

2.1. seL4 Programming Model
In this section, we provide an overview of seL4’s main characteristics in order to
provide sufficient background for later discussion. We postpone our examination of
verification-related design issues to Section 3. Nonverification related API design is-
sues are examined in a related publication [Elphinstone and Heiser 2013]. Detailed
documentation and a seL4 binary are available for download [NICTA 2013a].

seL4 is a third-generation microkernel, loosely similar to Coyotos [2008] and Nova
[Steinberg and Kauer 2010]). It is broadly based on L4 [Liedtke 1996] and influenced
by EROS [Shapiro et al. 1999]. Like L4 it features abstractions for virtual address
spaces, threads, IPC, and, unlike most earlier L4 kernels, an explicit in-kernel memory
management model and capabilities for authorisation.

Authority in seL4 is conferred by possession of a capability [Dennis and Van Horn
1966]. Capabilities are segregated and stored in capability address spaces composed
of capability container objects called CNodes. seL4 has six system calls, of which five
require possession of a capability (the sixth is a yield to the scheduler). The five system
calls are IPC primitives that are used either to invoke services implemented by other
processes (using capabilities to port-like endpoints that facilitate message passing), or
invoke kernel services (using capabilities to kernel objects, such as a thread control
block (TCB)). While the number of system calls is small, the kernel’s effective API is
the sum of all the interfaces presented by all kernel object types.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:5

Kernel memory management in seL4 is explicit [Elkaduwe et al. 2008; Elkaduwe
2010]. All kernel data structures are either statically allocated at boot time, or are
dynamically-allocated first-class objects in the API. Kernel objects thus act as both in-
kernel data structures, and user-invoked fine-grained kernel services. Kernel objects
include TCBs, CNodes, and level-1 and level-2 page tables (termed PageDirectories and
PageTables).

Authority over free memory is encapsulated in an untyped memory object. Creat-
ing new kernel objects explicitly involves invoking the retype method of an untyped
memory object, which allocates the memory for the object, initialises it, and returns a
capability to the new object. We discuss kernel memory management further in Sec-
tion 3.3.

Virtual address spaces are formed by explicit manipulation of virtual-memory-
related kernel objects: PageDirectories, PageTables, ASIDPools1 and Frames (map-
pable physical memory). As such, address spaces have no kernel-defined structure
(except for a protected region reserved for the seL4 kernel itself). Whether the user-
level system is Exokernel like, a multi-server, or a para-virtualised monolithic OS is
determined by user-level via a map and unmap interface to Frames and PageTables.
The distribution of authority to the kernel virtual memory (VM) objects ultimately
determines the scope of influence over virtual and physical memory.

Threads are the active entity in seL4. By associating a CNode and a virtual ad-
dress space with a thread, user-level policies create high-level abstractions, such as
processes or virtual machines.

IPC is supported in two forms: synchronous message passing via endpoints (port-
like destinations without in-kernel buffering), and asynchronous notification via asyn-
chronous endpoints (rendezvous objects consisting of a single in-kernel word that is
used to combine IPC sends using a logical or). Remote procedure call semantics are fa-
cilitated over synchronous IPC via reply capabilities. Send capabilities are minted from
an initial endpoint capability. Send capabilities feature an immutable badge which is
used by the specific endpoint’s IPC recipients to distinguish which send capability (and
thus which authority) was used to send a message. The unforgeable badge, represented
by an integer value, is delivered with the message.

Exceptions are propagated via synchronous IPC to each thread’s exception handler
(registered in the TCB via a capability to an endpoint). Similarly, page faults are also
propagated using synchronous IPC to a thread’s page fault handler. Non-native system
calls are treated as exceptions to support virtualisation.

Device Drivers run as user-mode applications that have access to device registers
and memory, either by mapping the device into the virtual address space, or by con-
trolled access to device ports on x86 hardware. seL4 provides a mechanism to receive
notification of interrupts (via asynchronous IPC) and acknowledge their receipt.

The seL4 kernel runs on ARM and x86 platforms. Verified versions currently exist
for ARMv6 and ARMv7. The port of seL4 to the Intel x86 platform, including support
for VT-d and VT-x extensions, is currently unverified. In addition, there is an experi-
mental x86 multicore version of seL4, together with a formal argument that lifts large
parts of the functional correctness proof presented here to the multicore version [von
Tessin 2013].

1Address-space identifiers (ASIDs) are a user-visible software artefact of the current implementation, and
not directly related to hardware ASIDs used in tagged TLBs. They are not fundamental in any way. We
expect to remove them in later kernel design iterations.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:6 Klein et al.

Requirements

Executable
Specification

High-Performance
C Implementation

Abstract
Specification

Haskell
Prototype

Manual
Implementation

Design
Improvement

Automatic
Translation

Refinement
Proof

Refinement
Proof

Iterate

Stage 2 Stage 1
Manual

Implementation

Fig. 2. The seL4 design process.

2.2. Kernel Design Process
OS developers tend to take a bottom-up approach to kernel design. High performance
is obtained by managing the hardware efficiently, which leads to designs motivated
by low-level details. In contrast, formal methods practitioners tend toward top-down
design, as proof tractability is determined by system complexity. This leads to designs
based on simple models with a high degree of abstraction from hardware.

As a compromise that blends both views, we adopted an approach based around an
intermediate target that is readily accessible to both OS developers and formal meth-
ods practitioners [Elphinstone et al. 2007; Derrin et al. 2006]. It uses the functional
programming language Haskell to provide a programming language for OS develop-
ers, while at the same time providing an artefact that can be automatically translated
into the theorem proving tool and reasoned about.

Figure 2 shows our approach in more detail. The central artefact is the Haskell
prototype of the kernel. The prototype is derived from the (informal) requirements
and embodies the design and implementation of algorithms that manage the low-
level hardware details. It can be translated automatically into the theorem prover
Isabelle/HOL to form an executable, design-level specification of the kernel. The ab-
stract, high-level, functional specification of the kernel can be developed manually,
concurrently and semi-independently, giving further feedback into the design process.

Already in very early development stages it is possible to link the Haskell prototype
with hardware simulators such as QEMU. In this link, normal user-level execution
is enabled by the simulator, while traps are passed to the kernel model which com-
putes the result of the trap. This enables the developers to run and test user-level
binary programs against early kernel API versions. The arrangement provides a pro-
totyping environment that enables low-level design evaluation from both the user and
kernel perspective, including low-level physical and virtual memory management. It
also provides a realistic execution environment that is binary-compatible with the real
kernel. For example, we ran a subset of the Iguana embedded OS [NICTA 2006] on the
simulator-Haskell combination. The alternative of producing the executable specifica-
tion directly in the theorem prover would have meant a steeper learning curve for the
design team and a much less sophisticated tool chain for execution and simulation.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:7

We restrict ourselves to a subset of Haskell that can be automatically translated
into the language of the theorem prover we use. For instance, we do not make any
substantial use of laziness, make only restricted use of type classes, and we prove that
all functions terminate. The details of this subset are described elsewhere [Derrin et al.
2006; Klein et al. 2009a].

While the Haskell prototype is an executable model and an implementation of the
final design, it is not the final production kernel. As shown in Figure 2, we manually
re-implemented the model in the C programming language. We did this for several
reasons. First, the Haskell runtime is a significant body of code (much bigger than our
kernel) which would be hard to verify for correctness. Second, the Haskell runtime
relies on garbage collection which is unsuitable for real-time environments. Inciden-
tally, the same arguments apply to other systems based on type-safe languages, such
as SPIN [Bershad et al. 1995] and Singularity [Fähndrich et al. 2006]. Additionally,
using C enables optimisation of the low-level implementation for performance. While
an automated translation from Haskell to C would have simplified verification, we
would have lost most opportunities to micro-optimise the kernel, which we consider
necessary for adequate microkernel performance.

After design and prototyping led to stabilised versions of executable and abstract
specification, verification between these could commence, and the C code could be im-
plemented concurrently. Eventually, when the process finishes, both specifications and
C code are linked by proof. The original Haskell prototype is not part of the proof chain.

2.3. Formal Verification
The technique we use for formal verification is almost exclusively interactive, machine-
assisted and machine-checked proof. Specifically, we use the theorem prover Is-
abelle/HOL [Nipkow et al. 2002]. Interactive theorem proving requires human inter-
vention and creativity to construct and guide the proof. However, it has the advantage
that it is not constrained to specific properties or finite, feasible state spaces, unlike
more automated methods of verification such as static analysis or model checking.

The only two aspects of the overall verification that use different techniques are
the worst-case execution time analysis, which is an automated static analysis of the
binary, and the translation validation step between C semantics and the binary of the
kernel, which is a combination of interactive theorem proving, and two standard SMT
solvers as well as an automated tool that coordinates these provers.

In previous work [Klein et al. 2009b, 2010] we had concentrated on the functional
correctness of seL4, which we later extended with binary verification [Sewell et al.
2013] and the functional correctness verification of seL4’s IPC fastpath described below
in Section 4.6.

These results together constitute a functional correctness property in the strongest
sense. Formally, we are showing refinement [de Roever and Engelhardt 1998]: A re-
finement proof establishes a correspondence between a high-level (abstract) and a low-
level (concrete, or refined) representation of a system.

The correspondence established by the refinement proof ensures that all Hoare logic
properties of the abstract model also hold for the refined model. This means that if a
security property is proved in Hoare logic about the abstract model (not all security
properties can be), refinement gives us an end-to-end theorem in Isabelle/HOL that
the same property holds for the kernel source code. The binary verification establishes
another refinement theorem, this time between the source code and the binary, albeit
in a separate tool.

In general, a functional correctness proof shows that a system is implemented cor-
rectly. It does not show that the right system was implemented, that is, that the kernel
has the high-level properties that are needed. While this latter verification can never

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:8 Klein et al.

Abstract Specification

Executable Specification

C Implementation (Semantics)

Haskell Prototype

Isabelle/HOL

Automatic Translation

Proof

capDL Access Control +
Information Flow

Fastpath

C Implementation

HOL4 Binary (HEX representation) Kernel Binary

HOL4 + SMT

WCET analysis

Chronos

Fig. 3. The proof layers in the verification of seL4

be fully discharged by formal proof, because the mental concept of “the right system”
is not a formal one, we can still use formal verification to provide strong evidence that
the system has at least some of the desired properties.

This was the goal of a second stream of work on seL4 after the initial functional cor-
rectness verification. The results of this stream appear as two additional specification
layers in Figure 3. The difference to the other specification layers is that the new lay-
ers are no longer sufficient for describing the full functional behaviour of the kernel.
Instead, they abstract away from a large amount of detail to be able to formally phrase
intuitive high-level properties.

The two layers are a language for configuring seL4-based systems (capDL), and a
collection of security properties and proofs about seL4.

The capDL layer is described in detail in Section 6.1. It supports developers in build-
ing trustworthy systems on top of seL4, and can be used to provably achieve a desired
system configuration [Boyton et al. 2013]. CapDL stands for capability distribution
language [Kuz et al. 2010]. The language describes the detailed protection state of a
system snapshot in terms of kernel capabilities, at a level of detail sufficient to ini-
tialise the system into this configuration. It has a human-readable textual representa-
tion, an XML representation for system dumps and processing, a graphical represen-
tation for visual system inspection, and a formal representation for reasoning about
detailed access-control states.

The second new layer, Access Control + Information Flow on the top right in Figure 3,
represents high-level security properties we have proved about seL4. The classic secu-
rity properties that the access-control mechanisms of any OS microkernel should pro-
vide are availability, authority confinement, integrity, and confidentiality. Availability
means that an unauthorised application should not be able to deny service in terms
of the resources the kernel manages, that is, processor time and memory resources.
Authority confinement in a dynamic capability system means that authority cannot
be escalated or transferred to another entity without explicit authorisation. Integrity
means that an application cannot write to or change resource state without authori-

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:9

sation, and the dual, confidentiality, means no unauthorised read operations can be
performed [Bishop 2003].

Section 5 describes proofs for all of these properties, and their respective security
policy formalisations. In particular, we report on the explicit authority confinement
and integrity proof that has appeared previously [Sewell et al. 2011], and on a proof
of intransitive noninterference [Murray et al. 2012, 2013] which includes confiden-
tiality. Together, these results imply availability, because confidentiality and integrity
together give isolation and isolated components cannot deny each others’ resources.
Availability also has a temporal aspect that is not covered by the integrity and non-
interference results. It is instead covered by the worst-case execution time analysis
described in Section 6.2.

There is a formal connection between a capDL description of a system and its higher-
level security and information-flow policies. This connection allows us to connect sys-
tem initialisation with known security policy states. We describe this connection in
Section 6.1.

The rest of Figure 3 shows the specification layers used in the functional verification
of seL4; like the other layers they are related by formal proof. Section 4 explains the
proof and each of these layers in detail; here we give a short summary.

The top-most layer beneath capDL and security in the picture is the abstract spec-
ification: an operational model that is the main, complete specification of system be-
haviour. The abstract level contains enough detail to specify the outer interface of the
kernel, for example, how system-call arguments are encoded in binary form, and it de-
scribes in abstract logical terms the effect of each system call or what happens when
an interrupt or virtual memory fault occurs. It does not describe in detail how these
effects are implemented in the kernel.

The next layer down in Figure 3 is the executable specification generated from
Haskell by automated import into the theorem prover. The translation is not
correctness-critical because we seek assurance about the generated definitions and ul-
timately C and the binary, not the Haskell source, which only serves as an intermediate
prototype. The executable specification contains all data structure and implementation
details we expect the final C implementation to have.

Next to the executable specification, on the left in Figure 3, is the IPC fastpath. Its
verification followed a slightly different approach than the rest of the kernel: there
exists an executable, detailed specification of the fastpath, but no abstract-level speci-
fication. Instead, after proving that the C fastpath implements its executable specifica-
tion, we additionally prove that this specification is equivalent to the existing normal
IPC path in the executable specification. This is the natural correctness criterion for
an optimisation: it should provide precisely the same behaviour as the unoptimised
code, just faster.

The next layer down in the functional verification is the high-performance C im-
plementation of seL4. For programs to be formally verified, they must have formally
defined semantics. One of the achievements of this project is a very exact and faithful
formal semantics for a large subset of the C programming language [Tuch 2008]. Even
with a formal semantics of C in the logic of the theorem prover, we still have to read
and translate the specific program into the prover. This is discussed in Section 4.3.

Finally, the bottom layer in Figure 3 is the binary ELF file of the kernel as it is loaded
onto the machine. This binary file contains the compiled and linked code of the kernel.
As with the C and Haskell levels, the formal proof tools do not reason directly about
the binary itself, but about its representation, in this case in the HOL4 [Slind and
Norrish 2008] theorem prover. For the binary, this representation is extremely simple:
a string of hexadecimal numbers as stored in the file. The meaning of these numbers
is given by the Cambridge ARM semantics [Fox 2003], which has been extensively

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:10 Klein et al.

validated against real hardware [Fox and Myreen 2010]. As mentioned previously, the
proof between C semantics and binary semantics of the kernel is not done exclusively
in Isabelle, but also uses the HOL4 prover as well as two SMT solvers. Section 4.7
describes this part of the verification in detail.

The final verification aspect of seL4 we present in this article is the worst-case execu-
tion time analysis of the kernel binary, on the bottom right in Figure 3. While the rest
of the verification stack reasons mostly about the functional and security behaviour
of the kernel, this analysis covers the most important nonfunctional property a high-
assurance system should have: precise timing predictions. This analysis is conducted
as a standalone static analysis with an accurate (and sound) processor model, includ-
ing pipelining and other performance-relevant features. We describe this verification
in Section 6.2.

Verification can never be absolute; it must always make fundamental assumptions.
In this work we verify the kernel with high-level security properties down to the bi-
nary level, but we still assume correctness of TLB and cache flushing operations as
well as the correctness of machine interface functions implemented in handwritten as-
sembly. Of course, we also assume hardware correctness. Section 4.8 gives details on
the precise assumptions of this verification and how they can be reduced even further.

It is worth noting that even though the proofs summarised previously have been con-
ducted in multiple separate research projects over a time of more than 8 years in total,
the results reported here are all fully integrated with each other and formally con-
nected to the same version of the kernel (except the worst-case execution-time analysis
in Section 6.2, which uses different techniques). Proofs and kernel code have evolved
during this time and all related proof and code artefacts have been maintained to stay
synchronised. This would have been infeasible without mechanised proof and fully au-
tomated proof checking.

An often-raised concern is the question of proof correctness. More than 30 years of
research in theorem proving has addressed this issue, and we can now achieve a degree
of trustworthiness of formal, machine-checked proof that far surpasses the confidence
levels we rely on in engineering or mathematics for our daily survival. We use two
specific techniques: first, we work foundationally from first principles; mathematics,
semantics, and Hoare logic are not axiomatised, but defined and proved. Second, the
Isabelle theorem prover we are using is an LCF-style prover [Gordon et al. 1979] where
soundness critical code is concentrated in a relatively small proof kernel. Additionally,
it can produce external proof representations that can be independently checked by a
small, simple proof checker [Berghofer 2003].

3. KERNEL DESIGN FOR VERIFICATION
The main body of the correctness proof can be thought of as showing Hoare triples
on program statements and on functions in each of the specification levels. The proof
in our refinement and Hoare logic framework decomposes along function boundaries.
Each unit of proof has a set of preconditions that need to hold prior to execution, a
statement or sequence of statements in a function that modify the system state, and
the post-conditions that must hold afterwards. The degree of difficulty in showing that
pre- and post-conditions hold is directly related to the complexity of the statement, the
state the statement can modify, and the complexity of the properties the pre- and post-
conditions express. Around 80% of the properties we show in the design verification
relate to preserving invariants.

To make verification of the kernel feasible, its design should minimise the com-
plexity of these components. Ideally, the kernel code (and associated proofs) would
consist of simple statements that rely on explicit local state, with simple invariants.
These smaller elements could then be composed abstractly into larger elements that

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:11

avoid exposing underlying local elements. Unfortunately, OS kernels are not usually
structured like this, and generally feature highly interdependent subsystems [Bow-
man et al. 1999].

As a consequence of our design goal of suitability for real-life use, our kernel design
attempts to minimise the proof complexity without compromising performance. In this
light we will now examine typical properties of kernels and discuss their effect on
verification, including presenting specific features of our kernel design.

3.1. Global Variables and Side Effects
Programming with global variables and with side effects is common in OS kernels and
our verification technique has no problem dealing with them. However, implicit state
updates and complex use of the same global state for different purposes can make
verification harder than necessary.

Global variables (or more generally, globally reachable data structures) usually re-
quire stating and proving invariant properties. For example, if global scheduler queues
are implemented as doubly linked lists, the corresponding invariant might state that
all back links in the list point to the appropriate nodes and that all elements point
to thread control blocks. Invariants are expensive because they need to be proved not
only locally for the functions that directly manipulate the scheduler queue, but for the
whole kernel—we have to show that no other pointer manipulation in the kernel acci-
dentally destroys the list or its properties. This proof can be easy or hard, depending
on how modularly the global structure is used.

A hypothetical, problematic example would be a complex, overloaded page-table data
structure that can represent translation, validity of memory regions, copy-on-write,
zero-on-demand memory, and the location of data in swap space, combined with a rela-
tionship to the frame table. This would create a large, complex invariant for each view
of the data structure, and each of the involved operations would have to preserve all
aspects of that invariant.

The treatment of global data structures becomes especially difficult if invariants are
temporarily violated. For example, adding a new node to a doubly linked list temporar-
ily violates invariants that the list is well formed. Larger execution blocks of unrelated
code, as in pre-emption or interrupts, should be avoided during that violation. We ad-
dress these issues by limiting pre-emption points (see Section 3.4 for further discus-
sion), and by deriving the code from Haskell, thus making side-effects explicit and
bringing them to the attention of the design team.

The top-level global state in seL4 is small. It consists of five arrays, two integers,
and four pointers. It facilitates scheduling (including the current thread pointer), IRQ
managment, ASID management, and a single physical frame globally mapped across
all address spaces. All other state is reachable via capabilities or page tables associated
with a thread (i.e., via the current-thread pointer).

While only anecdotal, we found that prototyping via Haskell reduced the tendency
for side-effect based programming as it required more effort on the part of the pro-
grammer to explicitly make global state visible. We repeatedly observed that new ker-
nel programmers experimenting in C would create side-effects and unintentionally
violate invariants due to the lack of any barrier to state reachable from the current
thread pointer. This was less of an issue for experienced and disciplined programmers.

3.2. Kernel Phases
The majority of seL4’s API calls are divided (by convention) into two phases: a check-
ing phase and an execute phase. The checking phase validates any arguments and
confirms the authority to execute the call, and thus establishes the preconditions re-
quired for execution. The execute phase performs the call and never fails.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:12 Klein et al.

The division into two phases is advantageous for verification. The combined check-
ing phases of all kernel calls are a substantial fraction of the kernel. However, the
checking phases do not mutate any kernel state, and thus proving the preservation
of properties across a checking phase is simplified, and benefits from a high degree of
proof automation.

The two-phase structure also benefits the execute phase both practically and in
verification. Kernel call failures will occur in the checking phase where state is not
mutated—the kernel can simply return an error. The execute phase thus avoids both
the implementation and proof complexity of having to roll back partially complete
operations—it always completes.

3.3. Kernel Memory Management
The seL4 kernel uses a model of memory allocation that exports control of the in-
kernel allocation to authorised applications, as introduced in Section 2.1. The model
is motivated by the desire to strictly align the in-kernel behaviour performed on be-
half of an application to the authority of the application. A consequence is that the
kernel heap can be precisely partitioned between applications: each application owns
that part of the heap that it holds authority over, including the authority to allocate.
This turned out to be essential for expressing and proving the security properties of in-
tegrity and confidentiality introduced later in Section 5, which are phrased on top of a
formal access-control abstraction that makes this partitioning explicit. Those security
proofs thereby formally validate the utility of the kernel’s memory allocation model for
enforcing isolation between applications.

The core characteristics of the kernel’s memory allocation model are as follows.

— Memory allocation is explicit and only performed on retyping an untyped memory
object.

— Memory allocation is strictly bounded by the available memory in an untyped mem-
ory object.

— Kernel objects are not implicitly shared, or re-used.

While the model enables precise reasoning about memory usage, it also benefits
verification. The model pushes the policy for allocation outside of the kernel, which
means we only need to prove that the mechanism is correct, not that the user-level
policy makes sense. Obviously, moving allocation policy to user-level does not change
the fact that the memory-allocation module is part of the trusted computing base.
It does mean, however, that such a module can be verified separately, and can rely
on verified kernel properties. The module may be as simple as statically partitioning
the initial memory into isolated subsystems, which can then perform more complex
memory management within mutually untrusted subsystems.

The correctness of the in-kernel allocation algorithm involves checks that new ob-
jects are wholly contained within an untyped (free) memory region and that they do
not overlap with any other objects allocated from the region. Our memory allocation
model keeps track of capability derivations in a tree-like structure, whose nodes are
the capabilities themselves.

Before reusing a block of memory, all references to this memory must be invalidated.
This involves either finding all outstanding capabilities to the object, or returning the
object to the memory pool only when the last capability is deleted. Our kernel uses
both approaches.

In the first approach, the capability derivation tree is used to find and invalidate
all capabilities referring to a memory region. In the second approach, the capability
derivation tree is used to ensure, with a check that is local in scope, that there are no
system-wide dangling references. This is possible because all other kernel objects have

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:13

further invariants on their own internal references that relate back to the existence of
capabilities in this derivation tree.

An additional indirect benefit of explicit memory management is that most ker-
nel calls involve no memory allocation, thus removing one potential execution failure
mode. This simplifies the division of each call into checking and execution phases.

3.4. Concurrency and Nondeterminism
Concurrency is the execution of computation in parallel (in the case of multiple hard-
ware processors), or by nondeterministic interleaving via a concurrency abstraction
like threads. Proofs about concurrent programs are hard, much harder than proofs
about sequential programs.

While we have some ideas on how to construct verifiable systems on
multiprocessors—see for instance separate work on a multicore version of seL4 [von
Tessin 2010, 2012, 2013]—they are outside the scope of this article. In this article we
focus on uniprocessor support where the degree of interleaving of execution and nonde-
terminism can be controlled. However, even on a uniprocessor there is some remaining
concurrency resulting from asynchronous I/O devices. seL4 avoids much of the com-
plications resulting from I/O by running device drivers at user level, but it must still
address interrupts.

Consider the small code fragment A; X; B, where A must establish the state that X
relies on, X must establish the state B relies on, and so on. Concurrency issues in the
verification of this code arise from yielding, interrupts, and exceptions.

Yielding at X results in the potential execution of any reachable activity in the sys-
tem. This implies A must establish the preconditions required for all reachable activi-
ties, and all reachable activities on return must establish the preconditions of B. Yield-
ing increases complexity significantly and makes verification harder. Preemption is a
nondeterministic optional yield. Blocking kernel primitives, such as in lock acquisition
and waiting on condition variables, are also a form of nondeterministic yield.

By design, we side-step addressing the verification complexity of yield by using an
event-based kernel execution model, with a single kernel stack, and a mostly atomic
application programming interface [Ford et al. 1999].

