
TFE listener 
architecture
Matt Klein, Staff Software Engineer
Twitter Front End



Agenda

● TFE architecture overview
● TSA architecture overview
● TSA hot restart
● Future plans
● Q&A



TFE architecture overview
● Listener: L7 reverse proxy. Terminates SSL, speaks 

HTTP 1.0/HTTP 1.1/SPDY 3.1/HTTP 2.0. Multiplexes 
requests coming from many connections onto a few 
high BW router links via SPDY 3.1

● Router: Accepts multiplexed requests from the listener. 
Interfaces with backend services via Finagle, server 
sets, etc. Authentication, rate limiting, geotagging. 
Complex path/request processing



TFE architecture overview

Internet

Multiple DCs omitted for simplicity

Client
DC

RouterListener

POP

Listener

Multiple POPs omitted for simplicity

Backend services



TFE architecture overview
● Connection setup very expensive

○ SSL handshake
○ TCP window expansion (CWND)

● Bringing connection termination closer to the user yields 
faster RTTs, more reliable local links (less packet loss), 
and thus faster connection setup

● Put listeners in POPs and then backhaul requests over 
reliable high BW links

● Interesting design decisions related to routing/peering



TFE architecture overview
● First listeners installed in POPs for World Cup ‘14 in 

strategic locations
● Future POPs planned
● Target emerging markets with poor connectivity (e.g., 

India)
● Performance improvements via POPs impressive



TFE architecture overview



TFE architecture overview
● Performance improvements from POPs not just due to 

forward network locations
● With POPs came new listener, TSA-L
● Same core server that has been deployed as the 

streaming API reverse proxy since December ‘13
● C++, highly parallel, capable of “eternal” connections. 

Since connection setup is so expensive this ends up 
driving a lot of perf improvements 



Agenda

● TFE architecture overview
● TSA architecture overview
● TSA hot restart
● Future plans
● Q&A



TSA architecture overview
● Design goals

○ Long lived connections 
○ Reliable performance at high load
○ 100% streaming in both directions
○ Back pressure capable in both directions
○ Abstractions for protocols and applications that allow 

the same server to be used in multiple scenarios
○ Smaller HW footprint (more efficient), especially for 

POPs



TSA architecture overview
● C++, 100% asynchronous and non-blocking
● “Embarrassingly” parallel implementation means almost 

entirely lock free. Static thread count (1 per HW thread)
● “Hot restart” capability means the server can restart with 

zero downtime. Existing connections continue to be 
processed

● Custom stats implementation designed to work with hot 
restart in shared memory



TSA architecture overview
Streaming

Server

Codec

Request

Pipeline

One per listening port, multiplied by # HW threads (all cores listen on all ports)

User
Session

Handles downstream connection/request(s) lifecycle. Connection affinitized to 1 thread

Encapsulates protocol (HTTP 1.0/HTTP 1.1/SPDY 3.1/HTTP 2.0)

Encapsulates asynchronous multiplexed request streaming

Encapsulates application level proxying (e.g., TFE vs. streaming APIs)



TSA architecture overview
● Multiple layers of abstraction

○ User Session handles connection and request 
lifecycle (watchdogs, idle timeouts, etc.)

○ Codec wraps the underlying HTTP like protocol. 
Abstracts away events like receiving headers, body 
data, connection/stream window updates, etc.

○ Pipeline allows the server to handle multiple 
application level proxy scenarios based on the 
selected virtual host



TSA architecture overview
● TFE pipeline

○ Requests are RR between all DC routers over 
persistent SPDY/3.1 connections. TCP windows are 
always large in practice

○ Decider like failover possible between different 
router clusters

○ SSL mutual auth for POP security



TSA architecture overview
● Connection lifetime

○ “Legacy” TFE has a default idle timeout of 30s and a 
lifetime timeout of 45s

○ TSA launched with 15 minute idle timeouts and no 
lifetime timeouts (connections are “eternal”)

○ Future increases to idle timeout are a possibility
○ Enables new scenarios such as presence, active 

push, etc.



TSA architecture overview
● Performance

○ SNB/IVB 24 core server: 4K SSL CPS, 20K proxied 
RPS, >500K active connections, 80% load

○ CPU limited: SSL handshake for TFE, zlib for 
Hosebird

○ Memory: SPDY connections expensive due to how 
header compression is performed (deflate)

○ Most non-SSL/zlib CPU time spent processing HTTP 
headers. Room for optimization here



TSA architecture overview
● Stability

○ We aim for zero crashes on production (non-canary) 
deployments. Track record very good

○ Even at very high load (80%+ CPU utilization) 
performance characteristics stable

○ Focus on sophisticated integration tests using fake 
clients, fake upstream servers, etc.



TSA architecture overview



TSA architecture overview



Agenda

● TFE architecture overview
● TSA architecture overview
● TSA hot restart
● Future plans
● Q&A



TSA hot restart

● With long lived connections, draining and restarting TSA 
is very time consuming

● We would like to be able to reload the server (code and 
configuration) without affecting existing connections

● If we program directly to the OS, some pretty cool stuff 
is possible and “hot restart” becomes a possibility

● Opens possibility of removing LBs in certain scenarios



TSA hot restart
Epoch 0

TrampolineEarly fork

Shared 
Memory

Run Server

Hot restart

Exec epoch 1

Duplicate listen 
sockets

Run serverClose listen 
sockets

Trampoline

...

Drain

● Unix domain sockets used for RPC 
and passing sockets

● Stats and other shared control data 
kept in shared memory

● Forking restart trampoline early avoids 
complicated resource issues

● “parent” process is controlled via new 
“primary” (admin, stats, etc.)

● N restarts possible. 2 processes 
allowed active at a time, the oldest 
process is terminated



TSA hot restart
● Forking restart trampoline early yields “clean” process to 

exec in with minimal state
● Unix domain sockets used for RPC / socket passing
● Shared memory stores stats, cross process log buffer 

flush lock, dynamic stat allocation lock, upstream health 
data, etc.

● Primary process responsible for health checking, admin, 
etc.

● In practice we drain old process slowly, but not required



Agenda

● TFE architecture overview
● TSA architecture overview
● TSA hot restart
● Future plans
● Q&A



Other features / future plans
● More POPs
● Policy based networking (allow developers to ask for 

specific connection QoS to mimic poor networking 
scenarios)

● Push
● CDN proxy
● Auth, limiting, geo, service discovery in TSA
● Previous enables direct proxy (router bypass) in certain 

scenarios



Future plans
● Further out:

○ Open source as a generic pluggable server
○ Factor out common libraries (admin, stats, hot 

restart, etc.) into Twitter C++ shared code
○ Use TSA as LB in certain deployments (direct 

connect to WAN)



Agenda

● TFE architecture overview
● TSA architecture overview
● TSA hot restart
● Future plans
● Q&A



Twitter Front End
● We work on a lot of really cool stuff
● SPDY/HTTP2 standards
● Mobile client network libraries (iOS/Android)
● L7 proxies for Twitter traffic
● L3/L4 software load balancing
● We are hiring systems programmers. Join us!



Q&A
● TSA is the result of the hard work of many teams and 

individuals too numerous to name here
● Thanks for coming!


