TFE listener
architecture

Matt Klein, Staff Software Engineer

Twitter Front End

TFE architecture overview
TSA architecture overview
TSA hot restart

Future plans

Q&A

TFE architecture overview

e Listener: L7 reverse proxy. Terminates SSL, speaks
HTTP 1.0/HTTP 1.1/SPDY 3.1/HTTP 2.0. Multiplexes
requests coming from many connections onto a few
high BW router links via SPDY 3.1

e Router: Accepts multiplexed requests from the listener.
Interfaces with backend services via Finagle, server
sets, etc. Authentication, rate limiting, geotagging.
Complex path/request processing

TFE architecture overview

Multiple DCs omitted for simplicity

-

POP A
/ E Listener
\ Y

(&

\

[

(&

o\

DC E
[I Listener Router

/v[Backend services
L~

\

)

Multiple POPs omitted for simplicity

TFE architecture overview

e (Connection setup very expensive
o SSL handshake
o TCP window expansion (CWND)

e Bringing connection termination closer to the user yields
faster RTTs, more reliable local links (less packet loss),
and thus faster connection setup

e Put listeners in POPs and then backhaul requests over
reliable high BW links

e |Interesting design decisions related to routing/peering

TFE architecture overview

e First listeners installed in POPs for World Cup ‘14 in
strategic locations

e Future POPs planned

e Target emerging markets with poor connectivity (e.g.,
India)

e Performance improvements via POPs impressive

TFE architecture overview

Wifi: Brazil Cellular: Brazil

50% faster 31% faster

o EHTTP

56% faster 56% faster

50% faster

e .

p50 p75 p95 p50 p75 p95

60% faster

TFE architecture overview

e Performance improvements from POPs not just due to
forward network locations

e With POPs came new listener, TSA-L

e Same core server that has been deployed as the
streaming API reverse proxy since December ‘13

e C++, highly parallel, capable of “eternal” connections.
Since connection setup is so expensive this ends up
driving a lot of perf improvements

TFE architecture overview
TSA architecture overview
TSA hot restart

Future plans

Q&A

TSA architecture overview

e Design goals
o Long lived connections
Reliable performance at high load
100% streaming in both directions
Back pressure capable in both directions

Abstractions for protocols and applications that allow
the same server to be used in multiple scenarios

o Smaller HW footprint (more efficient), especially for
POPs

O O O O

TSA architecture overview

C++, 100% asynchronous and non-blocking
“Embarrassingly” parallel implementation means almost
entirely lock free. Static thread count (1 per HW thread)
“Hot restart” capability means the server can restart with
zero downtime. Existing connections continue to be
processed

Custom stats implementation designed to work with hot
restart in shared memory

TSA architecture overview

Streaming
Server

User
Session

Codec

Request

Pipeline

One per listening port, multiplied by # HW threads (all cores listen on all ports)
Handles downstream connection/request(s) lifecycle. Connection affinitized to 1 thread
Encapsulates protocol (HTTP 1.0/HTTP 1.1/SPDY 3.1/HTTP 2.0)

Encapsulates asynchronous multiplexed request streaming

Encapsulates application level proxying (e.g., TFE vs. streaming APIs)

TSA architecture overview

e Multiple layers of abstraction

o User Session handles connection and request
lifecycle (watchdogs, idle timeouts, etc.)

o Codec wraps the underlying HTTP like protocol.

Abstracts away events like receiving headers, body
data, connection/stream window updates, etc.

o Pipeline allows the server to handle multiple

application level proxy scenarios based on the
selected virtual host

TSA architecture overview

e TFE pipeline
o Requests are RR between all DC routers over
persistent SPDY/3.1 connections. TCP windows are
always large in practice

o Decider like failover possible between different

router clusters
o SSL mutual auth for POP security

TSA architecture overview

e Connection lifetime

o “Legacy” TFE has a default idle timeout of 30s and a
lifetime timeout of 45s

o TSA launched with 15 minute idle timeouts and no

lifetime timeouts (connections are “eternal”)
o Future increases to idle timeout are a possibility

o Enables new scenarios such as presence, active
push, etc.