Interrupt complexity has two forms: nondeterministic execution of the interrupt han-
dlers, and interrupt handling resulting in preemption (as a result of timer ticks). The-
oretically, this complexity can be avoided by disabling interrupts during kernel exe-
cution. However, central to our goals for seL4 is a design that lends itself to building
real-world safety- and security-critical systems, including systems with hard real-time
requirements. Hence, bounded interrupt latencies are important.

Our approach is to run the kernel with interrupts mostly disabled, except for a num-
ber of carefully-placed interrupt points. If, in this code fragment, X is the interrupt
point, A must establish the state that all interrupt handlers rely on, and all reachable
interrupt handlers must establish or preserve the properties B relies on.

We simplify the problem further by implementing interrupt points via polling, rather
than temporary enabling of interrupts. On detection of a pending interrupt, we explic-
itly return through the function call stack to the kernel/user boundary. At the bound-
ary, we leave a (potentially modified) event stored in the saved user-level registers.
The interrupt becomes a new kernel event (prefixed to the pending user-triggered
event). After the in-kernel component of interrupt handling, the interrupted event
is restarted. This effectively retries the (modified) operation, including repeating the
checking phase and thus re-establishing all the preconditions for continuing execu-
tion. In this way, we avoid the need for any interrupt-point specific post-conditions
for interrupt handlers, but still achieve Fluke-like partial preemptability [Ford et al.
1999].

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:14 Klein et al.

The use of interrupt points creates a trade-off, controlled by the kernel designer,
between proof complexity and interrupt processing latency. Almost all of seL4’s opera-
tions have short and bounded latency, and can execute without any interrupt points at
all. The exceptions are object initialisation, revocation, and destruction, whose opera-
tions are either inherently unbounded, or have large finite bounds.

We make these operations preemptable by using an incremental consistency design
pattern. Correct completion of a preempted operation may be critical to kernel in-
tegrity. We therefore cannot store the preempted state in the user-level state (registers)
used to restart the system call. Instead, we store the state of progress either in the ob-
ject itself, or in the last capability referencing the object being destroyed; we term such
a capability a zombie. This ensures that the kernel moves from one consistent state to
the next whether or not a preemption occurs.

A collateral advantage of incremental consistency is the way it deals with concurrent
invocations of the same object. If a destroy operation is preempted by another thread
invoking the same object, the preemptor will simply continue where the first thread
was preempted (a form of priority and time slice inheritance), instead of becoming
dependent (blocked) on the completion of the preempted thread. When the originally
preempted operation is restarted, it may find its capability invalid and return imme-
diately.

Exceptions are similar to interrupts in their effect, but are synchronous in that they
result directly from the code being executed and cannot be deferred. Within the seL4
kernel, we avoid exceptions completely, and much of that avoidance is guaranteed as a
side-effect of verification. Special care is required only for memory faults.

We avoid having to deal with virtual-memory exceptions in kernel code by mapping
a fixed region of the virtual address space to physical memory, independent of whether
it is actively used or not. The region contains all the memory the kernel can potentially
use for its own internal data structures, and is guaranteed to never produce a fault.
We prove that this region appears in every virtual address space.

Arguments passed to the kernel from user level are either transferred in registers
or limited to preregistered physical frames accessed through the kernel region.

3.5. I/O
As described earlier, we avoid most of the complexity of I/O by moving device drivers
into protected user-mode components. When processing an interrupt event, our inter-
rupt delivery mechanism determines the interrupt source, masks further interrupts
from that specific source, notifies the registered user-level handler (device driver) of
the interrupt, and unmasks the interrupt when the handler acknowledges the inter-
rupt.

We coarsely model the hardware interrupt controller of the ARM platform to include
interrupt support in the proof. The model includes existence of the controller, masking
of interrupts, and that interrupts only occur if unmasked. This is sufficient to include
interrupt controller access, and basic behaviour in the proof, without modelling correct-
ness of the interrupt controller management in detail. The proof is set up such that it
is easy to include more detail in the hardware model should it become necessary later
to prove additional properties.

Our kernel contains a single device driver, the timer driver, which generates timer
ticks for the scheduler. This is set up in the initialisation phase of the kernel as an au-
tomatically reloaded source of regular interrupts. It is not modified or accessed during
the execution of the kernel. We did not need to model the timer explicitly in the proof,
we just prove that system behaviour on each tick event is correct.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:15

schedule ≡ do
threads ← all active tcbs;
thread ← select threads;
switch to thread thread

od OR switch to idle thread

xs

Fig. 4. Isabelle/HOL code for scheduler at abstract level.

3.6. Observations
The requirements of verification force the designers to think of the simplest and clean-
est way of achieving their goals. We found repeatedly that this leads to overall better
design, which by itself tends to reduce the likelihood of bugs.

In a number of cases, there were significant other benefits. This is particularly true
for the design decisions aimed at simplifying concurrency-related verification issues.
Nonpreemptable execution (except for a few interrupt-points) has traditionally been
used in L4 kernels to maximise average-case performance. Recent L4 kernels aimed
at embedded use [Heiser 2009] have also adopted an event-based design, motivated by
the desire to reduce the kernel’s memory footprint (due to the use of a single kernel
stack rather than per-thread stacks).

4. FUNCTIONAL CORRECTNESS
This section describes the functional correctness proof of seL4 stretching from the bi-
nary ELF file up to the abstract functional specification of the kernel, including a
verified IPC fastpath. We explain each of the specification layers as well as the ma-
jor steps in the functional correctness proof, starting with the abstract specification in
Section 4.1. We end this section with a detailed description of the assumptions of this
proof.

The functional correctness proof itself has appeared previously [Klein et al. 2009b,
2010], as well as the translation validation step between C semantics and binary exe-
cutable [Sewell et al. 2013]. The fastpath verification in Section 4.6 is new.

4.1. Abstract Specification
Referring back to Figure 3 in Section 2.3, the abstract specification is the most abstract
specification layer that still fully describes the functional behaviour of the kernel: it de-
scribes what the system does without saying how it is done. For all user-visible kernel
operations it describes the functional behaviour that is expected from the system. All
implementations that refine this specification will be binary compatible.

We precisely describe argument formats, encodings and error reporting; for instance,
some of the C-level size restrictions become visible on this level. In order to express
these, we rarely make use of infinite types like natural numbers. Instead, we use fi-
nite machine words, such as 32-bit integers. We model memory and typed pointers
explicitly. Otherwise, the data structures used in this abstract specification are high
level—essentially sets, lists, trees, functions, and records. We make use of nondeter-
minism in order to leave implementation choices to lower levels: If there are multiple
correct results for an operation, this abstract layer would return all of them and make
clear that there is a choice. The implementation is free to pick any one of them.

An example of this is scheduling. No scheduling policy is defined at the abstract
level. Instead, the scheduler is modelled as a function picking any runnable thread
that is active in the system or the idle thread, which in seL4 is treated specially. The
Isabelle/HOL code for this is shown in Figure 4. The function all_active_tcbs returns
the abstract set of all runnable threads in the system. Its implementation (not shown)

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:16 Klein et al.

schedule = do
action <- getSchedulerAction
case action of
ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread’ (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread’ prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread’’ q

chooseThread’’ thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Fig. 5. Haskell code for schedule.

is an abstract logical predicate over the whole system. The select statement picks any
element of the set. The OR makes a nondeterministic choice between the first block and
switch_to_idle_thread. The executable specification makes this choice more specific.

4.2. Executable Specification
The purpose of the executable specification is to fill in the details left open at the ab-
stract level and to specify how the kernel works (as opposed to what it does). As men-
tioned, we generate the executable Isabelle/HOL specification automatically from a
Haskell program. While trying to avoid the messy specifics of how data structures and
code are optimised in C, we reflect the fundamental restrictions in size and code struc-
ture that we expect from the hardware and the C implementation. For instance, we
take care not to use more than 64 bits to represent capabilities, exploiting for instance
known alignment of pointers. We do not specify in which way this limited information
is laid out in C.

The executable specification is deterministic; the only nondeterminism left is that of
the underlying machine. All data structures are now explicit data types, records and
lists with straightforward, efficient implementations in C. For example the capability
derivation tree of seL4, modelled as a tree on the abstract level, is now modelled as
a doubly linked list with limited level information. It is manipulated explicitly with
pointer-update operations.

Figure 5 shows part of the Haskell source of the scheduler specification at this level.
The additional complexity becomes apparent in the chooseThread function. Without
showing the full detail, the important point to note is that it is no longer merely a
simple predicate, but rather an explicit search backed by data structures for priority
queues. The specification fixes the behaviour of the scheduler to a simple priority-based

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:17

round-robin algorithm. It mentions that threads have time slices and it clarifies when
the idle thread will be scheduled. Note that priority queues duplicate information that
is already available (in the form of thread states), in order to make it available effi-
ciently. They make it easy to find a runnable thread of high priority. The optimisation
will require us to prove that the duplicated information is consistent.

We have proved that the executable specification of the kernel correctly implements
the abstract specification. With its extreme level of detail, this proof alone already
provides strong design assurance. It concentrates the highest level of manual work
and creativity in the overall verification. It also already contains of the order of 90% of
the invariants that we have proved about the kernel.

4.3. C Implementation
The most detailed layer in our verification is the C implementation, or more precisely
the formal semantics of the C code after it has passed through the C pre-processor.
In the initial functional verification of seL4, without verification of the binary out-
put of the compiler, the translation from C into Isabelle was correctness-critical. We
therefore took great care to model the semantics of our C subset precisely and foun-
dationally. Precisely means that we treat C semantics, types, and memory model as
the standard prescribes, for instance with architecture-dependent word size, padding
of structs, type-unsafe casting of pointers, and arithmetic on addresses. As kernel pro-
grammers do, we make assumptions about the compiler (GCC) that go beyond the
standard, and about the architecture used (ARMv6 and ARMv7). These are explicit
in the model, and we can therefore detect violations. Foundationally means that we
do not just axiomatise the behaviour of C on a high level, but we derive it from first
principles as far as possible. For example, in our model of C, memory is a primitive
function from addresses to bytes without type information or restrictions. On top of
that, we specify how types like unsigned int are encoded, how structures are laid
out, and how implicit and explicit type casts behave. We managed to lift this low-level
memory model to a high-level calculus that allows efficient, abstract reasoning on the
type-safe fragment of the kernel [Tuch et al. 2007; Tuch 2008, 2009]. We generate proof
obligations assuring the safety of each pointer access and write. They state that the
pointer in question must be non-null and of the correct alignment. They are typically
easy to discharge. We generate similar obligations for all restrictions the C99 standard
demands.

We treat a very large, pragmatic subset of C99 in the verification. It is a compromise
between verification convenience and the hoops the kernel programmers were willing
to jump through in writing their source. The following paragraphs describe what is not
in this subset.

We do not allow the address-of operator & on local variables, because, for better
automation, we make the assumption that local variables are separate from the heap.
This could be violated if their address was available to pass on. It is the most far-
reaching restriction we impose, because it is common to use local variable references
for return parameters of large types that we do not want to pass on the stack. We
achieved compliance with this requirement by avoiding reference parameters as much
as possible, and where they were needed, used pointers to global variables (which are
not restricted).

One feature of C that is problematic for verification (and programmers) is the un-
specified order of evaluation in expressions with side effects. To deal with this feature
soundly, we limit how side effects can occur in expressions. If more than one function
call occurs within an expression or the expression otherwise accesses global state, a
proof obligation is generated to show that these functions are side-effect free. This
proof obligation is discharged automatically.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:18 Klein et al.

void setPriority(tcb_t *tptr, prio_t prio) {
prio_t oldprio;
if(thread_state_get_tcbQueued(tptr->tcbState)) {
oldprio = tptr->tcbPriority;
ksReadyQueues[oldprio] =
tcbSchedDequeue(tptr, ksReadyQueues[oldprio]);

if(isRunnable(tptr)) {
ksReadyQueues[prio] =
tcbSchedEnqueue(tptr, ksReadyQueues[prio]);

}
else {

thread_state_ptr_set_tcbQueued(&tptr->tcbState,
false);

}
}
tptr->tcbPriority = prio;

}

Fig. 6. C code for part of the scheduler.

We do not allow function calls through function pointers. (We do allow handing the
address of a function to assembly code, e.g., for installing exception vector tables.) We
also do not allow goto statements, or switch statements with fall-through cases. We
support C99 compound literals, making it convenient to return structs from functions,
and reducing the need for reference parameters. We do not allow compound literals to
be lvalues. Some of these restrictions could be lifted easily, but the features were not
required in seL4.

We did not use unions directly in seL4 and therefore do not support them in the
verification although that would be possible. Since the C implementation was derived
from a functional program, all unions in seL4 are tagged, and many structs are packed
bitfields. Like other kernel implementors, we do not trust GCC to compile and optimise
bitfields predictably for kernel code. Instead, we wrote a small tool that takes a specifi-
cation and generates C code with the necessary shifting and masking for such bitfields.
The tool helps us to easily map structures to page table entries or other hardware-
defined memory layouts. The generated code can be inlined and, after compilation on
ARM, the result is more compact and faster than GCC’s native bitfields. The tool not
only generates the C code, it also automatically generates Isabelle/HOL specifications
and proofs of correctness [Cock 2008].

Figure 6 shows part of the implementation of the scheduling functionality described
in the previous sections. It is standard C99 code with pointers, arrays and structs. The
thread_state functions used in Figure 6 are examples of generated bitfield accessors.

With the translation validation approach to the binary output of the compiler, the C
semantics is now not correctness critical any more. Since translation validation is not
yet successful for all optimisation levels above GCC -O1, we still are interested in a
strongly conservative C parser. However, assuming translation validation, and given
a correct ARM binary semantics base model, the binary verification pass will reject
any behaviour in the binary that is not exhibited by the semantic representation of
the C program. How we arrived at this semantic representation is now irrelevant, we
could have written it manually in a way that looks nothing like the original C—as long
as the proof that the binary implements it correctly succeeds, Hoare logic properties
will transfer by refinement as usual from the higher levels. In fact, even though that
has not been the case yet, we could now use the binary verification to soundly reason

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:19

configureTimer :: irq => unit machine_m
resetTimer :: unit machine_m
setCurrentPD :: paddr => unit machine_m
setHardwareASID :: hw_asid => unit machine_m
invalidateTLB :: unit machine_m
invalidateHWASID :: hw_asid => unit machine_m
invalidateMVA :: word => unit machine_m
cleanCacheMVA :: word => unit machine_m
cleanCacheRange :: word => word => unit machine_m
cleanCache :: unit machine_m
invalidateCacheRange :: word => word => unit machine_m
clearExMonitor :: unit machine_m
getIFSR :: word machine_m
getDFSR :: word machine_m
getFAR :: word machine_m
getActiveIRQ :: (irq option) machine_m
maskInterrupt :: bool => irq => unit machine_m

Fig. 7. Machine interface functions.

about compiler bugs. We would merely need to model precisely the same bug on the C
semantics level. If the higher-level proofs succeeded this would mean that we would
still have achieved the desired kernel behaviour and would have worked around the
compiler bug successfully.

4.4. Machine Model
Programming in C is not sufficient for implementing a kernel. There are places where
the programmer has to go outside the semantics of C to manipulate hardware directly.
In the easiest case, this is achieved by writing to memory-mapped device registers,
as for instance with a timer chip; in other cases one has to drop down to assembly to
implement the required behaviour, as for instance with TLB flushes.

Presently, we do not model the effects of certain direct hardware instructions be-
cause they are too far below the abstraction layer of usual program semantics. Of
these, cache and TLB flushes are relevant for the correctness of the code, and we rely
on traditional testing for these limited number of cases. Higher assurance can be ob-
tained by adding more detail to the machine model—we have phrased the machine
interface such that future proofs about the TLB and cache can be added with minimal
changes. Additionally, required behaviour can be guaranteed by targeted assertions
(e.g., that page-table updates always flush the TLB), which would result in further
proof obligations.

The basis of this formal model of the machine is the internal state of the relevant
devices, collected in one record machine_state. For devices that we model more closely,
such as the interrupt controller, the relevant part in machine_state contains more
details, such as the currently masked interrupts. For the parts that we do not model,
such as the TLB, we leave the corresponding type unspecified, so it can be replaced
with more details later.

Figure 7 shows our machine interface. The functions are all of type X machine_m
which restricts any side effects to the machine_state component of the system. Most
of the functions return nothing (type unit), but change the state of a device. In the
abstract and executable specification, these functions are implemented with maximal
underspecification. This means that in the extreme case they may arbitrarily change
their part of the machine state. Even for devices that we model, we are careful to leave

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:20 Klein et al.

Abstract Operation

Concrete Operation
St

at
e

Re
la

tio
n

St
at

e
Re

la
tio

n

s s'

A:22 Klein et al.

4.5. The functional correctness proof
This section describes one of the major properties we have shown: functional correct-
ness, which was proved by showing formal refinement. We have formalised this prop-
erty for general state machines in Isabelle/HOL, and we instantiate each of the speci-
fications in the previous sections into this state-machine framework.

St
at

e
R

el
at

io
n

St
at

e
R

el
at

io
n

Concrete Operation M2

Abstract Operation M1
�, �0

s s'

Fig. 8. Forward Simulation.

We have also proved the well-known reduction of refinement to forward simulation,
illustrated in Figure 8: To show that a concrete state machine M2 refines an abstract
one M1, it is sufficient to show that for each transition in M2 that may lead from an
initial state s to a set of states s0, there exists a corresponding transition on the abstract
side from an abstract state � to a set �0 (they are sets because the machines may be
non-deterministic). The transitions correspond if there exists a relation R between the
states s and � such that for each concrete state in s0 there is an abstract one in �0 that
makes R hold between them again. This has to be shown for each transition with the
same overall relation R.

�
�0

Abstract Specification

Executable Specification

C Implementation (Semantics)

Haskell Prototype

Isabelle/HOL Automatic Translation

Proof

Fastpath

C Implementation

HOL4 Binary (HEX representation) Kernel Binary

HOL4 + SMT

Fig. 9. Functional Correctness Proofs.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Klein et al.

4.5. The functional correctness proof
This section describes one of the major properties we have shown: functional correct-
ness, which was proved by showing formal refinement. We have formalised this prop-
erty for general state machines in Isabelle/HOL, and we instantiate each of the speci-
fications in the previous sections into this state-machine framework.

St
at

e
R

el
at

io
n

St
at

e
R

el
at

io
n

Concrete Operation M2

Abstract Operation M1
�, �0

s s'

Fig. 8. Forward Simulation.

We have also proved the well-known reduction of refinement to forward simulation,
illustrated in Figure 8: To show that a concrete state machine M2 refines an abstract
one M1, it is sufficient to show that for each transition in M2 that may lead from an
initial state s to a set of states s0, there exists a corresponding transition on the abstract
side from an abstract state � to a set �0 (they are sets because the machines may be
non-deterministic). The transitions correspond if there exists a relation R between the
states s and � such that for each concrete state in s0 there is an abstract one in �0 that
makes R hold between them again. This has to be shown for each transition with the
same overall relation R.

�
�0

Abstract Specification

Executable Specification

C Implementation (Semantics)

Haskell Prototype

Isabelle/HOL Automatic Translation

Proof

Fastpath

C Implementation

HOL4 Binary (HEX representation) Kernel Binary

HOL4 + SMT

Fig. 9. Functional Correctness Proofs.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

'

Fig. 8. Forward simulation.

as much behaviour as possible underspecified. The less behaviour we prescribe, the
fewer assumptions the model makes about the hardware.

In the seL4 implementation, the functions in Figure 7 are implemented in C where
possible, and otherwise in assembly; we must check (but we do not prove) that the im-
plementations match the assumptions we make in the specification layers above. An
example is the function getIFSR, which on ARM returns the instruction fault status
register after a page fault. For this function, whose body is a single assembly instruc-
tion, we only assume that it does not change the memory state of the machine, which
is easy to check.

4.5. The Functional Correctness Proof
The functional correctness proof links the C and binary implementations to the exe-
cutable and abstract specifications. It is the first and most important of the results we
have proved about the kernel. The technique we use to express functional correctness
formally is refinement. Program C refines program A, if the behaviours of C are a sub-
set of the the behaviours of A. A behaviour is an execution trace of a state machine.
In seL4, the more precise formal setting is data refinement [de Roever and Engelhardt
1998], and these traces consist of user-visible machine state together with additional
kernel-internal state. In a refinement step from A to C we must preserve the user-
visible part of the trace, but are allowed to change the remaining kernel-internal rep-
resentation of state. This means, the C implementation must only produce traces of
interaction with users if the abstract specification can produce the same traces. We
have formalised the refinement property for general state machines in Isabelle/HOL,
and we instantiate each of the specifications in the previous sections into this state-
machine framework so we can relate them to each other uniformly.

We have also proved the well-known reduction of refinement to forward simulation,
illustrated in Figure 8: To show that a concrete state machineM2 refines an abstract
oneM1, it is sufficient to show that for each transition inM2 that may lead from an
initial state s to a set of states s′, there exists a corresponding transition on the abstract
side from an abstract state σ to a set σ′ (they are sets because the machines may be
nondeterministic). The transitions correspond if there exists a relation R between the
states s and σ such that for each concrete state in s′ there is an abstract one in σ′ that
makes R hold between them again. This has to be shown for each transition with the
same overall relation R.

The key proof strategy for seL4 was to split the problem into logically separate sub-
problems as early as possible. The first such separation was the proof of an invariant
at every level. An invariant is a property that holds of all encountered states, proved
by showing that the invariant is preserved by all possible transitions in the system.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:21

Abstract Specification

Executable Specification

C Implementation (Semantics)

Haskell Prototype

Isabelle/HOL Automatic Translation

Proof

Fastpath

C Implementation

HOL4 Binary (HEX representation) Kernel Binary

HOL4 + SMT

Fig. 9. Functional correctness proofs.

User
Mode

Idle
Mode

User transition

Kernel
Mode

User event
Idle event

Idle transition
Kernel transitions

Fig. 10. Types of transitions.

The forward simulation step may then assume the initial states satisfy the invariant.
The invariants at the abstract and executable layers are detailed descriptions of the
allowable states of the kernel, which we will describe further in Section 4.9. Simple
invariants on the C and binary levels are used in the binary verification.

Figure 9 shows the proof stack from Figure 3 that makes up the functional correct-
ness proof. The two refinement layers above the C implementation in Figure 9 are
proven by hand in Isabelle/HOL. These results compose into a single abstract-to-C re-
finement proof in Isabelle/HOL. The proof technique for binary verification is different,
as we will describe in detail in Section 4.7, but it also produces a forward simulation
property, which combined with the previous result forms an end-to-end refinement
from abstract specification to kernel binary.

We now describe the instantiation of the general refinement framework to the seL4
kernel. Figure 10 shows the kinds of transitions we have in our state machine: ker-
nel transitions, user transitions, user events, idle transitions, and idle events. Kernel
transitions are those that are described by each of the specification layers in increas-
ing amount of detail. They describe a complete atomic kernel execution, for instance
a complete system call. User transitions are specified as nondeterministically chang-
ing arbitrary user-accessible parts of the state space. User events model kernel entry
(trap instructions, faults, interrupts). Idle transitions model the behaviour of the idle
thread. Finally, idle events are interrupts occurring during idle time. Other interrupts

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:22 Klein et al.

that occur during kernel execution are modelled explicitly and separately in each layer
of Figure 9.

The model of the machine and the model of user programs remain the same across
all refinement layers; only the details of kernel behaviour and kernel data structures
change. The fully nondeterministic model of the user means that our proof includes all
possible user behaviours, be they benign, buggy, or malicious.

Let machineMA denote the system framework instantiated with the abstract spec-
ification of Section 4.1, let machine ME represent the framework instantiated with
the executable specification of Section 4.2, and let machine MC stand for the frame-
work instantiated with the C program read into the theorem prover. Then we prove
the following two very simple-looking theorems.

THEOREM 1. ME refinesMA.

THEOREM 2. MC refinesME .

Therefore, because refinement is transitive, we have the following.

THEOREM 3. MC refinesMA.

Clearly the challenging components of these proofs are the ones involving the kernel
transitions. We prove these using a further specialisation of forward simulation to ap-
ply to program fragments, which we call correspondence. Correspondence establishes
simulation and nonfailure of two snippets of program syntax, assuming some precon-
ditions. Correspondence can be used, for instance, to show that the body of a C function
performs the same role as its counterpart from the executable specification, assuming
the kernel invariants hold initially.

Failure is a notion that exists at each program level with different meanings. Failure
in C, for instance, means either an explicit kernel panic, a memory access to an invalid
address, or a violation of the C standard, all of which must be ruled out for functional
correctness.

The correspondence mechanism is paired with a mechanism for proving invariants
over program fragments which assumes nonfailure. Their results compose to give The-
orem 1 and Theorem 2. The formal details of these correspondence and invariant proof
mechanisms have appeared elsewhere [Cock et al. 2008; Winwood et al. 2009].

Most C functions have an abstract and executable counterpart, and we show two cor-
respondence results (executable to abstract and C to executable). Typically, the bodies
of these three functions also have related structure, and contain subcomponents with
logically related roles, allowing the correspondence results to be built incrementally
out of results for smaller program fragments. The abstract and executable functions
will also have one or many invariant proofs. The proofs of these correspondence and
invariant results make up the bulk of the functional correctness proof.

