
Logs on Logs on 
Logs No More

Eric Mackay
Venkatesh Srinivas

Append Atomic & Remap



Basics of Block Device Interfaces

● I/O is done in granularity of blocks
○ 512 bytes is pretty standard
○ Writing is slooooooow

● Data is addressable by block number



Basics of an FTL

● Interface has access to logical block address
● Flash Translation Layer maps the logical 

block address to a physical block on the 
device

● Wear-levelling extends lifetime of device by 
writing new data to a different physical block 
and mapping the LBA to that location



Write-Ahead Logging

● To make data updates durable and 
consistent:
○ First write update to log
○ When update in log is durable, then write update to 

actual data
● If we experience a failure, consistent state 

can be recovered from any intermediate 
state



Write-Ahead Logging on an FTL

● WAL performs 2 writes for every modification 
to data

● Wear-levelling not done across entire disk
○ Modifying same data repeatedly will wear out some 

regions faster



Write Atomic & Write Scattered, Atomic

● SCSI / T10 added Write Atomic command
○ Writes data as atomic operation
○ Can only be contiguous blocks

● Databases need a scattered Write Atomic
○ Ability to write non-contiguous blocks atomically
○ Proposed but not accepted

● Some vendor-specific solutions



Append Atomic & Remap
● Write data to anonymous area of disk with Append Atomic

○ Return a token (ROD) identifying the data
○ Data not visible to anyone

● Remap the flash translation layer
○ Provide Logical Block Address and token
○ Associates LBA with the physical address corresponding to token
○ Free physical blocks that LBA used to point to

● Only intermediate state: data written but not remapped
○ Completely fine since it’s not addressable

● Also a good interface for SMR drives, not just SSDs



Append Atomic & Remap Example



Append Atomic & Remap Example



Append Atomic & Remap Example



Atomicity

Across a crash cycle, RODs not preserved

FTLs already support internal atomic update 
(for contiguous writes spanning channel / stripe 
boundaries)

If not, FTL could double-buffer map updates



Vs. Write Scattered

Pros :=
Deeper I/O concurrency -- overlap between 
flush groups is ok;
Does not require all data to be available at 
once



Vs. Write Scattered

Cons :=
Easy to fragment FTL tables with injudicious 
use of REMAP
Appended-but-not-remapped data is not visible; 
applications need to lock associated buffers 
until remap is done.



Implementation details

● Built a prototype using QEMU + iSCSI target
● Maintains in-core ‘divert’ table for non-linear 

regions of the disk
● Accessed via vendor-specific SCSI 

command
● Writes diverted blocks into a ‘divert’ file.



SQLite WAL vs. SQLite Append+Remap

Coming soon...