TSA architecture overview

e Performance

o SNB/IVB 24 core server: 4K SSL CPS, 20K proxied
RPS, >500K active connections, 80% load

o CPU limited: SSL handshake for TFE, zlib for
Hosebird

o Memory: SPDY connections expensive due to how
header compression is performed (deflate)

o Most non-SSL/zlib CPU time spent processing HTTP
headers. Room for optimization here

TSA architecture overview

e Stability
o We aim for zero crashes on production (non-canary)
deployments. Track record very good

o Even at very high load (80%+ CPU utilization)
performance characteristics stable

o Focus on sophisticated integration tests using fake
clients, fake upstream servers, etc.

TSA architecture overview

Wifi: p50 Wifi: p95

0, f 0,
56% faster e e Old TFE: HTTP R m Old TFE: HTTP

mEE Old TFE: SPDY ‘ 419% faster BB Old TFE: SPDY

W New TFE: SPDY W New TFE: SPDY

50% faster

I 42% faster
USA

Indonesia India Japan

52% faster

31% faster

Indonesia India Japan USA

TSA architecture overview

Cellular: p50 Cellular: p95

53 /0 aster / L Old II E H lP 400/0 IaS er 35/0 aster
41 /0 aster
50 /0 faster

I Old TFE: SPDY
I New TFE: SPDY
0,
46% faster 41% faster h h

Indonesia India Japan USA Indonesia India Japan USA

= OIld TFE: HTTP
I Old TFE: SPDY
[New TFE: SPDY

TFE architecture overview
TSA architecture overview
TSA hot restart

Future plans

Q&A

TSA hot restart

® \Vith long lived connections, draining and restarting TSA
IS very time consuming

e \We would like to be able to reload the server (code and
configuration) without affecting existing connections

e |f we program directly to the OS, some pretty cool stuff
IS possible and “hot restart” becomes a possibility
e Opens possibility of removing LBs in certain scenarios

TSA hot restart

Epoch 0 >[Shared J e Stats and other shared control data

Memory kept in shared memory

e Forking restart trampoline early avoids

Early fork Trampoline complicated resource issues

e Unix domain sockets used for RPC
Run Server Exec epoch 1 Trampoline and passing sockets

e “parent” process is controlled via new
Hot restart Duplicate listen primary” (admin, stats, etc.)

sockets :

e N restarts possible. 2 processes

Close listen S allowed active at a time, the oldest
sockets v process is terminated

Drain

TSA hot restart

e Forking restart trampoline early yields “clean” process to
exec in with minimal state

e Unix domain sockets used for RPC / socket passing

e Shared memory stores stats, cross process log buffer
flush lock, dynamic stat allocation lock, upstream health
data, eftc.

e Primary process responsible for health checking, admin,
etc.

e |n practice we drain old process slowly, but not required

'FE architecture overview
'SA architecture overview
TSA hot restart

Future plans

Q&A

Other features / future plans

e More POPs

e Policy based networking (allow developers to ask for
specific connection QoS to mimic poor networking
scenarios)

Push

CDN proxy

Auth, limiting, geo, service discovery in TSA

Previous enables direct proxy (router bypass) in certain
scenarios

Further out:
o Open source as a generic pluggable server

o Factor out common libraries (admin, stats, hot
restart, etc.) into Twitter C++ shared code

o Use TSA as LB in certain deployments (direct
connect to WAN)

'FE architecture overview
'SA architecture overview
TSA hot restart

Future plans

Q&A

Twitter Front End

We work on a lot of really cool stuff
SPDY/HTTP2 standards

Mobile client network libraries (iOS/Android)
L7 proxies for Twitter traffic

L3/L4 software load balancing

We are hiring systems programmers. Join us!

Q&A

e TSA s the result of the hard work of many teams and
individuals too numerous to name here
e Thanks for coming!