The invariant framework allows some flexibility for the proof engineer whether, for
each function, to prove all invariants together in one statement or separately in mul-
tiple lemmas one at a time. Many abstract functions come with dozens of different
invariant lemmas. This is why we chose to keep the nonfailure obligations in the (sin-
gular) correspondence proof. In every other respect, we have aimed to move effort from
the correspondence proofs to the invariant proofs, which, with code from only one spec-
ification level present, are technically more straightforward.

For a typical function, the simplest proof is the correspondence between abstract and
executable specification. The C correspondence is more difficult thanks to detailed en-
codings and syntactic complexities of the C language. In our experience, the invariant
proofs are typically the hardest component, requiring significantly more effort than
correspondence.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:23

We explain the assumptions of this and the other proofs on seL4 in Section 4.8.
While the effort of the whole seL4 microkernel development, including design, doc-

umentation, coding, and testing, was 2.2 person-years (py), the total effort of the seL4
correctness proof was about 20 py: 9 py went into the formal frameworks and tools, and
11 py on the seL4-specific proof (roughly 8 py for the first refinement, including invari-
ants, and 3 py for the second). These effort numbers, their implications and causes are
discussed in detail in Section 7.2.

An important aspect of this functional correctness proof is that it focusses on the cor-
rectness of the kernel, not necessarily on being convenient for reasoning about user-
level programs. In later security proofs, described in Section 5, it turned out that,
in particular for information-flow noninterference, we needed more detail on the con-
straints of user-level behaviour. Our initial specification assumed any user to nondeter-
ministically change any user-level accessible memory. This is an over-approximation,
but it was enough to show safety and functional correctness for the kernel.

For noninterference between users, the top-level refinement state machine did not
give enough information about how virtual memory, controlled by the kernel, con-
strains the behaviour of user applications. As a prerequisite for the noninterference
proof, but also for more convenient reasoning about user-level programs on top of the
kernel, we strengthened the refinement automaton described previously. We extracted
the virtual-memory state of the machine [Daum et al. 2014] and constrained user be-
haviour by a precise notion of what is mapped when the user is running. We did this
for each specification level, thereby also strengthening the assurance about how vir-
tual memory is treated inside the kernel.

4.6. Fastpath Verification
This section describes the extension of the functional correctness proof to include the
optional IPC fastpath. The fastpath is a hand-tuned implementation of the IPC (inter-
process communication) paths through the seL4 kernel. These IPC paths are used to
pass messages between user components, and performance of these paths is considered
critical for the usability of microkernels [Liedtke 1993] (performance is discussed in
Section 7.1). The fastpath is written in C as an additional C file which is provided
as an optional component in the kernel’s build system. We show that the functional
correctness proof holds whether the fastpath is enabled or not.

This demonstrates that the verification tools we have are capable of handling sub-
stantial variations between the implementation and specification. In this case, major
differences in the order and structure of code paths are introduced for the sake of op-
timisation.

The design of the fastpath in seL4 is similar to the one in L4Ka::Pistachio [L4Ka
Team 2004] and other L4 microkernels. The fastpath code targets the Call and Reply-
Wait system calls. We refer to these two code paths collectively as the kernel fastpath.
On either system call the kernel entry mechanism calls directly to the fastpath code.
The first half of the fastpath checks whether the current situation falls within the
optimised case. If so, the second half of the fastpath handles the system call. If not,
the fastpath calls back to the standard seL4 system call entry point (sometimes called
the slow path), which handles the more general case. This control flow is sketched in
Figure 11.

The fastpath targets the case of the Call and ReplyWait system calls where a mes-
sage will be sent immediately and control will be transferred with the message. For
this to occur, another thread must be waiting to receive the message being sent and
must be of sufficient priority to continue immediately. The fastpath also requires that
the message sent fits in CPU registers and that no capabilities are transferred to
the receiver. This is the common case for a client/server pair communicating via syn-

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:24 Klein et al.

all system calls

abort to slow path

abort to slow path

ReplyWait

Call

kernel
entry

kernel
exit

checks

checks
...

... kernel
exit

kernel
exit

fastpath

fastpath

Fig. 11. Fastpath control flow.

chronous remote procedure calls. The fastpath for the two targeted system calls is
implemented in the C functions fastpath call and fastpath reply wait.

Fastpaths in L4 microkernels are typically implemented in assembly for maximum
performance. We implemented the fastpath in C to make use of our existing verification
environment. To obtain similar performance, we repeatedly examined the output of
the C compiler in search of optimal code. In the process we found that, given sufficient
guidance by an expert programmer, GCC (at least on ARM) will produce code that is
as fast as the best hand-optimised assembly code [Blackham and Heiser 2012]. This
shows that assembly fastpaths are no longer necessary.

The fastpath functions can be extensively optimised for the special case they run
in. For example, the capability lookup function used in the fastpath does not need
to be able to report errors. If any error is encountered, the fastpath is aborted and
the existing kernel implementation repeats the lookup and produces the needed error
message. In particular, since the fastpath lookup does not need to distinguish between
two different error cases, it can avoid one conditional loop exit.

The proof that the fastpath-extended kernel refines the seL4 specification is divided
into the following two subproofs.

(1) We create an executable specification of the fastpath and prove that the C code
correctly implements this specification. We developed this executable specification
directly in Isabelle/HOL, because there was no need for Haskell-level API proto-
typing.

(2) We prove that this executable specification of the fastpath refines the previous
executable specification of the whole kernel.

Composing these results with the previous refinement (Theorem 1), we prove that the
kernel with the fastpath enabled, correctly implements the abstract specification.

The first proof makes use of the existing C refinement framework. The second proof
is a refinement between two models at the same abstraction level. This “sideways”
refinement makes use of a number of proof techniques we had not previously used.
In particular, the fastpath optimisations frequently re-order write operations in the
kernel and thereby make it difficult to find execution points where the states of both
models are easy to relate to each other.

An example of reordering is the ReplyWait system call, which in the slow path is
defined as first executing a full Reply system call followed immediately by a full Wait
system call. Both of these system calls will perform capability lookups and argument

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:25

checks first, and then perform the needed operations. In the slow path, the capability
lookup needed in the Wait system call executes in a state in which the Reply step
has already been processed. In the fastpath, all the needed checks are collected at the
beginning of the combined operation.

To show that this reordering is safe, we prove that none of the capability related
operations in the Reply system call can affect the outcome of the capability lookup in
the Wait call. This is done by capturing the subset of the capability state on which
the lookup depends. We prove that the capability lookup can be viewed as a function of
only this subset of the state. Finally, we show that this subset of the state is unchanged
during the Reply procedure, which can be shown as a Hoare triple. These proofs com-
pose to demonstrate that the lookup and check have the same result whether they are
executed before or after the body of the Reply procedure.

The fastpath also performs a number of state updates in a different order to the exe-
cutable specification. This problem can be solved in principle by proving that a number
of operations can be swapped with others, under certain side conditions. With enough
swap proofs, the fastpath order of operations can be transformed into the standard
order. This is conceptually simple but the collection of swaps is tedious to manage.

To simplify this process, we take the executable specifications of the fast path and
of the relevant path of the general implementation, and show that each can be decom-
posed into three programs running roughly in parallel. One of these three programs
operates only on the register sets of the sending and receiving threads involved in the
system call, another operates only on scheduler state, and the remaining program con-
tains all actions on the rest of the state. Once each specification is split three ways, we
then show three pairwise equivalences. This takes care of most of the reordering steps
in a uniform manner.

The verification of the main fastpath functions was simplified by a number of
functions that are later inlined by the compiler. These function boundaries are not
present in the compiler output, but provide helpful decomposition at the logical
level. A number of these functions are also shared between the fastpath call and
fastpath reply wait. Even though this reduces the two functions to only 287 source
lines of code in total, they still represent the longest contiguous blocks of C code that
we verify without decomposition. The total size of the fastpath proof is 5913 lines of
proof script, of which about half are spent on refinement to C and half on the verifica-
tion of the executable model of the fastpath. In terms of effort, the fastpath verification
was completed in roughly 5 person months (pm) by one experienced verification engi-
neer. The verification was slightly harder, but of the same order of complexity as the
previous proofs.

4.7. Binary Verification
The proof of functional correctness down to the C implementation of seL4 was a signif-
icant step. However, this proof still assumed that the C semantics was representative:
that the actual behaviour of the kernel would be the C semantics assigned to it. Apart
from hardware faults, a compiler or linker defect, a fault in the C-to-Isabelle parser or
in the Isabelle C semantics, or a mismatch between the compiler and parser’s under-
standing of the C standard could all lead to a faulty outcome, even with a verified C
implementation.

We have investigated two approaches for eliminating these errors. The first is to use
the CompCert [Leroy 2006] verified compiler. The second is to compare the semantics
of the binary to that created by our C parser directly [Sewell et al. 2013].

As of version 1.10 [Leroy 2012], CompCert translates seL4 with only minor changes
to the C code, removing for instance GCC-specific optimisation hints. The exercise of

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:26 Klein et al.

“porting” seL4 to CompCert has made the code base cleaner, less GCC dependent, and
more likely to run unchanged with other compilers.

Compiling the kernel with CompCert eliminates the risk of a compiler bug invali-
dating our correctness result, but it still leaves the possibility of a linker defect, parser
flaw or simple semantic mismatch hiding serious problems. We encountered an in-
stance of a linker problem when first using CompCert: We had made assumptions
about GCC inside our linker scripts that are not guaranteed by the C standard, and
switching to a verified compiler initially made the verified kernel crash! The prob-
lem was easy to fix and is of course no fault of CompCert, but it confirms that linker
assumptions are critical to correctness. The second, more semantic kind of problem is
compounded by the nature of the C standard, which kernel implementors break on pur-
pose at controlled points in the code. An example is the object rule, which effectively
forbids casts of integers to pointers. The seL4 kernel does cast integers to pointers,
for instance in page table code, and our C semantics is deliberately permissive in this
case. Even though the behaviour of this code is undefined according to the C standard,
most compilers will translate it as expected. It is our understanding that the C seman-
tics used by CompCert demand strict conformance to the standard in this regard. This
means, even though CompCert translates the code as expected, the assumptions of its
correctness theorem would not be satisfied.

The CompCert approach was thus an improvement in the level of assurance over
that previously available, but well short of a formal guarantee that composes with our
refinement stack (this would be different in application verification that adheres to
the standard). To reach a guarantee, some comparison would have to be done between
the semantics of the C code in the Coq CompCert and Isabelle/HOL models. Instead of
doing this comparison, however, we pursued a more immediate route: comparing the
Isabelle/HOL model of seL4’s C semantics directly to the semantics of a compiled seL4
binary.

This second approach is a highly trustworthy form of translation validation. To rea-
son about the semantics of a compiled ARM binary program, we use the Cambridge
ARM instruction set architecture (ISA) model in the HOL4 theorem prover [Fox 2003;
Fox and Myreen 2010]. This ISA model has been extensively validated by comparing
its behaviour to that of real hardware [Fox and Myreen 2010]. We used Myreen’s ap-
proach of decompilation into logic [Myreen 2008] to produce a semantic model of the
kernel binary after compilation and linking in the HOL4 theorem prover. The logic
of the HOL4 theorem prover is very close to, and compatible with Isabelle/HOL, and
automatic translation between these tools is possible.

Using the ARM ISA model in HOL4, Myreen’s tool automatically extracts the
assembly-level semantics of each function and, by proof, abstracts each compiled C
function into its semantic equivalent in higher-order logic. For each C function in the
kernel this gives us a higher-order logic representation of its binary-level semantics,
as well as our previous higher-order logic representation of its C-level semantics. We
can then for each function attempt to prove that the binary-level semantics is a correct
refinement of the corresponding C-level semantics. If this is completed for all functions
and composed correctly, we gain a refinement theorem between the ELF binary of the
kernel and the Isabelle/HOL representation of the C code which can be seamlessly
composed with the rest of the refinement stack.

Figure 12 shows the approach in more detail. The proof that the decompiled HOL4
semantics (1) of a function match the C semantics (2) of the same function (the tar-
get of the earlier refinement proof) is composed of multiple steps. Starting from the
more abstract side, we first transport, by proof, the C semantics (2) to a slightly lower
abstraction level (3), where all global variables are part of the addressable reference
space. We do this using memory invariants of the C code which we have proved in the

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:27

Isabelle/HOL

Import

Proof

C program Binary program

Graph Proof Script

Compiled C
Graph Program

ARM Binary
Semantics

Export

ARM ISA
Model

HOL4

Decompiled
Functions

1
Adjusted

C semantics

3

C semantics
2

C Graph
Program

4
Decompiled

Graph Program

6

Convert

Compilation

Import

Reference

Proof

Import

Export

Z3

SONOLAR
Proof

Decompiled
Functions 2

5

Fig. 12. Binary verification overview for seL4.

previous functional correctness verification. We then convert these functions into an
intermediate graph language (4) that models control flow roughly similarly to assem-
bly code. Likewise, we translate the decompiled assembly-level semantics (1), again
per function, from the HOL4 prover, via Isabelle/HOL (5), into the same graph lan-
guage (6). Finally, we prove refinement between the two graph-language representa-
tions of each function within an SMT-based logic. For acyclic function graphs, this is
broadly straightforward. When loops are present, we search for split points at which
the two executions can be synchronised, and prove refinement via induction on the se-
quence of visits to these split points. A more detailed description of this search is given
elsewhere [Sewell et al. 2013].

We use two SMT solvers, Z3 [de Moura and Bjørner 2008] and Sonolar [Peleska et al.
2011]. We use Z3 first with a small time-out, because it is fast, even though it solves
fewer goals. Sonolar is slow but stronger on the theory of arrays and bit vectors which
model memory and machine words.

One key aspect of this work is the link between two existing semantics and the
link to an existing proof: we join a well-validated hardware model with the Isabelle C
semantics and the invariants and assertions that have already been proven on it.

The latter is important, because traditional translation validation approaches must
assume what the C standard gives in terms of language guarantees, similarly to the
CompCert theorem. Since, as mentioned, OS kernel code purposefully breaks the C
standard, these approaches typically fail at such code. Our approach, however, can
adapt assertions to fit with existing memory invariants, giving the translation valida-
tion proof more information, even where the C standard is followed only partially. Not
only does this make the translation validation succeed, it also gives assurance that the
compiled code has the expected behaviour, even where it is outside the standard.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:28 Klein et al.

Table I. Performance of seL4 System Calls with Different GCC Optimisation Levels

Fastpath Fastpath Slow path Slow path ReplyWait
Call ReplyWait Call ReplyWait with Schedule

GCC -O2 220 234 1522 1453 3017
GCC -O1 304 323 1782 1673 3845
(overhead vs. -O2) 38% 38% 17% 15% 27%

Times quoted in cycles (average of 16 runs after 16 warmups) on the KZM evaluation board,
which has a Freescale i.MX31 processor based on a 532-MHz ARM1136 core featuring an
8-stage pipeline.

Using this approach, we have managed to verify the binary correctness of all seL4
functions that were part of the original verification, when seL4 is compiled with GCC
4.5.1 using the -O1 optimisation level. The verification fails on machine interface func-
tions, which already were assumed correct in the original verification. They make
reference to co-processor instructions that are not part of the Cambridge ARM ISA
model. The binary verification also fails on the fastpath, which is a recent addition to
the verification, and which inlines these co-processor instructions. However, with our
per-function approach, we can still assemble the pieces and gain a top-level refinement
theorem between C semantics and binary-level semantics of the entire kernel with the
explicit assumption that these functions are validated separately.

To support GCC with optimisation level -O2, we have had to make further adjust-
ments to the loop-splitting and refinement process described here, and Myreen has
further adjusted his decompilation tool. The main difficulties with increasing optimi-
sation levels are as follows.

— GCC inlines more aggressively, so code from the machine-interface functions now
appears in some other function bodies (especially the fastpath) and these functions
cannot currently be validated.

— GCC optimises calls beyond the calling convention, so further work has to be done
to match assembly-level parameters to C-level parameters.

— GCC performs loop unrolling at -O2, which increases the complexity of the loop-
splitting problem.

— GCC optimises stack frame access code, making the stack heuristics employed by
Myreen’s tool less reliable.

The most recent verification attempt for -O2 succeeds for 214 of 266 function pairs
(79%). There are 23 machine interface functions that are impossible for us to cover
because they are assigned no C semantics,2 and code from these functions is then in-
lined into 15 more function bodies. This leaves us with one nested loop and 13 outright
failures (5%).

This figure is a snapshot of a work in progress. The 13 failures we have remaining
at the time of writing are essentially deficiencies in the verification tool, and we are
confident they can be addressed in the near future through further implementation
tuning, with no conceptual changes to the proof process.

We also believe that the performance cost of GCC -O1 over GCC -O2 may be accept-
able, at least for very-high-assurance application scenarios. Table I shows the perfor-
mance cost of using GCC -O1, typically 15-25%. The fastpath is an outlier, possibly
because of its large functions or because it has been hand-adjusted for high perfor-
mance with GCC -O2. The kernel is normally built with GCC -O2, with performance

2The fastpath and the initialisation code require some additional machine interface functions that were not
previously listed in Figure 7.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:29

gains at higher optimisation levels considered to be a poor tradeoff for increasing code
size.

This result composes with the existing refinement to yield a functional correctness
trust chain between high-level security theorems, abstract specification, and binary
level. To our knowledge, this is a first. The trust chain rests on the automatic binary
verification tool, consisting mainly of the straightforward graph language translations,
and the two SMT solvers Z3 and Sonolar, on reading binaries into HOL4, and on the
adequacy of the ARM ISA model with respect to real hardware. The ISA model is
already extensively validated. Reading binaries into HOL4 is trivial compared to pars-
ing C, since this is not disassembly, but merely reading a string of numbers. Finally,
while not achieving the same high standard of an end-to-end LCF-style theorem as in
the rest of the seL4 verification, the architecture of the binary verification tool already
provides strong assurance. Its design is also geared towards enabling full Isabelle LCF-
style proofs on the graph language in the future, and hopefully also full replay of the
SMT results in Isabelle.

In total, we have replaced our previous assumption, that the compiler and linker
execute correctly on seL4 and that the compiler and C-to-Isabelle parser agree on the
C semantics, with the new, second-order assumption that the binary verification tool
does not exhibit a soundness bug which leads to a missed behaviour mismatch when
applied to seL4. This is a huge improvement over trusting the entire compiler and
linker implementation.

4.8. Assumptions
With the parser, compiler, and linker assumptions addressed and replaced by much
simpler assumptions on binary loading and a well-validated ISA model, the remaining
assumptions of the functional correctness proof stay as previously published [Klein
et al. 2009b]:

We still assume correctness of TLB and cache-flushing operations, as well the cor-
rectness of the machine interface functions implemented in handwritten assembly.
We also assume hardware correctness. Finally, we currently omit correctness of the
boot/initialisation code which takes up about 1.2 kLOC of the kernel. The theorems
above state correspondence between the kernel entry and exit points in each speci-
fication layer. We describe these assumptions in more detail here and discuss their
implications.

The assumptions on the handwritten assembly and hardware interface mean that
we do not prove correctness of the register save/restore and the potential context
switch on kernel exit. As described in Section 4.4, cache and TLB operations are part of
the assembly-implemented machine interface. These machine interface functions are
called from C, and we assume they do not have any effect on the memory state of the C
program. This is only true under the assumption that they are implemented and used
correctly.

Hardware correctness is not an assumption that is specific to formal verification. Any
programmer must assume that the hardware works as described by the manufacturer,
or at least as observed in the past. Nevertheless, it is not a trivial assumption. On the
one hand, the errata are often the longer sections in processor manuals. This does not
necessarily invalidate a proof, errata just have to be taken into account. On the other
hand, hardware can easily be induced to fail by subjecting it to conditions outside
its operating parameters. For example, heat development may be a concrete issue in
space vehicles or aircraft. The best validated formal theorem will not guarantee correct
behaviour if processor and memory are melting underneath.

Formal verification does not exclude traditional measures against such hardware
failures, though. For instance, we have observed frequent spurious interrupts on a

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:30 Klein et al.

particular development board the verified kernel operates on. According to the formal
model, masked interrupts will not occur, so code that handles such interrupts is dead
and should be removed. However, the hardware model can be changed slightly to model
this erroneous behaviour of the interrupt controller. It could even be tagged as faulty
behaviour so that we can reason about specific parts of the kernel code being executed
only in hardware fault modes and prove that the code raises an appropriate alarm.

On ARM processors, in-kernel memory and code access is translated by the TLB. For
our C and binary semantics, we assume a traditional, flat view of in-kernel memory
that is consistent, because all kernel reads and writes are performed through a con-
stant one-to-one virtual memory window which the kernel establishes in every address
space. We make this consistency argument only informally; our model does not oblige
us to prove it. We do, however, substantiate the model by manually stated properties
and invariants. This means our treatment of in-kernel virtual memory is different to
the high standards in the rest of our proof where we reason from first principles and
the proof forces us to be complete.

As we have pointed out in previous work, these are not fundamental limitations of
the approach, but a decision taken to achieve the maximum outcome with available
resources. For instance, we have verified the executable design of the boot code in
an earlier design version, and we have recently made progress on including this part
of the kernel in the verification again. For context switching, others [Ni et al. 2007]
report verification success, and the Verisoft project [Alkassar et al. 2008] showed how
to verify assembly code and hardware interaction. We have also shown that kernel VM
access and faults can be modelled foundationally from first principles [Kolanski and
Klein 2009; Kolanski 2011].

4.9. Functional Correctness Assurance
Having outlined the limitations of the functional correctness verification, we now dis-
cuss the properties that are proved.

Overall, we show that the behaviour of the binary implementation is fully captured
by the abstract specification. This is a strong statement, as it allows us to conduct all
further analysis of properties that are preserved by refinement on the significantly
simpler abstract specification, rather than against the far more complicated imple-
mentation. Properties that are preserved by refinement include all those that can be
expressed as Hoare triples, as well as some noninterference properties, amongst oth-
ers. The security properties of Section 5 are good examples—we proved these over the
abstract specification, resulting in an estimated effort reduction of at least an order of
magnitude.

In addition to the implementation correctness statement, our strengthened proof
technique for forward simulation [Cock et al. 2008] implies that ME , MC and the
kernel binary never fail and always have defined behaviour. This means the kernel can
never crash or otherwise behave unexpectedly as long as our assumptions hold. This
includes that all assertions in the executable design specification are true on all code
paths, and that the kernel never accesses a null pointer or a misaligned pointer. Such
assertions can be used to transfer local information from, for instance, the executable
specification to the abstract specification, and locally exploit an invariant that is only
proved on one of these levels.

We proved that all kernel API calls terminate and return to user level. There is no
possible situation in which the kernel can enter an infinite loop. Since the interface
from user level to the abstract specification is binary compatible with the final imple-
mentation, our refinement theorem implies that the kernel does all argument checking
correctly and that it cannot be subverted by buggy encodings, spurious calls, mali-
ciously constructed arguments to system calls, buffer overflow attacks or other such

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:31

vectors from user level. All these properties hold with the full assurance of machine-
checked proof.

As part of the refinement proof between levelsMA andME , we had to show a large
number of invariants. These invariants are not merely a proof device, but provide valu-
able information and assurance in themselves. In essence, they collect information
about what we know to be true of each data structure in the kernel, before and after
each system call, and also for large parts during kernel execution where some of these
invariants may be temporarily violated and re-established later. The overall proof ef-
fort was clearly dominated by invariant proofs, with the actual refinement statements
between abstract and executable specification accounting for at most 20% of the total
effort for that stage. There is not enough space in this article to enumerate all the in-
variant statements we have proved, but we will attempt a rough categorisation, show
a few representatives, and give a general flavour.

There are four main categories of invariants in our proof:

(1) low-level memory invariants,
(2) typing invariants,
(3) data structure invariants, and
(4) algorithmic invariants.

The first two categories could be covered in part by a type-safe language: low-level
memory invariants include that there is no object at address 0, that kernel objects are
aligned to their size, and that they do not overlap.

The typing invariants say that each kernel object has a well-defined type and that its
references in turn point to objects of the right type. An example would be a capability-
node entry containing a reference to a thread control block. The invariant would state
that the type of the first object is a capability storage node, that the entry is within
array bounds of that node, and that its reference points to a valid object in memory
with type TCB. Intuitively, this invariant implies that all reachable, potentially used
references in the kernel—be it in capabilities, kernel objects or other data structures—
always point to an object of the expected type. This is a necessary condition for safe
execution: we need to know that pointers point to well-defined and well-structured
data, not garbage. This is also a dynamic property, because objects can be deleted and
memory can be re-typed at runtime.

Note that the main invariant is about potentially used references. We do allow some
references, such as in ARM page table objects, to be temporarily left dangling, as long
as we can prove that these dangling references will never be touched. Our typing
invariants are stronger than those one would expect from a standard programming
language type system. They are context dependent and include value ranges such as
using only a certain number of bits for hardware address space identifiers (ASIDs).
Often they also exclude specific values, such as -1 or 0 as valid values because these
are used in C to indicate success or failure of the corresponding operations. Typing in-
variants are usually simple to state and, for large parts of the code, their preservation
can be proved automatically. There are only two operations where the proof is difficult:
removing and retyping objects. Type preservation for these two operations is the main
reason for a large number of other kernel invariants.

