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ABSTRACT 
Seven years after the publication of the Linux Scalability paper, we reran a series of multi-core 
benchmarks, including MOSBENCH, PHOENIX and PARSEC on a similarly configured, same 
generation 48-Core server and a modern 64-core server with three different kernels (Linux Kernel 
2.6.32, Linux Kernel 4.10.1, and Windows Kernel 10.0.14393 for reference). We evaluate overall 
scalability measured in per-core speedup and kernel scalability based on runtime breakdowns of 
system and user time. Unfortunately, we did not find meaningful scalability improvement in 
different generations of kernels, even when testing on new hardware. 

EXPERIMENT SETUPS 
We ran our benchmarks on Sampa’s n02 node, a 48-core (4 x 12-core Opteron 6168) machine with 
512GB of memory, and a modern EC2 instance with 64-core (Intel Xeon E5-2686v4) processors. The 
former processor is roughly the same generation as the processor used in the paper, and the latter 
gives us a hint on how things may change on a recent core architecture. 

We first determined what operating systems could launch what kernel. This table summarizes our 
process, where a √ represents bootable, - not tried, and × unbootable. 

Kernel / OS CentOS 6 RHEL 6 CentOS 7 Ubuntu 10.04 Ubuntu 16.04 Windows 10 w/  
Linux Subsystem 

2.6.32 √ √ × √ × - 

2.6.35.rc5.guk  1 - × - × × - 

4.10.1 × × √ - √ - 

10.0.14393  2 - - - - - √ 

We booted two images from NFS with PXEBoot  on n02, one containing RHEL 6 with 2.6.32, and 3

one containing CentOS 7 with kernel upgraded to latest 4.10.1.  We booted RHEL 6 with 2.6.32 and 
4.10.1 kernels on EC2, and a Windows 10 on the same machine. 

1 This is the modified PK kernel. We regret not being able to launch it in on n02. We tried NFS boot, with NFS as 
built-in or as module, and confirmed the RAMFS contained the module, but during boot the kernel panics with “nfs 
root type nfs requested but kernel/intrid does not support nfs” or “no root device nfs found”. We also tried booting 
from local disk, resulting in kernel panic “Don’t know how to handle /dev/sdc1” and “no root device block/dev/sdc1 
found”. We tried booting it with REHL 6 and CentOS6; both failed. We also tried to launch it on the cloud, but the 
VMs we tried (Ubuntu 10.04, RHEL 6) on EC2 could not boot into this kernel either. We eventually gave up after 
spending 30+ hours trying to boot it. 
2 This is the recent Windows Kernel. We felt it interesting to see the scalability of Windows Kernel by leveraging its 
Linux Subsystem. We made no change the benchmark and compiled with Ubuntu on Windows. 
3 We also tried booting from virtualization software, but VirtualBox on n02 only booted up to 24 cores, VMWare 
Workstation up to 16 cores, and we couldn’t get KVM to run or Hyper-V to install. 

 



BENCHMARKS 

We wanted to benchmark the scalability of the Linux kernels on three  benchmark suites: 
MOSBENCH, the original benchmark suite from the paper; PHOENIX, a MapReduce-based 
shared-memory implementation of data-intensive processing tasks for multicore/shared-memory 
processors; and PARSEC, a benchmark suite of multi-threaded programs with heavy use of 
synchronization. PHOENIX and PARSEC are compute-heavy, and would demonstrate if kernel 
scalability was a limiting factor for multicore computation tasks.  

For each benchmark suite, we ran them on our test kernels, varying the number of cores used from 
1-48. Varying the number cores used required slight modifications to PHOENIX ; PARSEC included 
flags to set core count. For benchmarks with very short runtime (i.e. PHOENIX), we inflated the 
runtime by looping the program to get a better sense of its scaling. In all plots, speedup is 
measured using wall clock time.  

Because of time constraints and technical issues with compiling for different kernels, we could not 
include all benchmarks. Specifically, we only evaluated psearchy and gmake from MOSBENCH, 
blackscholes, dedup, and streamcluster from PARSEC, and kmeans, linear-regression, 
matrix-multiply, pca, stringmatch, and wordcount from PHOENIX. We measured the runtime of 
all the benchmarks and evaluated the speedup of multi-core over single-core.  