The third category of invariants are classical data structure invariants, such as cor-
rect back links in doubly linked lists, a statement that there are no loops in specific
pointer structures, that other lists are always terminated correctly with NULL, or that
data structure layout assumptions are interpreted the same way throughout the code.
These invariants are not especially hard to state, but they are frequently violated over
short stretches of code and then re-established later—usually when lists are updated
or elements are removed.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:32 Klein et al.

The fourth and last category of invariants that we identify in our proof are algo-
rithmic invariants that are specific to how the seL4 kernel works. These are the most
complex invariants in our proof and they are where most of the proof effort was spent.
These invariants are either required to prove that specific optimisations are allowed
(e.g., that a check can be left out because the condition can be shown to be always true)
or they are required to show that an operation executes safely and does not violate
other invariants, especially not the typing invariant. Examples of simple algorithmic
invariants are that the idle thread is always in thread state idle, and that only the idle
thread is in this state. Another one is that the global kernel memory containing kernel
code and data is mapped in all address spaces.

Slightly more involved are relationships between the existence of capabilities and
thread states. For instance, if a Reply capability exists to a thread, this thread must
always be waiting to receive a reply. This is a nonlocal property connecting the ex-
istence of an object somewhere in memory with a particular state of another object
somewhere else.

Other invariants formally describe a general symmetry principle that seL4 follows:
if an object x has a reference to another object y, then there is a reference in object
y that can be used to find object x directly or indirectly. This fact is exploited heavily
in the delete operation to clean up all remaining references to an object before it is
deleted.

The reason this delete operation is safe is complicated. Here is a simplified, high-
level view of the chain of invariants that show an efficient local pointer test is enough
to ensure that deletion is globally safe.

(1) If an object is live (contains references to other objects), there exists a capability to
it somewhere in memory.

(2) If an untyped capability c1 covers a sub-region of another capability c2, then c1
must be a descendant of c2 according to the capability derivation tree (CDT).

(3) If a capability c1 points to a kernel object whose memory is covered by an untyped
capability c2, then c1 must be a descendant of c2.

With these, we have: If an untyped capability has no children in the CDT (a simple
pointer comparison according to additional data structure invariants), then all kernel
objects in its region must be non-live (otherwise, there would be capabilities to them,
which in turn would have to be children of the untyped capability). If the objects are
not live and no capabilities to them exist, there is no further reference in the whole
system that could be made unsafe by the type change because otherwise the symmetry
principle on references would be violated. Deleting the object will therefore preserve
the basic typing and safety properties. Of course, we also have to show that deleting
the object preserves all the new invariants we just used as well.

We have proved over 150 invariants on the different specification levels, most are
interrelated, many are complex. All these invariants are expressed as formulae on the
kernel state and are proved to be preserved over all possible kernel executions.

Functional correctness is a very strong property, and tells us that seL4 correctly
implements the behaviours specified in the abstract specification. A cynic might say,
however, that an implementation proof only shows that the implementation has no
more bugs than the specification contains. This is true to an extent: specifications that
do not meet users’ requirements are a universal hazard for formal verification projects.
The best way to reduce the risk of this hazard is to prove further properties about
the specification that formally encode user-requirements—that is, to prove that the
specification, and thus the implementation, meet their stated requirements. We have
done this for seL4 for a range of security properties, which we report on in the following
section.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:33

5. PROVING SECURITY ENFORCEMENT
One of the primary design goals of seL4 was to provide a foundation for implement-
ing secure systems, by enforcing classic security properties such as authority confine-
ment, integrity and confidentiality. However, it is not enough to simply read the ab-
stract specification in order to convince oneself that seL4 does indeed enforce these
properties. Instead, we have proved that it does so. Here, we summarise these proofs,
which are reported in full elsewhere [Sewell et al. 2011; Murray et al. 2012, 2013].
They were carried out over seL4’s abstract specification and then carried over to its
implementation by the formal refinement theorems that embody functional correct-
ness. In performing these proofs, we have made seL4 the first general-purpose kernel
with implementation-level proofs of these classic security properties, realising the 30-
year-old dream of provable operating systems security [Feiertag and Neumann 1979;
Walker et al. 1980].

Importantly, these proofs tell us not only that seL4 can enforce these properties, but
also under which conditions: the proof assumptions formally encode how the general-
purpose microkernel should be deployed to enforce a particular security property. We
developed an abstract access-control policy model for describing access-control config-
urations of seL4. This describes the authority that each subject has in the system over
all others. This model then formed the basis for formally phrasing the security prop-
erties of authority confinement, integrity and confidentiality. We begin by describing
this model in Section 5.1, before describing the proofs of authority confinement and in-
tegrity in Section 5.2 and the proof of confidentiality in Section 5.3. Finally, we discuss
the assumptions and limitations of these proofs in Section 5.4.

5.1. Access Control Model
Access control is one of the primary security functions that OS kernels provide. It is
used to enforce high-level security properties like authority confinement, integrity and
confidentiality on untrusted subjects, that is, those that cannot be relied upon to be-
have securely. To express these properties formally, we construct a model for describ-
ing the access-control configuration of seL4. Such a model is necessary because the
implementation-level access-control state in a high-performance microkernel such as
seL4 is complex; the access-control model provides a usable abstraction for reasoning
about such implementation-level configurations. This model is necessarily more nu-
anced than traditional textbook security models, such as the Bell-LaPadula model [Bell
and LaPadula 1976] or traditional take-grant models of capability-based security [Lip-
ton and Snyder 1977], because it reflects the unavoidable complexities and tradeoffs
that arise in any high-performance microkernel [Klein et al. 2011].

An access-control system controls the access of subjects to objects [Lampson 1971],
by restricting the operations that subjects may perform on objects in each state of
the system. In seL4, the subjects are threads, and the objects are all kernel objects,
including memory pages and threads themselves. The part of the system state used
to make access control decisions is called the protection state. It is this state that our
access-control model captures.

In seL4, the implementation-level protection state is mostly represented explicitly
in the capabilities held by each subject. This explicit, fine-grained representation of
authority is one of the features of capability-based access-control mechanisms. In real-
ity, however, some implicit protection state always remains, for instance encoded in the
control state of a thread, or in the presence of virtual memory mappings in the MMU.
The protection state governs not only whether a subject is allowed to read or write an
object, but also how each subject may modify the protection state. For instance, the au-

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:34 Klein et al.

.

.

.

tcb1
cnode1

pd1

f111

pt11 pt2n

f11i f1n1 f1nj

.

.

.

. . .

.

ep

. . .

.

.

.

.

tcb2
cnode2

pd2

f211

pt21 pt2n

f21i f2n1 f2nj

.

.

.

. . .

.

.

S1 EP S2

(a) Two communicating threads.

EPS1 S2Send Recv

(b) Corresponding access-control policy.

Fig. 13. System objects and corresponding access-control policy.

thority for capabilities to be transmitted and shared between subjects is itself provided
by CNode and endpoint capabilities.

To understand why it is necessary to introduce an access-control model for tractable
reasoning about the protection state, consider the example in Figure 13(a) of two
threads t1 (represented by its thread control block, tcb1) and t2 (represented by tcb2)
communicating through an endpoint ep, and the question of exactly what authority
t1 has over t2. For this, we need to consider all possible kernel operations potentially
performed on behalf of t1 and what their effects might be on t2.

For instance, the low-level (kernel-internal) operation setThreadState(t2, st) sets
the status of t2’s thread control block to st. The obvious case is if t1 has a thread
capability to t2, that is, if the CSpace associated with the thread control block of t1
contains a capability pointing to the thread control block of t2—then t1 is allowed to
change t2’s status. However, there are other cases, such as if t1 has a send capabil-
ity to the endpoint ep, t2 has a receive capability to the endpoint and t2 is blocked
on this endpoint. Then, if t1 is performing a send to the endpoint, the internal func-
tion setThreadState(t2, Running) will be rightly called to change the status of t2 from
Blocked to Running. What this shows is that the challenge in reasoning about access
control in a real microkernel is that the kernel’s protection state can be very detailed,
and cumbersome to describe formally. It is even more cumbersome to describe precisely
what the allowed effects of each operation are at this level.

To address this problem, we make use of the traditional concept of a policy to model
access-control configurations: a policy can be seen as an abstraction of the protection
state. We assign a label to each object and subject, and we specify the authority be-
tween labels as a directed graph. We map the concrete access rights in the seL4 pro-
tection state into a simple set of abstract authority types such as Read, Write, Grant,
described further below. For instance, the policy for our small example in Figure 13(a)
of two communicating threads t1 and t2 would tag t1 with label S1, t2 with label S2 and
the endpoint ep they use to communicate could get its own label EP. All objects con-
tained in t1’s CSpace and virtual address space, together with t1’s TCB, are all labelled
with S1, and similarly for t2. The dotted boxes in Figure 13(a), indicate the grouping of
objects into labels. The resulting access-control policy is depicted in Figure 13(b).

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:35

Capturing the protection state in such a policy simplifies reasoning in three ways.
First, the number of labels is typically smaller than the number of objects in the
system—depending on the system, a label can contain thousands of objects. Second,
when using the policy to reason about untrusted subjects, the policy will typically be
static over each system call whereas the protection state will typically change. Finally,
we can formulate the allowed effects of operations of untrusted subjects by consulting
the policy rather than the more complex protection state.

The access rights between labels in our model are: Receive, SyncSend, AsyncSend,
Reset, Grant, Write, Read, and Control. We make a distinction between synchronous
and asynchronous send, because the former has different implications for confidential-
ity as explained later in Section 5.3. The two other nonstandard rights are Reset and
Control. The former is the authority to reset an object to its initial state for re-using
resources. The latter confers the authority to completely determine the behaviour of
the object, for example, by writing to a thread’s registers. The Create right known from
the classical take-grant models [Lipton and Snyder 1977] is subsumed here by Control.

Access Policy Refinement. To give meaning to this model, we need to relate it to the
implementation of the kernel, which in our case means relating it to the abstract spec-
ification of seL4. In particular, we need to define formally when an access-control pol-
icy, such as in Figure 13(b), is consistent with a state of the seL4 abstract specification
such as in Figure 13(a)—that is, when the authority in the system state is consistent
with that specified by the policy. Concretely, we say that a state s refines a policy p
when the authority of each subject in the state does not exceed its authority in p. This
relation is determined by the policy graph, the abstraction function from state to pol-
icy, and the current subject. We capture it formally in the predicate pas refined(p, s),
where “pas” stands for policy, abstraction, subject. This predicate effectively decodes
the complex protection state in s, and checks that the authority present in s is also
present in p. pas refined(p, s) additionally places wellformedness constraints on the pol-
icy p. We describe these constraints in Section 5.2. They restrict the policy to sensible
access-control configurations in which it makes sense to reason about high-level secu-
rity properties like authority confinement, integrity and confidentiality.

5.2. Authority Confinement and Integrity
5.2.1. Authority Confinement. Authority confinement is a general security property on

capability-based systems where authority may change dynamically. The property gives
a bound to this dynamic behaviour: It says that, given a policy, one can statically de-
termine the maximum authority each subject can acquire. Conversely, given a policy p
that claims to be a maximum authority bound, authority confinement says that no sub-
ject can gain more authority than described in p. In take-grant systems, for instance,
this maximum bound is simply the reflexive, transitive closure of all take and grant
capabilities [Lipton and Snyder 1977].

For seL4, we can formally express authority confinement directly on top of the pred-
icate pas refined defined in the previous section. We want to assert that, if all authority
in the current state s is captured in the policy p, then, for all kernel calls leading to any
state s′, the authority contained in s′ will still be captured in the same p. More formally,
if pas refined(p, s) holds, then pas refined(p, s′) will also hold for all directly reachable, fu-
ture states s′. That means, we need to prove that pas refined is an invariant of kernel
execution.

However, authority confinement stated as above will clearly not hold for all policies p:
for instance, the policy could explicitly allow one subject to give authority to another.
This means, authority in that other subject could grow. We therefore need to capture

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:36 Klein et al.

which policies make sense for authority confinement. Formally, pas refined(p, s) asserts
that p must be wellformed, which means p must meet the following constraints:

(1) the label of the current subject, which is stored in p, must not have Control author-
ity to any separate label,

(2) there must be no Grant authority between separate labels, and
(3) every label must have full authority to itself.

The second constraint, as alluded to above, is necessary to enforce authority con-
finement, and corresponds to transitivity in the classical take-grant model. The third
corresponds to reflexivity in take-grant. The first simply ensures that the partitioning
of subjects and objects between labels is meaningful. Control authority from subject s1
to subject s2 would mean that s1 can make s2 do anything on s1’s behalf.

Note that the first condition only need apply to the subject that is currently execut-
ing, according to p, not to all subjects in the system. This is a difference to traditional
take-grant models. It allows us to apply the authority confinement theorem selectively
to only the untrusted subjects in the system where access control must be mandatory.
Trusted subjects may have more authority than allowed for authority confinement, but
can be verified separately not to abuse this authority. That means, while all subjects in
the system may become the current subject at some point, we may only want to apply
the access-control theorem to some of them.

The formal theorem of authority confinement, proved over the seL4 abstract specifi-
cation, has two further side conditions.

THEOREM 4 (AUTHORITY CONFINEMENT AT ABSTRACT LEVEL). Given an
access-control policy p, a kernel state s, and a kernel state s′ reached after performing
one transition step of MA, then if pas refined(p, s) holds initially, pas refined(p, s′) will
hold in the final state, assuming the general system invariants invs and ct active
(current thread is active) for noninterrupt events in s, and assuming the current thread
in s is the current subject in p.

The two predicates invs and ct active are re-used from the functional correctness proof
betweenMA andME . We have shown in this previous proof that invs is invariant over
kernel execution, and that ct active holds for any noninterrupt event at kernel entry as
required, so the theorem integrates seamlessly with the previous result.

Note that the only side condition that the user of this theorem needs to check man-
ually is wellformedness of the policy p, which is phrased purely in terms of the policy
abstraction. That means, no knowledge of the implementation-level protection state is
required. All other conditions are either already proved invariant or can be established
by user-level system initialisation as described in Section 6.1.

5.2.2. Integrity. Integrity is the security property that says a subject cannot modify the
system state without explicit authorisation to do so.

We again use the high-level access-control policy p to capture the authority in the
system and to describe which state modifications are authorised by this policy. The
resulting theorem can then be used to reason about kernel calls on behalf of untrusted
subjects. The theorem will tell us precisely which parts of the system state are guar-
anteed to remain unchanged, and which parts of the system state can change. As with
authority confinement, this information is already captured in the abstract specifica-
tion of seL4. The integrity theorem merely makes it significantly easier to understand
and easier to apply when reasoning about systems on top of the kernel.

The formalisation again builds on the predicate pas refined(p, s) from Section 5.1,
and we phrase the allowed modifications in s in terms of the policy p. The grouping of
subjects and objects into access-control labels allows us to make broad brush strokes at

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:37

the level of the policy, instead of referring to the lower-level kernel state. For instance,
when applying integrity reasoning, one is interested in the changes a subject may
make in all other subjects, not in the changes the subject may make to itself. Phrasing
integrity in terms of the policy easily expresses that by saying a subject may change
anything within its own label.

In formalising integrity, we are interested in expressing the difference between the
states s and s′ before and after any kernel call, according to a policy p. We write
integrity(p, s, s′) to capture this relation, and we can use the predicate pas refined(p, s) as
before to assert that the state s conforms to the policy p. In more detail, the integrity
predicate integrity(p, s, s′) then says for each authority in p from the current subject
over any other subject, what state modifications it authorises. For instance, a Send
capability may lead to a change in the thread state of any subject that owns a Receive
capability on the subject with the corresponding endpoint. A Write capability allows
state modifications to the page of memory it authorises, but no more. A Read capabil-
ity to memory allows no state change at all, and so forth. In essence, this gives us an
over-approximation of kernel behaviour. When we apply the theorem in analysing a
concrete system, we will conclude that not even this over-approximation includes state
changes to, for instance, the area of memory we are interested in protecting, and so no
actual kernel execution will either.

The formal integrity theorem, proved for the abstract specification, again has side
conditions that are already satisfied from the functional correctness proof.

THEOREM 5 (INTEGRITY AT ABSTRACT LEVEL). Given a policy p, a kernel state
s and a kernel state s′ reached after a transition of MA, the property integrity(p, s, s′)
holds, assuming that pas refined(p, s) holds, that the general system invariants invs and
ct active for non-interrupt events hold in s, and that the current current thread in s is
the current subject in p.

5.2.3. Code-Level Theorems. The proof of integrity and authority confinement was com-
pleted in the space of 4 months with a total effort of 7.4 pm. The proof comprises 10,500
lines of Isabelle script. The effort is dramatically reduced compared to the functional
correctness proof, because the proof could be completed on the abstract specification
instead of the code-level of seL4. However, composed with the functional correctness
result, the properties automatically hold for the code as well! More precisely, using
Theorem 3, we have the following two end-to-end theorems at the source code level.

THEOREM 6 (AUTHORITY CONFINEMENT AT CODE LEVEL). For any policy p, the
property pas refined is invariant over all transitions of MC between observable states,
under the same assumptions as in Theorem 4.

THEOREM 7 (INTEGRITY AT CODE LEVEL). The property integrity(p, s, s′) holds
over all transitions ofMC between observable states s and s′, under the same assump-
tions as in Theorem 5.

The theorems further transfer down to the binary level in the same way, albeit not
as end-to-end theorems in a single proof system.

These two properties in conjunction allow us to establish bounds on the execution
behaviour of untrusted user-level components by inspecting the policy only. For in-
stance, for a suitably restrictive policy p, using the predicate integrity(p, s, s′), we can
directly conclude that all memory private to other components of the system is un-
changed between s and s′, no matter what code the untrusted component is running
or what kernel call it tried to perform. Using authority confinement, we can reason
that the policy remains consistent with the protection state and so the same argument
holds for the next system call as well. The two properties thus compose over whole sys-

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:38 Klein et al.

S1 S2
Read

AsyncSend

ReceiveRead

Write

(a) Example access-control policy.

PSched

P1 P2

(b) Corresponding information-flow policy.

Fig. 14. Access control policy and corresponding information-flow policy.

tem executions to ensure that untrusted components cannot affect state outside their
authority.

The massive reduction in effort is the true power of the abstraction provided by the
functional correctness proofs. Any additional property that is preserved by refinement
can be established more rapidly and with less effort by proving it over the abstract
specification. This massive saving of effort was repeated during the following proofs of
confidentiality for seL4.

5.3. Confidentiality: Information-Flow Security
Confidentiality is the dual of integrity, and informally states that no subject may read
information to which it does not have read authority. In this section we summarise the
proof that seL4 enforces confidentiality (reported in full elsewhere [Murray et al. 2012,
2013]). It builds on the previous integrity and authority confinement proofs.

Phrasing confidentiality turns out to be more involved than integrity and authority
confinement, for two reasons. Firstly, unlike those earlier properties, confidentiality
applies to entire execution traces of the system not just to single transitions. In this
sense it is a global whole-system property that applies during the entire lifetime of a
system after initialisation, and so requires more machinery to state formally.

The second reason is that the effect of reading some piece of state is not directly
visible: to infer that component A read some state associated with component B, dur-
ing some transition from a state s to a resulting state s′, we cannot simply look at the
difference between s and s′. The difference can tell us only that A’s state somehow
changed—it cannot tell us what information A has learned when that state-change
occurred. To work that out, we must consider a second hypothetical execution begin-
ning from some initial state in which B’s internal state differs from that in s and see
whether this causes a difference in the resulting state of A. This is the essence of rea-
soning about confidentiality and is captured formally by the classical security property
of noninterference [Goguen and Meseguer 1982]. To establish confidentiality, we proved
a variant of noninterference for seL4 that we introduce shortly. Noninterference is a
security property that compares pairs of executions of a system, unlike the security
properties seen so far which talk only about a single execution at a time.

Formalising Confidentiality. Confidentiality is often expressed formally by asserting
that all flows of information in a system must be in accordance with the system’s
information-flow policy. A static information-flow policy divides the system state be-
tween a fixed set of security partitions, and defines the allowed information flows be-
tween those partitions. Figure 14(b) depicts an example information-flow policy that
contains three partitions, P1, P2 and PSched, and asserts that information may flow
from PSched to all others, and from P1 to P2, but that no other information flows are
permitted between these partitions.

These information-flow policies are on yet another abstraction level from the access-
control policies discussed so far—they only talk about information flows, not access

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:39

rights. However, we can easily compute an information-flow policy from an access-
control policy. As in integrity, our non-interference property works for any policy that
conforms to the system state, that is, while the policy is static for each system, the
kernel can be configured to enforce any wellformed policy. As an example, Figure 14(a)
shows the access-control policy from which the information-flow policy in Figure 14(b)
was derived.

Generally, to construct the information-flow policy for a system, we associate each
subject Si in the system’s access-control policy with a distinct partition Pi in the
information-flow policy. The computed information-flow policies for seL4 additionally
always include a distinguished partition PSched, which captures the kernel state asso-
ciated with the scheduler. Formally, the information-flow policy is a binary relation ;

on partitions: we write Pi ; Pj if and only if information is allowed to flow from parti-
tion Pi to partition Pj .

For each system, we derive the information-flow policy ; mechanically from the
system’s access-control policy, following three simple rules. Briefly, the access-control
policy defines what we call the extent of each non-PSched-partition. This is simply the
part of the system state that the policy allows the partition to observe. This includes
the state the partition can read directly as well as any state the kernel reads during a
system call and then reveals to the partition. The rules for calculating ; then say the
following.

(1) Pi ; Pj if the access-control policy allows subject Si to affect any subject in Pj ’s
extent.

(2) PSched ; Pi for all Pi, and PSched ; PSched.
(3) No other information flows are permitted.

These rules ensure that ; never allows any partition, other than PSched itself, to
send information to PSched. This is important since PSched is allowed to send infor-
mation to all other partitions. Indeed, it does so whenever the scheduler schedules
a thread in any such partition. Thus the rules for mechanically deriving ; always
prevent the scheduler from becoming a global transitive channel for information flow.

To assert that all information flows permitted by the kernel are present in the
information-flow policy ;, we use a variant [Murray et al. 2012] of intransitive nonin-
terference [Haigh and Young 1987; Rushby 1992]. Like integrity and authority confine-
ment, but unlike many traditional noninterference definitions, this noninterference
variant is preserved by refinement. This means we can prove it about the kernel’s ab-
stract specification MA, and then conclude that it must hold for MC , that is, for the
code, by Theorem 3.

Informally, our noninterference property aims to show that the information that
flows to each partition comes only from that part of the system that ; says may affect
it. For a partition P , this part is its own extent, plus the extent of whichever partitionQ
is currently running, if Q ; P . To decide this, we take two states of the system that
are equal with respect to P and Q, but that are potentially wildly different in any other
part of the system. We then run for a single step of execution from these two different
states and analyse the two resulting states: they should be indistinguishable to P , that
is, be equal for all state in P ’s extent, although they may be different anywhere else.
If this is true for any such states, we can conclude the resulting information flow to P
does not violate ;.

We lift this notion to multiple execution steps, and denote the resulting property
nonleakage, following von Oheimb’s terminology [von Oheimb 2004], by which our def-
inition is inspired. While we omit its formal definition here, and refer the interested
reader elsewhere [Murray et al. 2013], we note that the resulting formulation sup-
ports intransitive noninterference policies. A classic example of such a policy has three

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:40 Klein et al.

user partitions, PHigh, PDowngrader and PLow; and allows PHigh ; PDowngrader and
PDowngrader ; PLow but does not allow the direct flow PHigh ; PLow to ensure that
all information flowing from high to low must pass through the downgrader. In con-
trast to classical noninterference formulations, our nonleakage formulation also permits
the current partition to depend on the dynamic state of the system–which is necessary
to apply it to a kernel like seL4, in which the currently running partition is defined by
the internal scheduler-state [Murray et al. 2012].

We proved nonleakage for MA after some modifications to the kernel. In particular,
proving confidentiality requires us to show that the scheduler’s decision about which
partition to execute next never depends on the state of any other partition besides
PSched (recall that ; forbids information flows from any other partition to PSched).
This behaviour was not enforced by seL4’s original scheduler, so we modified it to
implement partition scheduling: it uses a static round-robin schedule for choosing be-
tween partitions, while allowing priority-based scheduling of threads within partitions.
This involved updating the kernel’s code and its various specifications together with
the functional correctness proof to capture this new scheduling behaviour.

We also updated the kernel specifications to carefully separate the actions of the
scheduler PSched from those of the other partitions. This required no code changes. In
the automaton of Figure 10, scheduling actions occur within the actions that handle
partition system calls, as part of the transitions from kernel-mode back to user- or idle-
mode. Separating out scheduling actions into their own transitions of the automaton
resulted in a more complicated construction, the details of which are elsewhere [Mur-
ray et al. 2013]. Making these changes for the scheduler gave us new artefacts MA,
ME andMC for which we repaired Theorems 1 and 2, and so Theorem 3.

In order to be preserved by refinement [Murray et al. 2012], nonleakage tolerates no
partition-visible nondeterminism in MA. This is because such nondeterminism here
allows all secrets to be revealed. In the example of Figure 14, consider the the trivial
specification S that nondeterministically sets the value of P1’s variable v1 to either 0
or 1. Suppose S is implemented by the following insecure program P that includes P2’s
variable v2 and leaks its value in v1:

if (v2) v1 = 0; else v1 = 1;

P is a valid refinement of S, and so any confidentiality property that is preserved by
refinement must judge S to be insecure, because it has insecure refinements.

To prevent such cases, we removed the user-visible nondeterminism in MA.
We avoided duplicating the original abstract specification by making it extensi-
ble [Matichuk and Murray 2012]: nondeterministic operations in the original speci-
fication are replaced by placeholders. By defining specification code to fill these place-
holders, one creates an instantiation of the extensible specification. We defined two in-
stantiations: one corresponding to the original nondeterministic specificationMA and
the otherMD

A , which replaced the nondeterministic operations with abstract versions
of their deterministic implementations fromME , removing all of the partition-visible
nondeterminism in MA. This allowed us to have both the original nondeterministic
specification and the deterministic one, without unneeded duplication between the
two.

It was important to keep the nondeterministic specification, because it allows us to
experiment with different implementation choices in the future (like alternative secure
schedulers), plus it enables simpler reasoning about properties that do not require de-
terminism. We repaired Theorem 1 forMD

A and proved confidentiality ofMD
A , allowing

us to conclude confidentiality ofMC . From this result it follows that nonleakage holds
ofMC . Again, the result carries down to the binary level, albeit not as an end-to-end
theorem in a single proof system.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:41

THEOREM 8. Let s0 denote the initial state ofMC and p be an access-control policy
that captures the protection state in s0. Let ; be the corresponding information-flow
policy and nonleakageC denote nonleakage with respect to ; applied toMC . If the kernel
invariants hold for s0 and the policy p is consistent with the authority in s0 and is
suitably well formed, then nonleakageC holds. Formally,

invs(s0) ∧ pas refined(p, s0) ∧ pas wellformed nonleakage(p, s0) −→ nonleakageC .

Here, pas wellformed nonleakage(p, s0) asserts some extra well-formedness conditions
on the access-control policy p and the initial state s0. In particular, we require that all
non-timer interrupts are disabled in s0 and that no authority exists in p to re-enable
them. This is because seL4 does not properly isolate the interrupts of one partition
from the others, so its primitive interrupt-delivery facility must be restricted from use
for confidentiality to hold. In consequence, device drivers must poll for pending inter-
rupts via memory-mapped IO. We also require that no partition has the authority to
destroy any partition-crossing resources, which could be detectable by other partitions
that share those resources and therefore provide a back-channel for communication in
violation of ;. The pas wellformed nonleakage(p, s0) predicate encodes this assertion as
a restriction on the access-control policy p. Neither of these restrictions are uncommon
in high-assurance separation kernels [Murray et al. 2013].

As with the earlier proofs of integrity and authority confinement, we gained a sub-
stantial saving in effort by proving confidentiality over the abstract specification and
then transferring this result to the C code by refinement. The proofs of confidentiality
were completed over a 21 month period, and required about roughly 40.7 pm of effort.
This includes implementing the partition scheduler (≈ 1.8 pm), making the abstract
specification deterministic, and repairing the functional correctness proofs (≈ 18.5 pm),
as well as the proofs of confidentiality themselves (≈ 20.4 pm). While proving confiden-
tiality required about 5 times the effort of proving integrity and authority confinement,
much of this stemmed from having to make the abstract specification deterministic. We
estimate that trying to prove it directly of the C implementation would have required
at least the 20 py of the original functional correctness proof. So proving it about the
abstract specification, despite having to make it deterministic, was the right thing to
do.

5.4. Security Assumptions and Assurance
The corpses of security proofs, broken by novel exploits, litter the history of computer
security. Proofs break when they are not logically correct, their assumptions are unre-
alistic, or the property proved does not mean what one thought it did. We assess the
strengths of our security proofs for seL4 against each of these criteria, and, in doing
so, highlight their assumptions and the level of assurance they provide.

As explained earlier, we can have great confidence that our proofs are logically cor-
rect, since they are carried out in the LCF-style proof assistant Isabelle/HOL, and
all derivations are from first principles. Proof correctness is, therefore, a nonissue in
practice for these proofs.

Our security proofs build on top of the functional correctness proofs, and so inherit
their assumptions which were detailed earlier in Section 4.8. The integrity and con-
fidentiality proofs additionally assume that the system has been correctly configured
in accordance with the access-control policy p. We discuss how to ensure this in Sec-
tion 6.1. The confidentiality proof makes a few further assumptions about the system
configuration mentioned earlier: that all nontimer interrupts are disabled and that no
partition has the authority to destroy any partition-crossing resources. These force de-
vice drivers to poll for interrupts and prevent partition-crossing communication chan-
nels from being destroyed, respectively.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:42 Klein et al.

The security proofs also make a number of extra-logical assumptions, besides those
inherited from the functional correctness proofs. We effectively assume that direct
memory access (DMA) is disabled, which is a common restriction for separation ker-
nels. For confidentiality, our formulation assumes that the static round-robin partition
schedule is allowed to be globally known, so we do not prevent one partition from
knowing about the existence of another, for instance. This implies that all partitions
can learn about the passage of global time: each time a partition is scheduled it can in-
fer exactly how many timer ticks must have elapsed because this is precisely specified
by the static schedule. Our confidentiality property also assumes that user-space par-
titions have effective access to only those user-space sources of information that are
present in MD

A : machine registers and memory pages mapped with read rights. We
need this because we model user-space partitions as deterministic functions of these
inputs. This implies the assumption that any other sources of information exposed by
the platform must be correctly cleared by the kernel on each partition switch.

Each of these assumptions are reasonable for high-assurance systems, and many
are amenable to validation or even formal analysis; however, this is currently left as
future work.

The integrity theorem is extremely strong: if it says that the contents of some mem-
ory cannot be changed by some thread, then we can be sure that the memory will
remain unchanged under the proof ’s assumptions. However, making a similar claim
for confidentiality with respect to inferring memory contents is less straightforward,
because here we must consider covert channels below the level of abstraction of the
formal models of the kernel that may allow information to be inferred despite the con-
fidentiality theorem.

This theorem, while being the strongest evidence produced so far that a general-
purpose OS kernel can enforce confidentiality, is not an iron-clad statement of security.
In particular, there are known covert channels in seL4 not covered by this theorem. For
instance, because none of our formal models talk about time, nonleakage says very little
about the absence of timing channels. Also, our formal machine model says little about
low-level platform state, such as caches etc., and so nonleakage cannot reason about
storage channels arising from this state. Finally, there could be remaining states, that
is, storage channels, below the level of abstraction ofMD

A . However, and perhaps sur-
prisingly, these create channels only if the kernel never reads from such state. This
is because nonleakage does force us to reason about any potential channel below the
level of abstraction ofMD

A if that channel is ever read by the kernel and then its value
exposed to some partition: such a channel would show up as partition-visible nonde-
terminism. However, if there are channels below the level ofMD

A that the kernel never
touches, then nonleakage does not force us to prove anything about such channels. An
example might be an undocumented feature of the hardware platform that is unused
by the kernel. If such a channel exists, and the kernel fails to clear it on a partition
switch, then this could provide a means for partitions to communicate covertly despite
Theorem 8.

Such covert channels must be addressed by complementary techniques. The strength
in our security results is that they first enable such channels to be more easily
identified—we can use the formal statement of the security theorems and their as-
sumptions to guide any security review. Second, they allow whole classes of attack to
be ruled out, such as information leakage to confined subjects without access to timing
sources for Theorem 8.

Ultimately, we see these security results as a step in a larger vision that will for
the first time enable security proofs of whole systems built on top of a verified OS
kernel. seL4 is now the world’s first—and only—general-purpose kernel that provably

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:43

enforces the classic high-level security properties of integrity and confidentiality. This
is further evidence of its suitability for the construction of high-assurance systems.

6. BUILDING TRUSTWORTHY SYSTEMS ON SEL4
Up to this point, the focus of this article has been the seL4 kernel itself together with
the verification of its functional correctness and security properties.

In this section, we turn towards building trustworthy systems on top of seL4, and
the additional properties and analyses that are required from the kernel to do so. In
particular, we present a method for provably bringing a system into a known configura-
tion and protection state in Section 6.1, and we describe a sound worst-case execution
time profile of seL4 in Section 6.2, which is required in real-time critical systems.

6.1. Capability Distribution Language and System Initialisation
The security guarantees presented in the previous section apply to a running system,
ensuring that a security property is preserved during execution. This assumes that
the property is initially established, that is, it assumes the presence of an initial sys-
tem state that corresponds to a given high-level access-control and information-flow
policy. More generally, our approach to building trustworthy systems is to minimise
the trusted computing base by a componentised architecture, where untrusted compo-
nents can be isolated from trusted ones by a careful distribution of authority. Again,
the critical step here is initialising the system into a state satisfying the specified ar-
chitecture. In this section, we describe the language we developed to describe such a
desired initial state [Kuz et al. 2010], and the automatic, verified initialiser program
we use to set up a system in a given configuration [Boyton et al. 2013].

The access-control policy model of seL4 introduced in the previous section is at an ab-
straction level that provides just enough detail to conveniently reason about authority
confinement, integrity and confidentiality. However, it does not contain enough detail
to describe how a seL4-based system should be configured at runtime to enforce a par-
ticular access-control policy. This requires knowing, for instance, not just the abstract
authority that one subject has over another, but the specific concrete capabilities that
confer this authority. For instance, the access-control policy may allow Control author-
ity over a certain thread, but it does not specify if that Control authority is achieved by
a direct capability to the thread’s TCB, or by access to its capability storage. Likewise,
it is not enough to know that a subject has Read authority to a shared memory page,
we also need to know at what virtual address the page should appear in the subject’s
virtual address space, and so on. The capDL [Kuz et al. 2010] level, which constitutes
the remaining verification layer of Figure 3, bridges this gap.

The capability distribution language capDL is a language for describing kernel con-
figurations solely in terms of objects and capabilities. Next to this language with its
formal syntax and semantics, we have constructed an additional specification of seL4
that describes the behaviour of the kernel on capDL states. We call this the capDL
kernel model or capDL kernel specification, denoted MD. It is more abstract than
the abstract functional specification, but less abstract than the access-control policy
model. Descriptions of the configuration of particular systems, written in capDL, are
called capDL system descriptions, which if the context is clear are called just capDL
descriptions for short.

The capDL language describes system states abstractly, prescribing which objects
are present in the system and which capabilities they possess, but not which further
internal state these objects have. As mentioned in Section 5, and as in any real sys-
tem, some authority in seL4 is represented not explicitly in capabilities but instead
implicitly in the system state, for instance in virtual-memory mappings and authority-
relevant thread state. CapDL describes all protection state in terms of capabilities,

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:44 Klein et al.

Hardware
seL4 microkernel
Init Component

Hardware
seL4 microkernel

Components

component-level
specification

+

capDL
system specification

user-level
initialisation component

provably correctly
initialised and

configured system

automatically generate
init component + binary capDL spec

execute at
system startup

automatically generate

system executing

capDL debug
dump

dump at runtime

Fig. 15. Using capDL for correct system initialisation.

making implicit protection state explicit and easier to reason about. The capDL lan-
guage therefore contains more capabilities and capability types than seL4 itself. For
instance, it treats such virtual-memory mappings and authority-relevant thread state
as special capabilities. In other words, capDL describes the complete protection state
of the system, at a level of detail sufficient to initialise the system into a particular
configuration.

Given a capDL system description, we synthesise the input data structures for a
user-level program for initialising the system into this configuration, together with a
formal proof of correctness of this initialiser’s design. The initialiser is the first user-
level task to run after boot time, with full authority to all available memory.

Figure 15 shows the process of using a capDL description to produce a correctly ini-
tialised system: Given a complete capDL description of a system, enriched with infor-
mation on what code should be attached to which threads, we automatically initialise
a system into a state that conforms to the input description. The user-level initialiser
iterates through the capDL description of the desired initial state, creates the appro-
priate objects, gives them the desired authority, connects them up with the appropriate
binaries, and sets them up to run. When this component finishes execution at system
startup, the system will be left in a state that corresponds to this desired capDL state
and can commence normal execution of user-level components.

We have constructed a functional design model for this initialiser, and have proved
its main correctness property: it will initialise the system into a state whose capDL
abstraction is isomorphic to the desired capDL description [Boyton et al. 2013]. An
additional step in future work would be to prove that the C implementation of the
initialiser implements its functional design model correctly. The initialiser correctness
theorem is the following.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:45

THEOREM 9. Let I(D) be the initialiser model applied to a capDL system descrip-
tion D. If D is well formed, and the system starts in a state sb directly after boot time,
then the execution of I(D) started in sb either aborts and halts the system, or, if success-
ful, the state s0 after the execution of I(D) isomorphically conforms to D such that the
same objects and capabilities are present in both D and s0 modulo renaming of physical
addresses.

Well formedness of D excludes system configurations that are not achievable, in
particular configurations that cannot occur in any execution of the kernel, for instance
because they violate kernel invariants. The property also encodes a number of cur-
rent practical limitations in the initialiser, such as supporting delegation of untyped
capabilities [Boyton et al. 2013].

To prove this initialisation correctness property, it is convenient to specify the ini-
tialiser I in terms of kernel behaviour on the level of the capDL kernel modelMD. To
do so, we proved Theorem 10, which states that the capDL model of seL4 is correctly
implemented by the kernel.

THEOREM 10. The abstract specification MA of seL4 refines the specification of
kernel behaviour on the capDL levelMD.

This theorem says that the capDL kernel model, which specifies kernel behaviour in
terms of capDL states, is correct. Composed with the previous Theorem 3 we get that
the C code is a correct refinement ofMD, and with binary verification also the binary.
Further composed with Theorem 9, this theorem ensures that the initialiser correct-
ness proof interacts with the kernel behaviour as implemented by the real kernel.

The proof proceeds as usual in refinement: we define a correspondence relation be-
tween capDL states and the abstract functional specification of seL4 and then prove
that it is preserved in forward simulation. The difference to our previous refinement
proofs is that the capDL model concentrates on only the protection state of the sys-
tem and contains a significantly larger degree of nondeterminism. It does not contain
information about the contents of memory, for instance. With this amount of abstrac-
tion, the capDL level alone would not be sufficient to prove functional correctness of
user-level components. For configuring a system, however, it provides precisely what
is necessary.

To initialise a system in accordance with a particular security policy, for instance
an information-flow policy, one first describes how the system should be initialised
using a capDL description. To check that this configuration will enforce the policy, we
apply a sound mapping from capDL to the access-control policy model, and from there
use the results of Section 5 to check that the obtained access-control configuration is
consistent with the security policy to be enforced. The initial capDL description of the
system need not be written by hand, but can be generated by a high-level component-
based toolchain [Kuz et al. 2010], which can automatically check that the generated
capDL description corresponds with the policy to be enforced. Theorem 11 states that
the mapping from capDL description to the access-control policy is sound and indeed
covers all relevant protection state in the system.

THEOREM 11. Translating a kernel state from the abstract level to the access-
control policy level is equivalent to translating it first to capDL and then to the policy
level.

This theorem enables security reasoning starting from capDL system descriptions
used for system initialisation, as just explained. It allows one to map a capDL descrip-
tion, which describes a state of the system, to the corresponding access-control policy.
This mapping produces the same result as if we had mapped directly from the kernel

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:46 Klein et al.

Fig. 16. Visualisation of a capDL dump from an example system.

state to the access-control policy. It implies that a capDL state description captures all
information relevant to the protection state of an access-control policy, that is, instead
of having to know the precise memory content of the machine, it is enough to reason
about the information present in a capDL description to apply the security theorems
described in Section 5.

Besides allowing provably correct system initialisation, the capDL language also
facilitates run-time system debugging, as indicated in Figure 15. Specifically, we use
capDL to describe protection state dumps of running seL4 systems if they are compiled
for debug mode. This enables system developers to inspect the capability state for de-
bugging and error analysis. Such systems dumps, as well as generated or hand-written
capDL descriptions, can be visualised as graphs that have kernel objects as nodes and
capabilities as edges. As illustrated in the example in Figure 16, visualisation makes
it easy to see clusters and, for instance, determine if a particular component allocates
a large amount of specific objects. The graph is remarkably dissimilar to the function
call graph of seL4 in Figure 1. It clearly shows clusters of different, separate com-
ponents that are connected through small interfaces. This is the idea: concentrating
complexity once in the microkernel so that modular programming becomes possible at
user level. The image in Figure 16: is simplified for print. In our tool, different object
types can appear colour coded, for instance, and the graph is interactively zoomable
and expandable.

Figure 16 depicts a snapshot of a running seL4-based system, called the secure access
controller (SAC) [Andronick et al. 2010]. The snapshot was taken just after system ini-

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:47

tialisation. The system at this point in time contained three components; each “island”
in the figure forms some sub-part of a component. The small bottommost island that
connects the two larger ones directly above it is a timer component; it sends notifica-
tions to the two connected components, which are a router manager (left) and the SAC
controller (right). These larger components each possess a number of Untyped mem-
ory capabilities, so that they can dynamically allocate new memory as they run, which
is why they are much larger than the timer component. The remaining four top-most
islands are parts of the address spaces of the router manager and the SAC controller.
These address spaces are large, because each contains an entire GNU/Linux instance
that the component in question starts up later in its execution. The SAC controller
shares an Endpoint with the router manager, allowing the former to send messages
to the latter, which is why those two islands are connected in the figure. Those two
components do not, however, share any memory between their address spaces, as the
figure shows.

In summary, the theorems in this section allow us to correctly initialise seL4-based
systems into a known state that enforces a particular desired security policy. In ad-
dition, the capDL language and its visualisation tools are useful development tools in
practice.

6.2. Timeliness Analysis
6.2.1. Timeliness Requirements. Functional correctness and the noninterference proper-

ties discussed previously are requirements for building provably secure systems. For
many safety-critical systems this is not enough. Many such systems are of a real-time
nature and need guarantees about the timeliness of operations.

Examples are medical implants and avionics. While in the past such systems were
typically implemented on dedicated microcontrollers, using a simple real-time execu-
tive without memory protection or dual-mode execution, mushrooming functionality is
creating a demand for mixed criticality systems [Barhorst et al. 2009], where highly
critical (often life-critical) functionality is located on the same processor as less critical
code.

Highly critical code is subject to strict assurance and certification requirements. It
is usually also small and relatively simple, which increases the likelihood of correct
operation. Less critical code, however, tends to be more complex and is subject to less
stringent or no certification. In a mixed-criticality system it must be possible to certify
the most critical code without considering any of the less-critical code.

Mixed-criticality systems are therefore only possible if the highly critical code is
strongly isolated from any less-critical code. The isolation is as critical as the highly
critical code itself, and therefore subject to the same assurance and certification re-
quirements.

seL4, as described so far, provides strong spatial isolation. To make it an acceptable
platform for mixed-criticality systems, it must also provide strong temporal isolation.
Specifically, it must be possible to analyse the timeliness of execution of the highly
critical code without making any assumptions on the behaviour of the less critical
code.

This requires an analysis of the temporal behaviour of seL4. We can assume that
the highly critical code executes at a higher priority than any less-critical code, so it
cannot be preempted. However, an interrupt which invokes highly critical code must
be delivered to its user-level handler with a bounded latency, no matter what code is
executing at the time the interrupt is raised. We therefore need to establish an upper
bound on the worst-case interrupt latency (WCIL).

Interrupts can happen during user-mode or kernel-mode execution. The worst-case
latency of an interrupt happening in user mode is the worst-case latency of entering

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:48 Klein et al.

interrupt mode, plus the worst-case execution time of the kernel’s interrupt handler,
including the delivery of the interrupt message to the user-level handler. However, if
the interrupt happens during kernel execution (where interrupts are disabled except
for a small number of carefully placed interrupt points, see Section 3.4), this time is
extended by the worst-case latency of reaching the next preemption point or regular
kernel exit.

6.2.2. Approach. WCET analysis is well established in the real-time community [Wil-
helm et al. 2008], and there exist a number of research and commercial analysis tools.
However, WCET analysis is normally performed on critical application code, or the
short critical sections of a fully-preemptible real-time executive. WCET analysis even
of single-mode real-time kernels has proven difficult [Lv et al. 2009b], and, prior to
seL4, the only public evidence of WCET analysis of operating systems is for single-
mode real-time executives without support for virtual memory. Industry practice is
still to measure interrupt latencies under high load and apply a safety factor.

Furthermore, any previously analysed systems inevitably are fully preemptible,
meaning that the code paths to be analysed are very short, and very pessimistic as-
sumptions can be made, such as simply adding up the worst-case latencies of all in-
structions in the critical section.

For a nonpreemptible kernel, such as seL4, some of the code paths that must be
analysed are quite long, thousands of instructions. Simply adding up all worst-case
instruction latencies would lead to massive pessimism of orders of magnitude. Such
pessimism is not tolerable for many battery-powered devices, especially medical im-
plants, which must operate autonomously for years.

We found no existing tools which would scale to the complexity of code and length of
the nonpreemptible code paths in seL4. It is possible that some of the commercial tools
might scale, but they tend to only support low-end microcontrollers that are typically
used in deeply-embedded systems (running unprotected real-time OSes).

We therefore had to build our own WCET tool chain [NICTA 2013b]. We adapted
the open-source Chronos framework [Li et al. 2007], added a control-flow graph gen-
erator for ARM binaries, and implemented a model of the ARM architecture and the
ARM1136 [ARM Ltd. 2005] and ARM A8 pipelines [Blackham et al. 2011]. Chronos
is based on the implicit path enumeration technique [Li et al. 1995], which extracts
from the control-flow graph an integer linear programming (ILP) problem. We use an
off-the-shelf ILP solver (ILOG CPLEX from IBM) to solve these for the WCET. This ap-
proach is explained in detail elsewhere [Blackham et al. 2012]. Chronos also performs
a cache analysis, which determines whether a memory access is a guaranteed hit, a
guaranteed miss, or undecided (and handled pessimistically).

The analysis virtually inlines all function calls in order to extract a complete ex-
ecution path. This tends to create many infeasible paths, which lead to an order-of-
magnitude pessimism if not eliminated. Furthermore, the analysis needs worst-case
iteration counts for all loops, many of these cannot be determined by local static rea-
soning. In line with current practice, we manually determine loop bounds and infeasi-
ble paths and feed this information into the analysis. While, we have made significant
progress in automating this (error-prone) process, or at least proving its results correct,
this is not yet complete [Blackham and Heiser 2013].

A number of earlier kernel-design decisions were instrumental to make this analy-
sis feasible. The event-based model (see Section 3.4) helps as it hides the complexity
of context switching, while seL4’s memory model (Section 3.3) avoids much of the com-
plexity that normally comes with virtual-memory management.

6.2.3. Kernel Changes for Improving WCET. Although seL4 had been designed to be real-
time capable (see Section 3.4), the original implementation failed to follow the appro-

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:49

priate design pattern in a number of places, and the initial analysis produced worst-
case latencies of around one second!

Some of this was easy to fix, by ensuring that the incremental-consistency pattern
was used throughout, and placing preemption points in appropriate places; deletion
code was usually the culprit. The obvious value of the WCET tool is that it provides
guidance to this process, and in many cases we ended up with a better implementation,
although in other places, the need to place preemption points made the implementa-
tion more complex (and requires significant re-verification effort).

An example of the latter is a specific case of partial deletion: the revocation of a
badged capability (see Section 2.1). When a badge is revoked, any pending IPC op-
erations using that badge must be aborted; this means removing from the relevant
endpoint’s message queue any IPCs using that badge. As the revocation must be pre-
emptible, other threads may in the meantime keep using the endpoint (with different
badges). The situation is further complicated by seL4’s principle of not performing dy-
namic memory allocation: all of the revocation state that needs to be retained across
preemptions must be stored in the zombie capability.

Another source of long latencies was a classic L4 implementation trick called lazy
scheduling [Liedtke 1993]: a thread that blocks during an IPC is not removed from
the scheduler’s ready queue, as it is likely to become unblocked soon (e.g., when a
server replies to a request). When the scheduler is invoked at the end of a time slice,
it removes all blocked threads from the ready queue, until it finds one that is actually
runnable. In the worst case, this operation is limited by the number of threads in the
system.

Here the solution was a redesign of scheduling, dubbed Benno scheduling [Blackham
et al. 2012], which has the same average-case behaviour while avoiding the pathologi-
cal worst case of lazy scheduling: When a thread unblocks during IPC, it is not imme-
diately entered into the ready queue (as it may soon block again). Like lazy scheduling,
this avoids queue manipulations during IPC, but now the cleanup is simple and O(1):
when the time slice expires, only the preempted thread may have to be moved (from
an endpoint waiting queue to the ready queue).

The implementation is broken up into small changes and affects almost every sched-
uler interaction in the kernel. In particular, as mentioned previously, it critically inter-
acts with IPC code. In addition to breaking a small number of existing invariants, the
changes led to a new global kernel invariant, which states that all threads in the ready
queue are runnable. Proving correctness of the new implementation and establishing
the new invariant required a significant amount of work, 9 pm.