MOSBENCH RESULTS 

 

The two MOSBENCH apps we could successfully run were gmake and psearchy. To reproduce the 
paper’s results, we used the same workloads, and the in-memory file system tmpfs in order to 
avoid disk bottlenecks. We found that gmake compiled Linux 2.6.35-rc5 on 2.6.32, but we could not 
compile it on 4.10.1; psearchy indexes the Linux kernel 2.6.35-rc. 

 

We evaluated three different modes of psearchy. Thread-seq is the initial version of pedsort, 
which uses a single process with one thread per core. It scales badly since the contention over the 
shared address space. Process-seq is modified to use one process per core to avoid this scalability 
problem. However, the active cores spread over few sockets when the number of cores is small. 

 



Process-rr shows performance when the active cores are spread evenly over sockets, which scales 
better since each new socket provides access to more total L3 cache space . 

We also evaluated psearchy and gmake on linux 2.3.2 on n02. We find that psearchy has ex pected 
scaling (~35x) but gmake does not scale well at all, achieving a maximum 4.4x speedup.  

 

Looking at a breakdown of the time spent in gmake, it seems that the time spent doing 
computation is constant regardless of the number of cores, but the system time grows with the 
number of cores. This is logical, considering the paper’s argument that stock Linux presented 
scalability obstacles, but not really in keeping with their results, which claimed gmake scaled well, 
running 35x faster on 48 cores with the stock kernel.  

We could not evaluate all of MOSBENCH: 1) Some of the apps ( memcached, Apache, and Postgres) 
require a set of load generating client machines on the same switch, which is infeasible in our 
cluster environment; 2) metis would not compile due to an unknown error; 3) the benchmark Exim 
would appear frozen after the server listens to a port. 

PHOENIX+PARSEC RESULTS 

 

 

 

 



 

 
 

We ideally expect that the speedup will scale linearly with the number of cores in PHOENIX and 
PARSEC. Some benchmarks present almost-linear scaling of speedup ( strmatch, and occasionally 
blackscholes, and  matrix-mult), but most exhibit severely sub-linear speedup. On n02-2.6.32, 
the most representative configuration of the paper’s evaluation, streamcluster runs 50% slower 
at 48 cores than it does with 1 core, and six of the benchmarks ( lreg, mmult, pca, dedup, 
streamcluster, and ferret) do not achieve more than 8x speedup. 

STREAMCLUSTER SCALABILITY 
To investigate the speedup results, we examined one kernel in depth, Streamcluster. 
Streamcluster is a PARSEC benchmark for data mining that clusters data-points to the nearest of a 
predetermined number of medians. It showed very different scalability on different machines and 
different configurations, so we dove deeper into the results. The graphs below summarize the 
results.

 

Streamcluster scales with the number of cores up to 8-12, and then falls off sharply, ending in 
negative scaling for some configurations from 36-48 cores. On both the Xeon and n02, the 2.6.32 
scaled better than 4.10.1, with 10.1.134 doing a little better than 4.10.1 on the Xeon.  

 



 

For streamcluster, the breakdown of time spent in user and system varies across configurations. 
On n02 running 2.6.32, the time spent in user space grows dramatically at 36 cores, and the time 
spent in the system does as well. On Xeon running 2.6.32, it looks like the time spent doing 
computation grows linearly with the number of cores, with little time spent in the kernel. We 
suspect this sharp increase in user time in all configurations is due to the well-known problem of 
false sharing, which gets exacerbated with many core, as reported in [Predator, LASER]. 

CONCLUSION 
Our results confirm the paper’s claim that Linux presents scalability obstacles, while occasionally 
not agreeing with the paper’s results. We hoped to see an improvement in the scalability of 
modern kernels, but unfortunately found negligible difference in scalability between different 
generations of kernels. This indicates the goals of the paper are still relevant in modern kernels, 
and that the optimizations presented were unexercised across our selection of benchmarks. 

 