Some changes introduced to improve WCET are also beneficial for best- or average-
case performance, and should arguably have been used from the beginning, but were
originally shunned to keep the implementation simple. An example is the scheduler
queue, where we introduced the standard technique of a priority bitmap to speed up
the search for the highest-priority thread.

At the time of writing, not all of these changes have been verified. The scheduler
bitmap is presently unverified, but is expected to be straightforward as the data struc-
tures and algorithms are simple and the changes well localised. The badge revocation
changes are also yet to be verified, and while we have no doubt that this is tractable,
it will require a significant effort.

6.2.4. Results. Table II shows the resulting WCETs of the kernel. We obtained these
on the same KZM evaluation board that was used for the results of Table I.

The rows in the table represent the longest nonpreemptible path segment in the
code reachable from each of the kernel’s entry points: the standard system call trap,
the undefined-instruction trap, the page-fault and the interrupt handler.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:50 Klein et al.

Table II. Computed and Observed Worst-Case Execution Times for
the Various Kernel Entry Points (from [Blackham et al. 2012])

Entry point Computed Observed Ratio
System call 436µs 81µs 5.4
Undefined instruction 77µs 43µs 1.8
Page fault 78µs 41µs 1.9
Interrupt 45µs 14µs 3.1

In the table, the “computed” value refers to the output of our WCET analysis (with
infeasible paths eliminated). It represents a safe upper bound on the true WCET, while
the “observed values”, obtained from measurement on the board, represents a safe
lower bound. The difference between the two values has two possible sources: the “ob-
served” value might be too optimistic (because we failed to trigger a higher-latency
path) or our analysis too pessimistic. It is most likely the latter (analysis pessimism),
although, for safety, we have to assume the former.

Sources of pessimism are the cache analysis and pipeline modelling. Our processor
has a split 4-way L1 cache with “random” replacement. We must model this pessimisti-
cally, assuming a direct-mapped cache of 1/4 capacity. We can force the actual cache
into this configuration (by locking three of the four ways with useless content), which
has negligible effect on the observed execution time. Hence, modelling of the cache re-
placement policy is not a significant source of pessimism. However, modelling of cache
content in Chronos is imperfect and a possible source of pessimism.

Other forms of caching potentially also add to pessimism. We disabled the branch
prediction unit, since it is underspecified on our hardware, and actually worsens
WCET, as the latency of a mis-predicted branch is higher than the latency of a branch
with prediction disabled. We locked the kernel window in the TLB to avoid TLB misses
in the kernel.

Modelling timings of the processor core is inevitably pessimistic, as it is under-
specified in the documentation. Many instructions are documented as having a range
of execution times, with no insight on the microarchitectural state this depends on, we
therefore always have to assume the worst case.

For use in mixed-criticality systems, the most interesting timing figure is the worst-
case interrupt latency (WCIL). This is the sum of the latency of the longest non-
preemptible section (in the system-call handler) and the latency of the interrupt han-
dler itself. At present, the safe estimate for this is 481µs, while the actually observed
latency is 95µs, a factor-five pessimism.

Interrupt latencies of the order of half a millisecond are tolerable for many but not
all hard real-time systems. Commercial real-time OSes typically claim WCIL of the
order of a few microseconds, but these kernels do not provide virtual memory, usually
not even any form of memory protection. Also, given the industry-standard approach
to WCET analysis (i.e., based mostly on testing), there is typically significant doubt
about the soundness of such claims.

Using our tool chain, we performed a WCET analysis of a commercial RTOS sup-
porting virtual memory, QNX [QNX 2012]. We compared this with what we think is
achievable in seL4 if the requirement for verification was dropped. We found that it
should be possible to get the WCIL of the nonpreemptible seL4 kernel to within 50%
of that of the fully preemptible QNX (60µs vs 41µs) [Blackham et al. 2012].

We conclude that, in principle, the design of seL4 lends itself to real-time perfor-
mance that is comparable to that of commercial real-time OSes which have been de-
signed with real-time latencies as the primary concern. However, in order to achieve
this, we would have to introduce preemption points in many of the more complex op-

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:51

erations in the kernel, resulting in extra invariants, most of which would be hard and
costly to prove.

We therefore accept for now that our interrupt latencies are about an order of mag-
nitude larger than what seems achievable. However, our experience also shows that
one should be highly sceptical about the safety of any real-time operating system (of
otherwise comparable capabilities) that claims significantly lower WCIL: such a sys-
tem’s implementation is unlikely to be much simpler than that of seL4, and if we find
our preemption invariants hard to prove, we expect such a system hard to get free of
concurrency bugs (especially if it is fully preemptible).

7. EXPERIENCE AND LESSONS LEARNT
7.1. Performance
IPC performance is the most critical metric for evaluation in a microkernel in which
all interaction occurs using variations of IPC, including interrupt delivery. We have
evaluated the performance of seL4 by comparing IPC performance with L4, which has
a long history of data points to draw upon [Liedtke et al. 1997]. The IPC value com-
monly reported is the best-case number of cycles consumed in kernel mode to deliver
a zero length message. Cache misses are usually avoided by careful fastpath construc-
tion. This represents the upper bound (lowest cycle count) of IPC performance. Cache
contention and increasing message size will result in higher cycle counts. Unlike pre-
viously reported L4 kernels, seL4 has an asymmetric IPC path with a reply IPC being
slightly more complex than a send. We report the average of the two directions when
comparing seL4 with previously reported one-way results. Note the best-case reported
here was obtained with multiple runs using performance counters to confirm the ab-
sence of cache conflicts and TLB misses.

Publicly available performance for the Intel XScale PXA 255 (ARMv5) is 151 in-
kernel cycles for a one-way IPC [L4HQ 2007]. Our experiments with the open-source
OKL4 2.1 [Open Kernel Labs 2008] on the platform we are using (Freescale i.MX31
evaluation board based on a 532MHz ARM1136JF-S which is an ARMv6 ISA) produced
206 cycles as a point for comparison. Both of these kernels use a hand-crafted assembly
fastpath.

We previously reported 224 cycles [Klein et al. 2009b] for a one-way IPC for the (at
the time unverified) optimised C fastpath. This figure fluctuated over time. It initially
increased to 259 cycles, when the formal verification of the IPC fastpath uncovered a
small number of corner-case defects. Fixing these required adding additional argument
checking, leading to an increased IPC cost.

Further optimisation has reduced the cycle count of the verified fastpath to 227 cy-
cles. Our best unverified performance to date is 188 cycles. There is no fundamental
reason why the optimisations required to get there cannot be verified, but that does not
necessarily mean they will be. The gap in performance between verified and unverified
is pragmatic—the IPC fastpath is generally a moving target that is dependent on the
specific processor generation, and also includes several minor optimisations of vary-
ing invasiveness for usually small gains. Thus, the performance of the verified IPC
fastpath lags as optimisations mature or become broadly applicable, or as a specific
processor is targeted. More generally, there is a diminishing return on re-verification
costs.

With the benefit of four years of experience, the conclusion remains the same as
previously reported: verified seL4 performance is close to that of the fastest L4 kernels.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:52 Klein et al.

7.2. Verification Effort
This section discusses lessons learnt from analysing the effort of the kernel develop-
ment and its associated formal proofs. First, we look at the effort of developing the seL4
kernel itself, and in particular the impact of the constraints of verifiability. Secondly,
we analyse the main influencing factors in the effort of its proofs of functional correct-
ness, optimisation and security. Finally, we analyse the balance in benefits gained in
terms of bugs found and level of assurance achieved.

7.2.1. Process and Project Phases. Before looking into effort distribution, and in order
to understand how the effort numbers associated with different parts of the project
may relate to each other, we first show how the different phases of the project can be
observed in version control commit statistics.

The kernel development and its proof of functional correctness were conducted in
parallel, as overlapping and mutually dependent activities. This was enabled by the
seL4 design process, using a Haskell prototype from which the implementation can
be derived and that can be formally linked to the abstract specification, as described
in Section 2.2. We conducted this work (kernel development and correctness proof) in
three phases, each involving both the kernel and the verification teams.

The phases are observable in the evolution of the sizes of code, models and proofs,
represented in the graphs of Figure 17. We obtained these graphs by counting, for each
artefact, and for every commit in the version control system from November 2004 up
to December 2012, the total number of actual lines of code/model/proof, excluding any
empty lines, comments, Isabelle documentation, etc. The time frame reaches into an
initial pilot project for seL4 at the beginning, covers the actual design and functional
correctness proof from April 2005 to July 2009 and stretches over the development
of new security proofs as well as the binary translation validation. We used SLOC-
Count [Wheeler 2001] for C and Haskell code, and a similar, home-brewed counting
tool for Isabelle models and proofs that ignores comments and white space.

In earlier work [Andronick et al. 2012], we had analysed the project from a process
point of view, where similar graphs were provided, but for the functional correctness
proof only, using a raw lines-of-code count (LOC). The sizes of the four representations
of the seL4 kernel (C source code, Haskell prototype, Isabelle abstract specification,
and the capDL-level specification of the kernel in Isabelle) are represented in Fig-
ure 17(a). The sizes of the two refinements of the correctness proof (“refinement1” re-
lating the Haskell code to the abstract specification, and “refinement2” relating the C
code to Haskell) are represented in Figure 17(b) (together with the capDL refinement
proof, and the security proofs, enlarged in Figure 18).

In a first phase, the kernel team designed and implemented an initial kernel with
limited functionality (no interrupts, single address space and generic linear page ta-
ble) in Haskell. This is represented by the steep increase in SLOC in the “Haskell”
graph in Figure 17(a), followed by a cleanup reducing the line count. During this time,
the verification team mostly worked on the verification framework and generic proof
libraries (not shown in the graphs). In a second phase, the verification team developed
the abstract specification (first steep increase in the “abstract” graph in Figure 17(a))
and performed the first refinement, between this abstract specification and the initial
kernel design (large increase in “refinement1” graph in Figure 17(b), up to end of phase
2). During this time, the development team completed the design and Haskell proto-
type (second increase in the “Haskell” graph, again followed by a cleanup phase), and
then later wrote the kernel C implementation (very steep increase in the “C” graph in
Figure 17(a)).

In addition, as the first refinement was revealing design bugs (i.e., mismatches be-
tween the design in the Haskell prototype and the abstract specification), those bugs

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:53

0"

2000"

4000"

6000"

8000"

10000"

12000"

Nov+04" Nov+05" Nov+06" Nov+07" Nov+08" Nov+09" Nov+10" Nov+11" Nov+12"

cleanup""

new"features"

bug"fixes"

phase&1& phase&2& phase&3& phase&4&

abstract'

C'

Haskell'

capDL'

kernel&init,&
interrupts,&
cap&dele5on&

page&tables&and&
address&spaces&

Ju
l+0

5"

N
ov
+0
7"

Ju
l+0

9"

(a) Size of code/spec artefacts (X: time; Y: SLOC)

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

160000"

Nov+04" Nov+05" Nov+06" Nov+07" Nov+08" Nov+09" Nov+10" Nov+11" Nov+12"

access%
infoflow%

refinement2%

refinement1%

cleanup""

new"features"
phase&1& phase&2& phase&3& phase&4&

capDL5to5abstract%
fast&path&

incremental&retype,&
and&virtual&memory&

Ju
l+0

5"

N
ov
+0
7"

Ju
l+0

9"

(b) Size of proofs (X: time; Y: SLOC)

Fig. 17. Size of code, specs and proofs.

were fixed in the Haskell prototype. Such fixes are sometimes completed in a separate
branch in the version control system, then merged back to the main repository when
satisfactory (explaining the oscillations in the “Haskell” graph during bug fixes). Each
larger new feature that was added to the kernel Haskell prototype in order to complete
the design was gradually introduced in the abstract specification. Note that this pro-
cess could occur in parallel to other activities and in particular is spread over multiple
phases. For instance, we clearly see two main feature additions in the “abstract” graph
in Figure 17(a); in phase 2, this corresponds to the addition of interrupts, capability
deletion, and kernel initialisation; in phase 3, this corresponds to the addition of page
tables and associated API calls.

The third phase consisted of extending the first refinement step to the full kernel
(increase in “refinement1” graph in phase 3) and performing the second refinement

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:54 Klein et al.

0"

5000"

10000"

15000"

20000"

25000"

30000"

Nov*10" Feb*11" May*11" Aug*11" Nov*11" Feb*12" May*12" Aug*12" Nov*12"

access%

infoflow%

Fig. 18. Size of security proofs—detailed.

(steep increase in “refinement2” graph). The big drop in the “C” graph in phase 3 is an
optimisation in our bitfield generation tool [Cock 2008], mentioned in Section 4.3, to
now only generate functions used in the kernel.

The correctness proof for the full kernel was completed in July 2009. This event
characterises the transition to the fourth phase of development. The two refinements
that make up the functional correctness proof entered a maintenance phase where we
keep the proof up-to-date with kernel development. Later, this was complemented by
further work (capDL, security properties and binary verification) which added further
verification artefacts but also led to further specification and implementation changes.
Each modification to the kernel or to its formal models requires re-establishing all of
the formal proofs that are impacted by the change.

Note that we have integrated all proofs into an automated proof checking suite, sim-
ilar to an automated regression-test suite, but using machine-checked formal proofs
instead of executable tests. This provides an automatic check, after each commit into
the version control system, of the state of all the existing formal proofs, and identifies
which specific portions of the proof must be re-established.

We created the capDL specification in two steps, first defining an initial, compre-
hensive subset, and then adding the more complex operation of capability deletion
(second increase in the “capDL” graph in Figure 17(a)). The proof of refinement with
the abstract specification happened largely in parallel, incrementally verifying the op-
erations as they were being defined in the capDL specification.

The access-control model, the proof of authority confinement, and the proof of in-
tegrity, were all developed together, indicated by the “access” graph in Figure 18. Work
on these proceeded at about the same time as the initial capDL refinement proof. The
spike in activity around February 2011 reflects a “sprint to the finish” in order to meet
a paper submission deadline.

A similar effect is present in the confidentiality proofs, captured by the “infoflow”
graph in Figure 18, at November 2012. The bulk of initial work here was performed
by November 2011, at which point the proofs were complete except for those parts of
the kernel with user-visible nondeterminism (see Section 5.3). We spent the next 10
months or so making the kernel’s abstract specification deterministic.

Once we had removed the user-visible nondeterminism from the abstract specifica-
tion, we extended the confidentiality proof to cover more of the kernel API, until it

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:55

eventually covered the entire kernel around October 2012. We completed this proof in
November 2012, spending the last month or so on tying together the confidentiality
lemmas about each of the internal kernel APIs to produce the top-level confidentiality
theorem for the whole system. This involved constructing a more elaborate system au-
tomaton (explained in detail elsewhere [Murray et al. 2013]) and, as well as phrasing
the confidentiality statement, proving a number of invariants over it. The dramatic
spike in output during October 2012 indicates this.

During phase four, the kernel team also worked on further development of the kernel
API and various optimisations, mainly the fastpath optimisation and changes targeted
at improving the kernel’s worst-case execution time. In this phase kernel modifications
were generally tested in an experimental branch of the kernel source. Committing
them to the main-line kernel implies an obligation for reverification, which is only
done after discussions with the verification team.

For instance, as shown in Figure 17, the fastpath induced reverification mainly in
the second refinement (first increase in “refinement2” graph in phase 3). The low im-
pact of such implementation optimisations on the design verification (first refinement)
shows that the process achieves a separation of concerns between the design and the
implementation.

Large changes (highlighted as “new features” in both “refinement1” and “refine-
ment2” graphs) were due to larger API changes (e.g., a model of virtual memory, or
changing the retype operation to be incremental), as well as the production of the
extensible and the deterministic specifications required by the information-flow verifi-
cation.

Figure 19 summarises the effort required for the development of various proofs
about the seL4 kernel. Effort is given in person-years (py) required to complete each
task; for smaller tasks, we provide person-months (pm). We have recently undertaken
rigorous effort counting for some of the activities, analysing every contributor’s effort
per week. These are indicated with a star in the table. The nonstarred effort numbers
are rough, conservative estimates. It should be noted that some starred numbers, for
example, for the integrity and confidentiality proofs, improve upon the previously re-
ported conservative estimates for these tasks [Sewell et al. 2011; Murray et al. 2013].

7.2.2. Kernel Development Effort. As shown in Figure 19(a), about 2 py went into the
Haskell prototype (over all project phases), including design, documentation, coding,
and testing. The initial C translation was done in 3 weeks, with a total of about 2 pm
for the C implementation. This results in a total effort of 2.2 py for the whole seL4
microkernel development. This compares well with other efforts for developing a new
microkernel from scratch: The Karlsruhe team reports that, on the back of their ex-
perience from building the earlier Hazelnut kernel, the development of the Pistachio
kernel cost about 6 py [Dannowski 2009].

SLOCCount [Wheeler 2001] with the “embedded” profile estimates the total cost of
seL4 at 4 py. Hence, there is strong evidence that the detour via Haskell did not in-
crease the cost, but was in fact a significant net cost saver. This means that our devel-
opment process can be highly recommended even for projects not considering formal
verification.

7.2.3. Correctness Proof Effort. The effort for proving the correctness of seL4 is signif-
icantly higher than developing the kernel in the first place, in total about 20 py, as
shown in Figure 19(b). The abstract specification took about 4 pm to develop. The exe-
cutable specification only required setting up the translator; this took 3 pm. The total
of 20 py for the proofs includes significant research and about 9 py invested in formal
language frameworks, proof tools, proof automation, theorem prover extensions and
libraries. The total effort for the seL4-specific proof was 11 py. We expect that replicat-

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:56 Klein et al.

Development
Effort

Total Effort Artefacts Effort

2.2 py
Haskell 2 py

C implementation 0.2 py (2 pm)
(a) Overall Effort for seL4 Development

Correctness
Proof Effort

Total Effort Artefacts Effort

20.5 py

Generic framework & tools 9 py

seL4 formal
models

Abstract Spec 0.3 py (4 pm)
Exec. Spec 0.2 py (3 pm)

seL4 formal
proofs

Refinement 1 8 py
Refinement 2 3 py

(b) Correctness Proof Effort

Optimisation
Proof Effort

Total Effort Artefacts Effort
0.4 py * Fast Path 0.4 py (5 pm) *

(c) Optimisation Proof Effort

Security
Proof Effort

Total Effort Artefacts Effort

4.1 py *

Integrity 0.6 py (7.4 pm) *

Confid.

Scheduler
Update 0.2 py (1.8 pm)

*

Determinising
Spec and

Updating Proofs
1.5 py (18.5 pm)

*

Confidentiality
Proofs

1.7 py (20.4 pm)
*

(d) Security Proof Effort

Binary
Verif. Effort

Total Effort Artefacts Effort
2 py Binary Verification 2 py

(e) Binary Verification Effort

CapDL
Effort

Total Effort Artefacts Effort
capDL Spec 0.6 py (7.2 pm) *

2 py * capDL-to-Abstract Spec
refinement proof

1.4 py (17.2 pm) *

(f) capDL Effort

Fig. 19. Development and Proof Efforts (starred numbers come from rigorous effort counting, others are
conservative estimates)

ing a similar verification for a new kernel, using the same overall methodology, would
reduce this figure to 6 py, for a total (kernel plus proof) of 8 py. This is only twice the

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:57

SLOCCount estimate for a traditionally engineered system with no assurance. Our
total cost per SLOC is $362 for the whole 22.7 py; it would be $127/SLOC for the esti-
mated 8 py involved in replicating it for a new kernel. This is low cost for an assurance
level that is higher than what is required for EAL7, which is the Common Criteria’s
highest level of certification. EAL7 does not require the code to be formally linked
to the design model, and the industry rule-of-thumb for the lower EAL6 is already
$1 k/LOC.3

The breakdown of effort between the two refinement stages is illuminating: The first
refinement step (from abstract to executable specification) consumed 8 py, the second
(to C semantics) less than 3 py, almost a 3:1 breakdown. This is a reflection of the
(intentionally) low-level nature of our Haskell implementation, which captures most
of the properties of the final product. This is also reflected in the proof size—the first
proof step contained most of the deep semantic content. 80% of the effort in the first
refinement went into establishing invariants, only 20% into the actual correspondence
proof. We consider this asymmetry a significant benefit, as the executable specifica-
tion is more convenient and efficient to reason about than the C level. Our formal
refinement framework for C made it possible to avoid proving any invariants on the C
code, speeding up this stage of the proof significantly. We proved only few additional
invariants on the executable specification layer to substantiate optimisations in C.

7.2.4. Optimisation Proof Effort. The largest performance optimisation that has been in-
cluded in the verified version of the kernel is the fastpath, described in Section 4.6. The
effort was about 5 pm, including updates to the second refinement as well as verifica-
tion of the executable specification of the fastpath. This verification was conducted by
one experienced engineer working part time on this project over 7 months. While that
number may appear large, the optimisation in question is substantial and required
developing new extensions to the verification framework.

Other, small-scale local optimisations that took about 1 day to implement took about
2–3 days to verify for one person. Verification does not always need to lead to more ef-
fort. In one case, knowledge from invariants in the verification reduced an optimisation
patch from about 20 source lines to just a single line.

7.2.5. Security Proof Effort. A major benefit of the functional correctness proof is the
greatly reduced effort required for code-level security proofs (see Figure 19(d), also
highlighted in the proof sizes difference in Figure 17(b)). The strength of the refine-
ment proof ensures that any property that is preserved by refinement can now be
proved about the abstract, much simpler model, and is then guaranteed to hold for the
kernel source code with no additional effort.

This effort reduction is illuminating for the integrity and authority confinement
proofs: both are naturally expressible as Hoare triples and therefore directly preserved
by refinement. The proof can thus simply target the abstract specification from the
functional correctness proof, representing an effort of merely 7.4 pm, an order of mag-
nitude less than what we estimate it would have required if done directly on the source
code level.

The confidentiality statement is not preserved by refinement without additional con-
ditions. As we explained in Section 5.3, in order to be able to prove this statement only
at an abstract level while keeping the code-level guarantee, we had to make the ab-
stract specification deterministic, and thus update the functional correctness proofs to
hold for this new abstract specification. This took about 18.5 pm. We also had to modify
the scheduler to avoid a global transitive channel for information flow via scheduler
decisions, which took about 1.8 pm. The proofs of confidentiality themselves took about

3Klein et al. [2009b] contained an embarrassing typo, claiming $10 k/LOC.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:58 Klein et al.

!
!
!

250$

250$

16$

144$

44$

54$

34$

0!

100!

200!

300!

400!

500!

600!

C!code! Exec!Spec!+!
Abstract!

Bugs!
VC*!
Bugs!
Bugs!
VC*!

required/revealedbyRefinement'1$

required/revealedbyRefinement'2'

*Changes!for!Verifica(on+Convenience+

revealedbytes7ng$
$

Fig. 20. Number of changes on the codes and models required by the verification.

20.4 pm, leading to a total effort of 40.7 pm to have code-level proof that seL4 enforces
confidentiality. While this represents about 5 times the effort of proving integrity and
authority confinement, it is massively smaller than what proving it directly on the C
implementation would have cost.

Overall, the security proofs represent only $78/SLOC, a very low figure for the
strongest assurance ever produced about the security of a general-purpose OS kernel.

7.2.6. Binary Verification Effort. Computing the effort for the binary verification is less
precise as it spanned 20 months and involved two people from different institutions,
both contributing to other activities in parallel. The total effort is roughly 2 py, one
person contributing 1.5 py, and the other 0.5 py.

7.2.7. CapDL Refinement Effort. The capDL specification of seL4 required an effort of
7.2 pm, involving three main contributors. The refinement proof between the capDL
model of seL4 and its abstract specification was conducted in about 9 months for a total
effort of 17.2 pm. It involved a team of four to five people, with one main contributor
providing 9.7 pm alone.

7.3. Bugs Found
7.3.1. Defects Revealed and Changes Required by the Correctness Proof. Figure 20 sum-

marises the changes to the code and models that were required by the refinement
proofs.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:59

The first refinement step led to some 300 changes in the abstract specification and
200 in the executable specification. About 50% of these changes relate to bugs in the
associated algorithms or design, the rest were introduced for verification convenience.
The ability to change and rearrange code in discussion with the design team (to predict
performance impact) was an important factor in the verification team’s productivity. It
is a clear benefit of the approach described in Section 2.2 and was essential to complete
the verification in the available time.

By the time the second refinement started, the kernel had been used by a number
of internal student projects and the x86 port was underway. Those two activities un-
covered 16 defects in the implementation before verification had started in earnest,
the formal verification has uncovered another 144 defects and resulted in 54 further
changes to the code to aid in the proof. None of the bugs found in the C verification
stage were deep in the sense that the corresponding algorithm was flawed. This is be-
cause the C code was written according to a very precise, low-level specification which
was already verified in the first refinement stage.

Algorithmic bugs found in the first stage were mainly missing checks on user sup-
plied input, subtle side effects in the middle of an operation breaking global invariants,
or overly strong assumptions about what is true during execution. The bugs discovered
in the second proof from executable specification to C were mainly typos, misreading
the specification, or failing to update all relevant code parts on specification changes.

Simple typos also made up a surprisingly large fraction of discovered bugs in the
relatively well-tested executable specification in the first refinement proof, which sug-
gests that normal testing may not only miss hard and subtle bugs, but also a larger
number of simple, obvious faults than one could expect testing would identify. Even
though their cause was often simple, understandable human error, their effect in many
cases was sufficient to crash the kernel or create security vulnerabilities.

Other more interesting bugs found during the C implementation proof were missing
exception case checking, and different interpretations of default values in the code. For
example, the interrupt controller on ARM returns 0xFF to signal that no interrupt is
active which is used correctly in most parts of the code, but in one place the check was
against NULL instead.

The C verification also lead to changes in the executable and abstract specifications:
44 of these were to make the proof easier; 34 were implementation restrictions, such as
the maximum size of virtual address space identifiers, which the specifications should
make visible to the user.

7.3.2. Defects Revealed and Changes Required by the Security Proof. The security proof un-
covered many channels in the kernel, some of which were initially surprising even
to those who had worked with seL4 for years. However, these channels do not repre-
sent code defects as such. Rather, they make explicit the requirements that must be
met when using the general purpose seL4 kernel as a separation kernel: namely, that
the system must be configured to deny these channels; the proof assumptions encode
exactly how this configuration should be performed.

Apart from one minor change to simplify verification, the partition scheduler was
the only change required to the seL4 C code. We address other channels (e.g., resulting
from seL4’s object deletion semantics, or seL4’s interrupt delivery mechanism) by as-
suming explicit well-formedness conditions on the access-control policy and the initial
configuration. These restrictions are common in high-assurance separation kernels.

Ultimately, our proof of information-flow security for seL4 makes seL4 no more
secure than it was to begin with (excepting the implementation changes mentioned
above). However, it provides a strong piece of evidence about the security of seL4 and
its suitability as a separation kernel.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:60 Klein et al.

7.3.3. Defects Revealed and Changes Required by the Binary Verification. We did not find
any genuine compiler flaws during this analysis. The seL4 team has reported experi-
ence with compiler defects in the past and fixed all known issues by rearranging code,
selecting appropriate compiler versions and disabling some compiler flags, such as
-fwhole-program. We did, however, find a number of small mismatches between our C
semantics and the compiler’s. None of them were serious, in the sense that they did not
lead to incorrect behaviour, but their removal required some effort. This includes the
treatment of the strict-aliasing rule and the handling of reserved sections (see Sewell
et al. [2013] for more details).

7.4. The Cost of Change
An obvious issue of verification is the cost of proof maintenance: how much does it cost
to reverify after changes are made to the kernel? This clearly depends on the nature
of the change, specifically the amount of code it changes, the number of invariants it
affects, and how localised it is. We are not able to quantify such costs, but our iterative
verification approach has provided us with some relevant experience.

The best case are local, low-level code changes, typically optimisations that do not
affect the observable behaviour. We made such changes repeatedly, and found that
the effort for reverification was always low and roughly proportional to the size of the
change.

Adding new, independent features, which do not interact in a complex way with ex-
isting features, usually has a moderate effect. For example, adding a new system call
to the seL4 API that atomically batches a specific, short sequence of existing system
calls took one day to design and implement. Adjusting the proof took less than 0.25 pm.

Adding new, large, cross-cutting features, such as adding a complex new data struc-
ture to the kernel supporting new API calls that interact with other parts of the kernel,
is significantly more expensive. We experienced such a case when progressing from
the first to the final implementation, adding interrupts, ARM page tables and address
spaces. This change cost several pm to design and implement, and resulted in 1.5–2 py
to re-verify. It modified about 12% of existing Haskell code, added another 37%, and
reverification cost about 32% of the time previously invested in verification.

The new features required only minor adjustments of existing invariants, but led to
a considerable number of new invariants for the new code. These invariants have to be
preserved over the whole kernel API, not just the new features.

Unsurprisingly, fundamental changes to existing features are bad news. We had one
example of such a change when we added reply capabilities for efficient RPC as an API
optimisation after the first refinement was completed. Reply capabilities are created
on the fly in the receiver of an IPC and are treated in most cases like other capabili-
ties. They are single-use, and thus deleted immediately after use. This fundamentally
broke a number of properties and invariants on capabilities. Creation and deletion of
capabilities require a large number of preconditions to execute safely. The operations
were carefully constrained in the kernel. Doing them on the fly required complex pre-
conditions to be proved for many new code paths. Some of these turned out not to be
true, which required extra work on special-case proofs or changes to existing invari-
ants (which then needed to be reproved for the whole kernel). Even though the code
size of this change was small (less than 5% of the total code base), the comparative
amount of conceptual cross-cutting was huge. It took about 1 py or 17% of the original
proof effort to reverify.

There is one class of otherwise frequent code changes that does not occur after the
kernel has been verified: implementation bug fixes.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:61

8. RELATED WORK
We briefly summarise the literature on OS verification. Klein [2009] provides a com-
prehensive overview.

The first serious attempts to verify an OS kernel were in the late 1970s UCLA Secure
Unix [Walker et al. 1980] and the Provably Secure Operating System (PSOS) [Feiertag
and Neumann 1979]. Our approach mirrors the UCLA effort in using refinement and
defining functional correctness as the main property to prove. The UCLA project man-
aged to finish 90% of the specification and 20% of the implementation proofs in 5 py.
The team concluded that invariant reasoning dominated the proof effort, which we
found confirmed in our project.

PSOS was mainly focused on formal kernel design and never completed any substan-
tial implementation proofs. Its design methodology was later used for the Kernelized
Secure Operating System (KSOS) [Perrine et al. 1984] by Ford Aerospace. The Se-
cure Ada Target (SAT) [Haigh and Young 1987] and the Logical Coprocessor Kernel
(LOCK) [Saydjari et al. 1987] are also inspired by the PSOS design and methodology.

In the 1970s, machine support for theorem proving was rudimentary. Basic language
concepts like pointers still posed large problems. The UCLA effort reports that the
simplifications required to make verification feasible made the kernel an order of mag-
nitude slower [Walker et al. 1980]. We have demonstrated that with modern tools and
techniques, this is no longer the case.

The first real, completed implementation proofs, although for a highly idealised OS
kernel are reported for KIT, consisting of 320 lines of artificial, but realistic assembly
instructions [Bevier 1989].

Bevier and Smith [1993] later produced a formalisation of the Mach microkernel
without implementation proofs. Other formal modelling and proofs for OS kernels that
did not proceed to the implementation level include the EROS kernel [Shapiro et al.
1996], the high-level analysis of SELinux [Archer et al. 2003; Guttman et al. 2005]
based on FLASK [Spencer et al. 1999], and the MASK project [Martin et al. 2000,
2002] which was geared towards information-flow properties. The MASK property re-
sembles traditional unwinding conditions for noninterference, and was shown to hold
for a low-level design model that is close to an implementation. Again, it was ulti-
mately connected to the C implementation only by manual translation. Like many of
the other kernels summarised here, MASK is not a general-purpose kernel as seL4,
but instead designed primarily to enforce static separation. This means that the verifi-
cation of seL4 is more complex and, at the same time, that more flexible kernel services
are available inside separated seL4 partitions.

The VFiasco project [Hohmuth and Tews 2005] and later the Robin project [Tews
et al. 2008] attempted to verify C++ kernel implementations. They managed to create
a precise model of a large, relevant part of C++, but did not verify substantial parts of
a kernel.

Heitmeyer et al. [2006, 2008] report on the verification and Common Criteria certi-
fication of a “software-based embedded device” featuring a small (3,000 LOC) separa-
tion kernel. They focus on data separation rather than functional correctness. Their
proof is machine-checked against an abstraction of their kernel, which they relate to
their implementation with a pen-and-paper argument. Their formulation of separa-
tion involves a number of different properties: no exfiltration, no infiltration, temporal
separation, control separation and kernel integrity. We can derive analogues for each
of these properties for seL4 from our proof of information-flow security.

Krohn and Tromer [2009] presented a pen-and-paper proof of noninterference for
the Flume operating system. This proof applied to a very abstract CSP [Hoare 1985]
model of the Flume system, unconnected to its implementation by proof. Unlike seL4,

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:62 Klein et al.

Flume is Linux-based and so includes the entire Linux kernel as part of its trusted
computing base.

Barthe et al. [2011] presented a formalisation and machine-checked proof of isolation
for a high-level, idealised model of a hypervisor. More recent work in this vein [Barthe
et al. 2012] has also looked at analysing cache leakage, which our proof does not, but
again only for an idealised hypervisor model.

Hardin et al. [2006] formally verified information-flow properties of the AAMP7 mi-
croprocessor, which implements the functionality of a static separation kernel in hard-
ware. The functionality provided is less complex than a general-purpose microkernel—
the processor does not support online reconfiguration of separation domains. The proof
goes down to a low-level design that is in close correspondence to the micro code. This
correspondence is not proven formally, but by manual inspection.

A similar property was shown for the Green Hills Integrity kernel [Greenhills
Software, Inc. 2008] during a Common Criteria EAL6+ evaluation [Richards 2010].
The Separation Kernel Protection Profile [Information Assurance Directorate 2007] of
Common Criteria shows data separation only, and the proof applies to a handwritten,
detailed formal model of the kernel that is not linked to its implementation by formal
proof but instead by careful informal argument. This model likely has sufficient detail
to cover all interesting code behaviours, but the missing formal and automatic con-
nection to the code, let alone the binary, leaves open the possibility of implementation
errors in INTEGRITY-178B that invalidate the proof of isolation. It also risks that the
proof is not adequately updated when code or API change. The isolation proved for
INTEGRITY-178B is based on the GWVr2 property [Greve 2010], which bears similar-
ities to our formulation of information-flow security for seL4.

A number of kernels are designed specifically to enforce information-flow control,
such as HiStar [Zeldovich et al. 2011] whose size is comparable to seL4’s. HiStar im-
plements a simple semantics for enforcing information-flow control, based on object
labels and category ownership. However, it does not have a formal proof that these
rules correctly model the behaviour of the HiStar implementation, nor a formal con-
nection between these rules and a high-level security property like noninterference.

The SAFE project [DeHon et al. 2011] follows a clean-slate approach to information-
flow security, which includes new hardware design from scratch. While recent out-
comes include interesting results for information-flow noninterference, such as new
exception mechanisms [Hritcu et al. 2013], seL4 is a general-purpose kernel written
in standard C, applicable to commodity platforms such as ARM and x86.

A closely related project in functional correctness is Verisoft [Alkassar et al. 2009,
2010b], which spanned not only the OS, but a whole software stack from verified hard-
ware up to verified application programs. This includes a formally verified, nonopti-
mising compiler for their own Pascal-like implementation language. Even if not all
proofs were completed, the project has successfully demonstrated that such a verifica-
tion stack for full functional correctness can be achieved. They have also shown that
verification of assembly-level code is feasible. However, Verisoft accepts two orders of
magnitude slow-down for their highly-simplified VAMOS kernel (e.g., only single-level
page tables) and that their verified hardware platform VAMP is not widely deployed.
We deal with real C and standard tool chains on ARMv6, and have aimed for a com-
mercially deployable, realistic microkernel. Additionally, we cover high-level security
properties that are generally applicable and directly useful for the verification of user-
level systems.

The successor project, Verisoft-XT, initially attempted to verify functional correct-
ness of the Microsoft hypervisor Hyper-V [Leinenbach and Santen 2009], but ulti-
mately abandoned this proof in favour of demonstrating some of the relevant tech-
niques on a small, idealised baby-hypervisor [Alkassar et al. 2010a]. The project shows

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:63

significant depth in other aspects, most notably in dealing with multicore concurrency
and the integration of weak memory models into the verification [Cohen and Schirmer
2010], as well as a deep treatment of virtual memory and shadow page table algo-
rithms that are important for hypervisors [Alkassar et al. 2010; Kovalev 2013]. The
verified ARM version of seL4 uses para-virtualisation and can thereby avoid shadow
page tables.

Other formal techniques for increasing the trustworthiness of operating systems
include static analysis, model checking and shape analysis. Static analysis can in
the best case only show the absence of certain classes of defects such as buffer over-
runs. Model checking in the OS space includes SLAM [Ball and Rajamani 2001] and
BLAST [Henzinger et al. 2003]. They can show specific safety properties of C programs
automatically, such as correct API usage in device drivers. The terminator tool [Cook
et al. 2007] increases reliability of device drivers by attempting to prove termination
automatically. Full functional correctness of a realistic microkernel is still beyond the
scope of these automatic techniques.

The Verve project [Yang and Hawblitzel 2010] proved correctness of a minimal lan-
guage runtime, including garbage collection, to achieve provable type and memory
safety on the assembly level for the kernel and its applications, which must run in the
same language framework. While the functional correctness of the language runtime
is a strong statement, type safety alone for the rest of the system is a weaker property
compared to the security and functional correctness statements we have proved for
seL4. Standard type safety on its own would for instance not support further access-
control proofs about the kernel.

Implementations of other kernels in type-safe languages such as SPIN [Bershad
et al. 1995] and Singularity [Fähndrich et al. 2006] offer increased reliability, but they
have to rely on traditional “dirty” code to implement their language runtime, which
tends to be substantially bigger than the complete seL4 kernel. While type safety is
a good property to have, it is not very strong. The kernel may still misbehave or at-
tempt, for instance, a null pointer access. Instead of randomly crashing, it will report
a controlled exception. In our proof, we show a variant of type safety for the seL4 code:
Even though the kernel deliberately breaks the C type system, it only does so in a safe
way. Additionally, we prove much more: that there will never be any such null pointer
accesses, that the kernel will never crash and that the code always behaves in strict
accordance with the abstract specification.

Few of the kernel verification efforts above touch correct initialisation of user-level
systems. The approach in EROS [Shapiro and Weber 2000] is to create and check
the initial configuration manually, and for the rest of the lifetime of the system use
persistent checkpoints instead of rebooting from scratch. On a higher level, SELinux
introduces a policy language for configuring the access-control state of the system.
These are large static policies on the level of files and applications, as opposed to the
fine-grained kernel-level access-control mechanism that capDL describes. Hicks et al.
[2007] developed a formal semantics for SELinux policies in Prolog and demonstrated
that it was possible to show information flow properties of SELinux policies. Linux is
of course too large a trusted computing base to formally verify that the corresponding
access-control state is indeed achieved, let alone enforced.

The OKL4 microkernel [Open Kernel Labs 2008] moves the initialisation problem
almost entirely to offline processing and runs the initialisation phase once, before the
system image is built. Similarly to EROS, when the machine starts, it loads a fully
pre-initialised state. While this makes it possible to inspect the initialised state of-
fline, a full low-level assurance case must be made for each system. In our approach,
assurance about system initialisation is now reduced to reasoning about static, formal
capDL system descriptions.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

2:64 Klein et al.

Over the last 10+ years, a number of studies attempted to analyse the timeliness of
real-time OSes, a summary is provided by Lv et al. [2009b]. The earliest work analysed
the RTEMS OS [Colin and Puaut 2001]. It required significant manual intervention
to deal with unstructured code. Furthermore, as the analysis was performed on the
source-code level, it is necessarily pessimistic and must make assumptions about code
generation.

A WCET analysis of the microkernel used by the OSE delta operating system was
undertaken by Carlsson et al. [2002] and Sandell et al. [2004]. The OSE kernel is
mostly preemptible, except for 612 short and mostly simple “disable-interrupt” regions,
which the authors analysed. Lv et al. [2009a] analysed the WCET of each system call
of the µC/OS-II kernel. The analysis was generally successful, although required a
significant amount of manual intervention.

All these previously analysed systems are unprotected, single-mode kernels. Singal
and Petters [2007] attempted an analysis on the L4 Pistachio kernel, a predecessor
of seL4, which supports dual-mode execution and virtual memory. Unstructured code,
inline assembly and context switching contributed to making the analysis difficult.
Safe WCET bounds were never established.

9. CONCLUSIONS
The seL4 project represents the first comprehensive verification of an entire general-
purpose OS kernel, providing a complete proof chain from the usual, high-level security
and safety requirements, that is, integrity, confidentiality and availability, down to the
executable machine code (a few remaining details notwithstanding).

On the way there it achieved a number of other firsts: the functional-correctness
proof of a complete OS kernel implementation, the proof of its correct translation from
C to binary, the proof of high-level security theorems such as integrity and intransitive
noninterference for a general-purpose kernel implementation, and the sound and com-
plete analysis of worst-case execution times for an OS supporting full virtual memory.

All this was achieved on a system that is designed for real-world use: we did not
trade average-case performance for verification (although we have potentially traded
off worst-case performance, but this is difficult to ascertain in the absence of any com-
parable systems with similar timing analysis). Furthermore, seL4’s design and imple-
mentation is based on our experience with earlier systems, including a predecessor
which has been deployed in billions of devices, so we are confident that seL4 is simi-
larly suitable for real-world deployment.

We have described the approach taken to achieve these outcomes, including a rapid
prototyping methodology for kernel design, and design principles aiding verification,
such as an event-based, mostly non-preemptable kernel.

The possibly most encouraging lesson from the project, other than that it succeeded
at all, is the cost: our analysis of the development and verification effort shows that,
with the right approach, formally verified software is actually less expensive than tradi-
tionally engineered “high-assurance” software, yet provides much stronger assurance
than what is possible with traditional software-engineering approaches.

Furthermore, our analysis indicates that the cost is only about a factor of two
higher than that of software engineered to industry-standard (low-assurance) quality-
assurance levels. This opens an exciting prospect for the future: should we be able to
reduce the verification cost by another factor of two, then verified software will become
cost-competitive under all circumstances, at least for the scale of systems we have been
looking at.

We are optimistic that increased automation will achieve this in the near future.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

Comprehensive Formal Verification of an OS Microkernel 2:65

ACKNOWLEDGMENTS

We would like to acknowledge the contribution of the following people in the different parts of this work,
spanning multiple years and projects. Andrew Boyton, David Cock, Callum Bannister, Nelson Billing,
Bernard Blackham, Timothy Bourke, Matthew Brassil, Adrian Danis, Matthias Daum, Jeremy Dawson,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Matthew Fernandez, Peter Gammie, Xin Gao, David
Greenaway, Ihor Kuz, Corey Lewis, Daniel Matichuk, Jia Meng, Catherine Menon, Magnus Myreen, Michael
Norrish, Sean Seefried, Yao Shi, David Tsai, Harvey Tuch, Adam Walker, and Simon Winwood.

REFERENCES
M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. 1986. Mach: A New

Kernel Foundation for UNIX Development. In Proceedings of the 1986 Summer USENIX Technical Con-
ference. Atlanta, GA, USA, 93–112.

E. Alkassar, E. Cohen, M. A. Hillebrand, M. Kovalev, and W. Paul. 2010. Verifying Shadow Page Table Al-
gorithms. In Proceedings of the 2010 Conference on Formal Methods in Computer-Aided Design, Roderick
Bloem and Natasha Sharygina (Eds.). IEEE, Lugano, Switzerland, 267–270.

E. Alkassar, M. Hillebrand, D. Leinenbach, N. Schirmer, A. Starostin, and A. Tsyban. 2009. Balancing the
Load — Leveraging a Semantics Stack for Systems Verification. Journal of Automated Reasoning: Special
Issue on Operating System Verification 42, Numbers 2–4 (2009), 389–454.

E. Alkassar, M. Hillebrand, W. Paul, and E. Petrova. 2010a. Automated Verification of a Small Hypervisor.
In Proceedings of Verified Software: Theories, Tools and Experiments 2010, Gary Leavens, Peter O’Hearn,
and Sriram Rajamani (Eds.). Lecture Notes in Computer Science, Vol. 6217. Springer, 40–54.

E. Alkassar, W. Paul, A. Starostin, and A. Tsyban. 2010b. Pervasive Verification of an OS Microkernel: Inline
Assembly, Memory Consumption, Concurrent Devices. In Proceedings of Verified Software: Theories, Tools
and Experiments 2010 (Lecture Notes in Computer Science), Peter O’Hearn, Gary T. Leavens, and Sriram
Rajamani (Eds.), Vol. 6217. Springer, Edinburgh, UK, 71–85.

E. Alkassar, N. Schirmer, and A. Starostin. 2008. Formal Pervasive Verification of a Paging Mechanism.
In Proceedings of International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS) (Lecture Notes in Computer Science), C. R. Ramakrishnan and Jakob Rehof (Eds.), Vol.
4963. Springer, 109–123.

J. Alves-Foss, P. W. Oman, C. Taylor, and S. Harrison. 2006. The MILS Architecture for High-Assurance
Embedded Systems. International Journal on Embedded Systems 2 (2006), 239–247.

J. Andronick, D. Greenaway, and K. Elphinstone. 2010. Towards proving security in the presence of large
untrusted components. In Proceedings of the 5th Systems Software Verification, Gerwin Klein, Ralf Huuck,
and Bastian Schlich (Eds.). USENIX, Vancouver, Canada.

J. Andronick, R. Jeffery, G. Klein, R. Kolanski, M. Staples, H. J. Zhang, and L. Zhu. 2012. Large-Scale For-
mal Verification in Practice: A Process Perspective. In International Conference on Software Engineering.
ACM, Zurich, Switzerland, 1002–1011.

M. Archer, E. Leonard, and M. Pradella. 2003. Analyzing Security-Enhanced Linux Policy Specifications.
In Proceedings of the 4th IEEE Workshop on Policies for Distributed Systems and Networks (POLICY).
IEEE, 158–169.

ARM Ltd. 2005. ARM1136JF-S and ARM1136J-S Technical Reference Manual (R1P1 ed.). ARM Ltd.
T. Ball and S. K. Rajamani. 2001. SLIC: A Specification Language for Interface Checking. Technical Report

MSR-TR-2001-21. Microsoft Research.
J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. Scoredos, P. Stanfill, D. Stuart, and

R. Urzi. 2009. A Research Agenda for Mixed-Criticality Systems. Available at http://www.cse.wustl.edu/
∼cdgill/CPSWEEK09 MCAR/. (April 2009).

G. Barthe, G. Betarte, J. D. Campo, and C. Luna. 2011. Formally Verifying Isolation and Availability in
an Idealized Model of Virtualization. In Proceedings of the 17th International Symposium on Formal
Methods (FM) (Lecture Notes in Computer Science), Michael Butler and Wolfram Schulte (Eds.), Vol.
6664. Springer, 231–245.

G. Barthe, G. Betarte, J. D. Campo, and C. Luna. 2012. Cache-Leakage Resilient OS Isolation in an Idealized
Model of Virtualization. In Proceedings of the 25th IEEE Computer Security Foundations Symposium.
186–197.

D. Bell and L. LaPadula. 1976. Secure Computer System: Unified Exposition and Multics Interpretation.
Technical Report MTR-2997. MITRE Corp.

S. Berghofer. 2003. Proofs, Programs and Executable Specifications in Higher Order Logic. Ph.D. Disserta-
tion. Institut für Informatik, Technische Universität München.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
1995. Extensibility, Safety and Performance in the SPIN Operating System. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles. Copper Mountain, CO, USA, 267–284.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/
http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/

2:66 Klein et al.

W. R. Bevier. 1989. Kit: A Study in Operating System Verification. IEEE Transactions on Software Engi-
neering 15, 11 (1989), 1382–1396.

W. R. Bevier and L. Smith. 1993. A Mathematical Model of the Mach Kernel: Atomic Actions and Locks.
Technical Report 89. Computational Logic Inc.

M. Bishop. 2003. Computer Security: Art and Science. Addison-Wesley.
B. Blackham and G. Heiser. 2012. Correct, Fast, Maintainable – Choose Any Three!. In Proceedings of the

3rd Asia-Pacific Workshop on Systems (APSys). Seoul, Korea, 13:1–13:7.
B. Blackham and G. Heiser. 2013. Sequoll: a framework for model checking binaries. In IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), Eduardo Tovar (Ed.). Philadelphia,
USA, 97–106.

B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and G. Heiser. 2011. Timing Analysis of a Pro-
tected Operating System Kernel. In Proceedings of the 32nd IEEE Real-Time Systems Symposium. Vi-
enna, Austria, 339–348.

B. Blackham, Y. Shi, and G. Heiser. 2012. Improving Interrupt Response Time in a Verifiable Protected
Microkernel. In Proceedings of the 7th EuroSys Conference. Bern, Switzerland, 323–336.

B. Blackham, V. Tang, and G. Heiser. 2012. To Preempt or Not To Preempt, That Is the Question. In
Proceedings of the 3rd Asia-Pacific Workshop on Systems (APSys). Seoul, Korea, 8:1–8:7.

I. T. Bowman, R. C. Holt, and N. V. Brewster. 1999. Linux as a case study: its extracted software architecture.
In International Conference on Software Engineering. Los Angeles, CA, USA, 555–563.

A. Boyton, J. Andronick, C. Bannister, M. Fernandez, X. Gao, D. Greenaway, G. Klein, C. Lewis, and T.
Sewell. 2013. Formally Verified System Initialisation. In Proceedings of the 15th International Conference
on Formal Engineering Methods, Lindsay Groves, Jing Sun (Ed.). Springer, Queenstown, New Zealand,
70–85.

P. Brinch Hansen. 1970. The Nucleus of a Multiprogramming Operating System. Commun. ACM 13 (1970),
238–250.

M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and B. Lisper. 2002. Worst-Case Execution Time Analy-
sis of Disable Interrupt Regions in a Commercial Real-Time Operating System. In Proceedings of the 2nd
International Workshop on Real-Time Tools.

D. Cock. 2008. Bitfields and Tagged Unions in C: Verification through Automatic Generation. In Proceed-
ings of the 5th International Verification Workshop (CEUR Workshop Proceedings), Bernhard Beckert and
Gerwin Klein (Eds.), Vol. 372. Sydney, Australia, 44–55.

D. Cock, G. Klein, and T. Sewell. 2008. Secure Microkernels, State Monads and Scalable Refinement. In
Proceedings of the 21st International Conference on Theorem Proving in Higher Order Logics (Lecture
Notes in Computer Science), Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar (Eds.), Vol. 5170.
Springer, Montreal, Canada, 167–182.

E. Cohen and N. Schirmer. 2010. From Total Store Order to Sequential Consistency: A Practical Reduction
Theorem. In 1st International Conference on Interactive Theorem Proving (Lecture Notes in Computer
Science), Matt Kaufmann and Lawrence Paulson (Eds.), Vol. 6172. Springer, Edinburgh, UK, 403–418.

A. Colin and I. Puaut. 2001. Worst Case Execution Time Analysis of the RTEMS Real-Time operating
System. In Proceedings of the 13th Euromicro Conference on Real-Time Systems. Delft, Netherlands, 191–
198.

B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Y. Vardi. 2007. Proving that programs eventually
do something good. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
Nice, France, 265–276.

Coyotos 2008. The Coyotos Secure Operating System. http://www.coyotos.org/. (2008).
J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. 2007. Secure Virtual Architecture: A Safe Execution En-

vironment for Commodity Operating Systems. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles. Stevenson, WA, USA, 351–366.

U. Dannowski. 2009. Personal communication. (2009).
M. Daum, N. Billing, and G. Klein. 2014. Concerned with the Unprivileged: User Programs in Kernel

Refinement. Formal Aspects of Computing (2014).
L. M. de Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) (Lecture Notes in
Computer Science), Vol. 4963. Springer, Budapest, Hungary, 337–340.

W.-P. de Roever and K. Engelhardt. 1998. Data Refinement: Model-Oriented Proof Methods and their Com-
parison. Number 47 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
United Kingdom.

A. DeHon, B. Karel, B. Montagu, B. C. Pierce, J. Jonathan M. Smithand Thomas F. Knight, S. Ray, G.
Sullivan, G. Malecha, G. Morrisett, R. Pollack, R. Morisset, and O. Shivers. 2011. Preliminary Design
of the SAFE Platform. In Proceedings of the 6th Workshop on Programming Languages and Operating
Systems (PLOS). Cascais, Portugal.

J. B. Dennis and E. C. Van Horn. 1966. Programming Semantics for Multiprogrammed Computations.
Commun. ACM 9 (1966), 143–155.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

http://www.coyotos.org/

Comprehensive Formal Verification of an OS Microkernel 2:67

P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T. Chakravarty. 2006. Running the Manual: An
Approach to High-Assurance Microkernel Development. In Proceedings of the ACM SIGPLAN Haskell
Workshop. Portland, OR, USA.

D. Elkaduwe. 2010. A Principled Approach To Kernel Memory Management. Ph.D. Dissertation. UNSW,
Sydney, Australia.

D. Elkaduwe, P. Derrin, and K. Elphinstone. 2008. Kernel Design for Isolation and Assurance of Physical
Memory. In 1st Workshop on Isolation and Integration in Embedded Systems. ACM SIGOPS, Glasgow,
UK, 35–40.

K. Elphinstone and G. Heiser. 2013. From L3 to seL4 – What Have We Learnt in 20 Years of L4 Microker-
nels?. In ACM Symposium on Operating Systems Principles. Farmington, PA, USA, 133–150.

K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. 2007. Towards a Practical, Verified Kernel. In
Proceedings of the 11th Workshop on Hot Topics in Operating Systems. San Diego, CA, USA, 117–122.

M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, and S. Levi. 2006. Language
Support for Fast and Reliable Message-Based Communication in Singularity OS. In Proceedings of the
1st EuroSys Conference. Leuven, Belgium, 177–190.

R. J. Feiertag and P. G. Neumann. 1979. The Foundations of a Provably Secure Operating System (PSOS).
In AFIPS Conference Proceedings, 1979 National Computer Conference. New York, NY, USA, 329–334.

B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullmann. 1999. Interface and Execution Models in the
Fluke Kernel. In Proceedings of the 3rd USENIX Symposium on Operating Systems Design and Imple-
mentation. USENIX, New Orleans, LA, USA, 101–115.

A. Fox. 2003. Formal specification and verification of ARM6. In Proceedings of the 16th International Confer-
ence on Theorem Proving in Higher Order Logics (Lecture Notes in Computer Science), David Basin and
Burkhart Wolff (Eds.), Vol. 2758. Springer, Rome, Italy, 25–40.

A. Fox and M. Myreen. 2010. A Trustworthy Monadic Formalization of the ARMv7 Instruction Set Architec-
ture. In 1st International Conference on Interactive Theorem Proving (Lecture Notes in Computer Science),
Matt Kaufmann and Lawrence C. Paulson (Eds.), Vol. 6172. Springer, Edinburgh, UK, 243–258.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. 2003. Terra: A Virtual Machine-Based Platform
for Trusted Computing. In Proceedings of the 19th ACM Symposium on Operating Systems Principles.
Bolton Landing, NY, USA, 193–206.

J. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In Proceedings of the IEEE Sym-
posium on Security and Privacy. IEEE Computer Society, Oakland, California, USA, 11–20.

M. J. C. Gordon, R. Milner, and C. P. Wadsworth. 1979. Edinburgh LCF. Lecture Notes in Computer Science,
Vol. 78. Springer.

Greenhills Software, Inc. 2008. Integrity Real-Time Operating System. http://www.ghs.com/products/rtos/
integrity.html. (2008).

D. A. Greve. 2010. Information Security Modeling and Analysis. In Design and Verification of Microprocessor
Systems for High-Assurance Applications, David S. Hardin (Ed.). Springer, 249–300.

J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Skorupka. 2005. Verifying information flow goals in
security-enhanced Linux. Journal of Computer Security 13 (2005), 115–134.

J. T. Haigh and W. D. Young. 1987. Extending the Noninterference Version of MLS for SAT. IEEE Transac-
tions on Software Engineering 13 (Feb. 1987), 141–150.

D. S. Hardin, E. W. Smith, and W. D. Young. 2006. A robust machine code proof framework for highly secure
applications. In Workshop on the ACL2 theorem prover and its applications (ACL2). Seattle, WA, USA,
11–20.

G. Heiser. 2009. Hypervisors for Consumer Electronics. In Proceedings of the 6th IEEE Consumer Commu-
nications and Networking Conference. Las Vegas, NV, USA, 1–5.

C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean. 2006. Formal specification and verification of
data separation in a separation kernel for an embedded system. In ACM Conference on Computer and
Communications Security. Alexandria, VA, USA, 346–355.

C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean. 2008. Applying formal methods to a certifiably
secure software system. IEEE Transactions on Software Engineering 34, 1 (2008), 82–98.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. 2003. Software Verification with Blast. In Proceedings
of the 10th SPIN Workshop on Model Checking Software (Lecture Notes in Computer Science), Vol. 2648.
Springer, Portland, OR, USA, 235–239.

B. Hicks, S. Rueda, L. S. Clair, T. Jaeger, and P. D. McDaniel. 2007. A logical specification and analysis
for SELinux MLS policy. In Proceedings of the 12th ACM Symposium on Access Control Models and
Technologies (SACMAT), Volkmar Lotz and Bhavani M. Thuraisingham (Eds.). ACM, Sophia Antipolis,
France, 91–100.

C. A. R. Hoare. 1985. Communicating Sequential Processes. Prentice Hall.
M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro. 2004. Reducing TCB size by using untrusted compo-

nents — small kernels versus virtual-machine monitors. In Proceedings of the 11th SIGOPS European
Workshop. Leuven, Belgium.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html

2:68 Klein et al.

M. Hohmuth and H. Tews. 2005. The VFiasco approach for a verified operating system. In Proceedings of
the 2nd Workshop on Programming Languages and Operating Systems (PLOS). Glasgow, UK.

C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. 2013. All Your IFCException Are Belong
to Us. In IEEE Symposium on Security and Privacy. IEEE, San Francisco, CA, USA, 3–17.

Information Assurance Directorate 2007. U.S. Government Protection Profile for Separation Kernels in En-
vironments Requiring High Robustness. Information Assurance Directorate.

G. Klein. 2009. Operating System Verification — An Overview. Sādhanā 34, 1 (Feb. 2009), 27–69.
G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolan-

ski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. 2010. seL4: Formal Verification of an Operating
System Kernel. Commun. ACM 53, 6 (June 2010), 107–115.

G. Klein, P. Derrin, and K. Elphinstone. 2009a. Experience Report: seL4 — Formally Verifying a High-
Performance Microkernel. In Proceedings of the 14th International Conference on Functional Program-
ming. ACM, Edinburgh, UK, 91–96.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolan-
ski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. 2009b. seL4: Formal Verification of an OS Kernel.
In ACM Symposium on Operating Systems Principles. ACM, Big Sky, MT, USA, 207–220.

G. Klein, T. Murray, P. Gammie, T. Sewell, and S. Winwood. 2011. Provable Security: How feasible is it?. In
Proceedings of the 13th Workshop on Hot Topics in Operating Systems. USENIX, Napa, CA, USA, 28–32.

R. Kolanski. 2011. Verification of Programs in Virtual Memory Using Separation Logic. Ph.D. Dissertation.
UNSW, Sydney, Australia.

R. Kolanski and G. Klein. 2009. Types, Maps and Separation Logic. In Proceedings of the 22nd Interna-
tional Conference on Theorem Proving in Higher Order Logics (Lecture Notes in Computer Science), Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.), Vol. 5674. Springer, Munich,
Germany, 276–292.

M. Kovalev. 2013. TLB Virtualization in the Context of Hypervisor Verification. Ph.D. Dissertation. Saarland
University, Saarbrücken, Germany.

M. Krohn and E. Tromer. 2009. Noninterference for a Practical DIFC-Based Operating System. In Proceed-
ings of the IEEE Symposium on Security and Privacy. 61–76.

I. Kuz, G. Klein, C. Lewis, and A. Walker. 2010. capDL: A Language for Describing Capability-Based Sys-
tems. In Proceedings of the 1st Asia-Pacific Workshop on Systems (APSys). New Delhi, India, 31–36.

L4HQ. 2007. http://l4hq.org/arch/arm/. (2007).
L4Ka Team. 2004. L4Ka::Pistachio Kernel. http://l4ka.org/projects/pistachio/. (2004).
B. W. Lampson. 1971. Protection. In Proceedings of the 5th Princeton Symposium on Information Sciences

and Systems. Princeton University, 437–443.
D. Leinenbach and T. Santen. 2009. Verifying the Microsoft Hyper-V Hypervisor with VCC. In Proceedings of

the Second World Congress on Formal Methods (FM) (Lecture Notes in Computer Science), Ana Cavalcanti
and Dennis Dams (Eds.), Vol. 5850. Springer, Eindhoven, The Netherlands, 806–809.

X. Leroy. 2006. Formal certification of a compiler back-end, or: Programming a compiler with a proof as-
sistant. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, J. G. Morrisett and S. L. P. Jones (Eds.). ACM, Charleston, SC, USA, 42–54.

X. Leroy. 2012. CompCert version 1.10. http://compcert.inria.fr. (March 2012).
X. Li, Y. Liang, T. Mitra, and A. Roychoudhury. 2007. Chronos: A Timing Analyzer for Embedded Software.

Science of Computer Programming, Special issue on Experimental Software and Toolkit 69, 1–3 (Dec.
2007), 56–67.

Y.-T. Li, S. Malik, and A. Wolfe. 1995. Efficient Microarchitecture Modeling and Path Analysis for Real-Time
Software. In Proceedings of the 16th IEEE Real-Time Systems Symposium. 298–307.

J. Liedtke. 1993. Improving IPC by Kernel Design. In Proceedings of the 14th ACM Symposium on Operating
Systems Principles. Asheville, NC, USA, 175–188.

J. Liedtke. 1996. Towards Real Microkernels. Commun. ACM 39, 9 (Sept. 1996), 70–77.
J. Liedtke, K. Elphinstone, S. Schönberg, H. Härtig, G. Heiser, N. Islam, and T. Jaeger. 1997. Achieved IPC

Performance (Still the Foundation for Extensibility). In Proceedings of the 6th Workshop on Hot Topics in
Operating Systems. Cape Cod, MA, USA, 28–31.

R. J. Lipton and L. Snyder. 1977. A Linear Time Algorithm for Deciding Subject Security. J. ACM 24, 3
(1977), 455–464.

M. Lv, N. Guan, Y. Zhang, R. Chen, Q. Deng, G. Yu, and W. Yi. 2009a. WCET Analysis of the µC/OS-II
Real-Time Kernel. In Proceedings of the 12th International Conference on Computational Science and
Engineering. Vancouver, Canada, 270–276.

M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang. 2009b. A Survey of WCET Analysis of Real-Time
Operating Systems. In Proceedings of the 9th IEEE International Conference on Embedded Systems and
Software. Hangzhou, China, 65–72.

W. B. Martin, P. White, F. Taylor, and A. Goldberg. 2000. Formal construction of the Mathematically Ana-
lyzed Separation Kernel. In Proceedings of the 15th IEEE/ACM International Conference on Automated
Software Engineering. IEEE, Gernoble, France, 133–141.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

http://l4hq.org/arch/arm/
http://l4ka.org/projects/pistachio/
http://compcert.inria.fr

Comprehensive Formal Verification of an OS Microkernel 2:69

W. B. Martin, P. White, and F. S. Taylor. 2002. Creating High Confidence in a Separation Kernel. Automated
Software Engineering 9, 3 (2002), 263–284.

D. Matichuk and T. Murray. 2012. Extensible Specifications for Automatic Re-Use of Specifications and
Proofs. In 10th International Conference on Software Engineering and Formal Methods. Thessaloniki,
Greece, 8.

T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis, X. Gao, and G. Klein. 2013.
seL4: from General Purpose to a Proof of Information Flow Enforcement. In IEEE Symposium on Security
and Privacy. San Francisco, CA, 415–429.

T. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein. 2012. Noninterference for Operating System
Kernels. In The Second International Conference on Certified Programs and Proofs, Chris Hawblitzel and
Dale Miller (Ed.). Springer, Kyoto, 126–142.

M. O. Myreen. 2008. Formal verification of machine-code programs. Ph.D. Dissertation. University of Cam-
bridge, Computer Laboratory, Cambridge, UK.

Z. Ni, D. Yu, and Z. Shao. 2007. Using XCAP to Certify Realistic System Code: Machine Context Manage-
ment. In Proceedings of the 20th International Conference on Theorem Proving in Higher Order Logics
(Lecture Notes in Computer Science), Vol. 4732. Springer, Kaiserslautern, Germany, 189–206.

NICTA 2006. Iguana. http://www.ertos.nicta.com.au/software/kenge/iguana-project/latest/. (Jan. 2006).
NICTA 2013a. seL4 Microkernel. http://ertos.nicta.com.au/research/sel4/. (March 2013).
NICTA. 2013b. Worst-case execution time computation tools. http://ssrg.nicta.com.au/software/TS/

wcet-tools/. (April 2013).
T. Nipkow, L. Paulson, and M. Wenzel. 2002. Isabelle/HOL — A Proof Assistant for Higher-Order Logic.

Lecture Notes in Computer Science, Vol. 2283. Springer.
Open Kernel Labs 2008. OKL4 web site. http://wiki.ok-labs.com/PreviousReleases. (2008).
J. Peleska, E. Vorobev, and F. Lapschies. 2011. Automated test case generation with SMT-solving and

abstract interpretation. In NSAS Formal Methods Symposium. Springer, Pasadena, CA, USA, 298–312.
T. Perrine, J. Codd, and B. Hardy. 1984. An Overview of the Kernelized Secure Operating System (KSOS).

In DoD/NBS Computer Security Initiative Conference. Gaithersburg, MD, USA, 146–160.
QNX. 2012. Operating Systems. http://www.qnx.com/products/neutrino-rtos/. (2012).
R. J. Richards. 2010. Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel.

In Design and Verification of Microprocessor Systems for High-Assurance Applications, David S. Hardin
(Ed.). Springer, 301–322.

J. Rushby. 1992. Noninterference, Transitivity, and Channel-Control Security Policies. Technical Report
CSL-92-02. SRI International.

J. M. Rushby. 1981. Design and Verification of Secure Systems. In Proceedings of the 8th ACM Symposium
on Operating Systems Principles. Pacific Grove, CA, USA, 12–21.

D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. 2004. Static Timing Analysis of Real-Time Operating
System Code. In Proceedings of the 1st International Symposium on Leveraging Applications of Formal
Methods.

O. Saydjari, J. Beckman, and J. Leaman. 1987. LOCKing computers securely. In National Computer Security
Conference. Baltimore, MD, USA, 129–141.

A. Seshadri, M. Luk, N. Qu, and A. Perrig. 2007. SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel
Code Integrity for Commodity OSes. In Proceedings of the 16th ACM Symposium on Operating Systems
Principles. Stevenson, WA, USA, 335–350.

T. Sewell, M. Myreen, and G. Klein. 2013. Translation Validation for a Verified OS Kernel. In ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, Seattle, Washington, USA,
471–481.

T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick, and G. Klein. 2011. seL4 Enforces Integrity. In
2nd International Conference on Interactive Theorem Proving (Lecture Notes in Computer Science), Marko
C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk (Eds.), Vol. 6898. Springer,
Nijmegen, The Netherlands, 325–340.

J. S. Shapiro, D. F. Faber, and J. M. Smith. 1996. State caching in the EROS kernel—implementing efficient
orthogonal peristence in a pure capability system. In Proceedings of the 5th IEEE International Workshop
on Object Orientation in Operating Systems (IWOOOS). Seattle, WA, USA, 89–100.

J. S. Shapiro, J. M. Smith, and D. J. Farber. 1999. EROS: A Fast Capability System. In Proceedings of the
17th ACM Symposium on Operating Systems Principles. Charleston, SC, USA, 170–185.

J. S. Shapiro and S. Weber. 2000. Verifying the EROS Confinement Mechanism. In Proceedings of the IEEE
Symposium on Security and Privacy. Oakland, CA, USA, 166–181.

M. Singal and S. M. Petters. 2007. Issues in Analysing L4 for its WCET. In Proceedings of the 1st Interna-
tional Workshop on Microkernels for Embedded Systems (MIKES). NICTA, Sydney, Australia.

L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. 2006. Reducing TCB Complexity for Security-Sensitive
Applications: Three Case Studies. In Proceedings of the 1st EuroSys Conference. Leuven, Belgium, 161–
174.

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

http://www.ertos.nicta.com.au/software/kenge/iguana-project/latest/
http://ertos.nicta.com.au/research/sel4/
http://ssrg.nicta.com.au/software/TS/wcet-tools/
http://ssrg.nicta.com.au/software/TS/wcet-tools/
http://wiki.ok-labs.com/PreviousReleases
http://www.qnx.com/products/neutrino-rtos/

2:70 Klein et al.

K. Slind and M. Norrish. 2008. A Brief Overview of HOL4. In Theorem Proving in Higher Order Logics, 20th
International Conference, Otmane Ait Mohamed, Csar Muoz and Sofine Tahar (Ed.). Springer, Montral,
Canada, 28–32.

R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. 1999. The Flask Security
Architecture: System Support for Diverse Security Policies. In Proceedings of the 8th USENIX Security
Symposium. Washington, DC, USA, 123–139.

U. Steinberg and B. Kauer. 2010. NOVA: A Microhypervisor-Based Secure Virtualization Architecture. In
Proceedings of the 5th EuroSys Conference. Paris, France, 209–222.

H. Tews, T. Weber, and M. Völp. 2008. A Formal Model of Memory Peculiarities for the Verification of
Low-Level Operating-System Code. In Proceedings of the 3rd Systems Software Verification (Electronic
Notes in Theoretical Computer Science), Ralf Huuck, Gerwin Klein, and Bastian Schlich (Eds.), Vol. 217.
Elsevier, Sydney, Australia, 79–96.

H. Tuch. 2008. Formal Memory Models for Verifying C Systems Code. Ph.D. Dissertation. UNSW, Sydney,
Australia.

H. Tuch. 2009. Formal verification of C systems code: Structured types, separation logic and theorem prov-
ing. Journal of Automated Reasoning: Special Issue on Operating System Verification 42, 2–4 (April 2009),
125–187.

H. Tuch, G. Klein, and G. Heiser. 2005. OS Verification — Now!. In Proceedings of the 10th Workshop on Hot
Topics in Operating Systems. Santa Fe, NM, USA, 7–12.

H. Tuch, G. Klein, and M. Norrish. 2007. Types, Bytes, and Separation Logic. In Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Martin Hofmann and
Matthias Felleisen (Eds.). ACM, Nice, France, 97–108.

D. von Oheimb. 2004. Information Flow Control Revisited: Noninfluence = Noninterference + Nonleakage.
In Proceedings of the 9th European Symposium On Research in Computer Security (Lecture Notes in
Computer Science), Pierangela Samarati, Peter Ryan, Dieter Gollmann, and Refik Molva (Eds.), Vol. 3193.
225–243.

M. von Tessin. 2010. Towards High-Assurance Multiprocessor Virtualisation. In Proceedings of the 6th Inter-
national Verification Workshop (EasyChair Proceedings in Computing), Markus Aderhold, Serge Autexier,
and Heiko Mantel (Eds.), Vol. 3. EasyChair, Edinburgh, UK, 110–125.

M. von Tessin. 2012. The Clustered Multikernel: An Approach to Formal Verification of Multiprocessor
OS Kernels. In Proceedings of the 2nd Workshop on Systems for Future Multi-core Architectures. Bern,
Switzerland, 1–6.

M. von Tessin. 2013. The Clustered Multikernel: An Approach to Formal Verification of Multiprocessor
Operating-System Kernels. Ph.D. Dissertation. School of Computer Science and Engineering, University
of NSW, Sydney 2052, Australia.

B. J. Walker, R. A. Kemmerer, and G. J. Popek. 1980. Specification and verification of the UCLA Unix
security kernel. Commun. ACM 23, 2 (1980), 118–131.

D. A. Wheeler. 2001. SLOCCount. http://www.dwheeler.com/sloccount/. (2001).
A. Whitaker, M. Shaw, and S. D. Gribble. 2002. Scale and Performance in the Denali Isolation Kernel. In

Proceedings of the 5th USENIX Symposium on Operating Systems Design and Implementation. Boston,
MA, USA, 195–210.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. 2008. The worst-case
execution-time problem—overview of methods and survey of tools. ACM Transactions on Embedded Com-
puting Systems 7, 3 (2008), 1–53.

S. Winwood, G. Klein, T. Sewell, J. Andronick, D. Cock, and M. Norrish. 2009. Mind the Gap: A Verification
Framework for Low-Level C. In Proceedings of the 22nd International Conference on Theorem Proving in
Higher Order Logics (Lecture Notes in Computer Science), Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel (Eds.), Vol. 5674. Springer, Munich, Germany, 500–515.

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. 1974. HYDRA: The Kernel of
a Multiprocessor Operating System. Commun. ACM 17 (1974), 337–345.

J. Yang and C. Hawblitzel. 2010. Safe to the last instruction: automated verification of a type-safe operating
system. In Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, Toronto, Ontario, Canada, 99–110.

N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. 2011. Making information flow explicit in
HiStar. Commun. ACM 54, 11 (Nov. 2011), 93–101.

Received August 2013; accepted September 2013

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.

http://www.dwheeler.com/sloccount/

	Introduction
	Overview
	seL4 Programming Model
	Kernel Design Process
	Formal Verification

	Kernel Design for Verification
	Global Variables and Side Effects
	Kernel Phases
	Kernel Memory Management
	Concurrency and Nondeterminism
	I/O
	Observations

	Functional Correctness
	Abstract Specification
	Executable Specification
	C Implementation
	Machine Model
	The Functional Correctness Proof
	Fastpath Verification
	Binary Verification
	Assumptions
	Functional Correctness Assurance

	Proving Security Enforcement
	Access Control Model
	Authority Confinement and Integrity
	Authority Confinement
	Integrity
	Code-Level Theorems

	Confidentiality: Information-Flow Security
	Security Assumptions and Assurance

	Building Trustworthy Systems on seL4
	Capability Distribution Language and System Initialisation
	Timeliness Analysis
	Timeliness Requirements
	Approach
	Kernel Changes for Improving WCET
	Results

	Experience and Lessons Learnt
	Performance
	Verification Effort
	Process and Project Phases
	Kernel Development Effort
	Correctness Proof Effort
	Optimisation Proof Effort
	Security Proof Effort
	Binary Verification Effort
	CapDL Refinement Effort

	Bugs Found
	Defects Revealed and Changes Required by the Correctness Proof
	Defects Revealed and Changes Required by the Security Proof
	Defects Revealed and Changes Required by the Binary Verification

	The Cost of Change

	Related Work
	Conclusions

