
CSE 551 TCPCrypt
Anna Kornfeld Simpson

Qiao Zhang
Danyang Zhuo

5/27/2015

Why we need web security?
Motivating Example:

Alice makes an online purchase using credit card.

Desired Guarantees:
Confidentiality -- Mallory cannot intercept credit card info and use it to

 make unauthorized purchases.
Integrity -- Mallory cannot modify the transaction details.
Authentication -- Transaction is sent to the right vendor, not some other

 party.

Secure Transport: SSL/TLS

Application (HTTP)

Secure Socket
(SSL/TLS)

TCP

IP

SSL/TLS is a user process (e.g. OpenSSL lib)

Interposes between Application and Transport Layers
modified application
unmodified TCP

Provides a secure TCP channel between two parties

Application-level protocols: PGP, SSH etc.

Simplified SSLv3/TLS (Kaufman’s Network
Security)

SSLv3/TLS handshake
Msg1: clientHello,
supported ciphers,
client nonce

Msg2: serverHello,
chain of certificates,
chosen cipher, server
nonce

Msg3: secret
encrypted with
server's public key,
keyed hash of prev
msgs to ensure
cipher suite not
downgraded!

Msg4:
keyed hash of prev msgs to
prove
no-tempering of prev msgs
+ server has private key
+ server knows session
keys derived from K

Simplified SSLv3/TLS
(Kaufman’s Network
Security)

SSLv3/TLS cannot be ubiquitous
authenticate the server

server does RSA decryption!

SSL/TLS achieves
1. authentication (usually only server

to client)
2. data integrity through crypto hash
3. confidentiality through symmetric

encryption

SSLv3/TLS cannot be ubiquitous
However, SSL/TLS is
1. too expensive due to server-side

decryption
2. hard to set up and use

a. library not easy to use
b. certificate is a pain point

3. not suitable for all applications
4. cannot get encryption/integrity

without authentication
e.g. if no server certificate, no
encryption of data

code snippet for openSSL?

tcpcrypt: encrypt all TCP traffic
Symmetric key encryption is cheap

=> we can feasibly encrypt all TCP traffic

Confidentiality/Integrity are general-purpose primitives
Authentication is application-specific!

=> we should decouple confidentiality/integrity with authentication

Tcpcrypt proposes a new architecture:
Embed encryption/integrity checking into TCP as TCP extensions
Provide hooks to enable flexible application level authentication

tcpcrypt security guarantees
By default, all TCP traffic are encrypted

Protects against passive eavesdropping without ANY app modification
But can be man-in-the-middled

Tcpcrypt key exchange generates a session id on both end points
If the session ids match, then guarantee no MitM.
Session id can be used for authentication

tcpcrypt vs SSL
High server performance: push decryption to clients

As a TCP option
Applications use BSD socket API
Encryption automatically enabled if both end points support tcpcrypt
Backwards compatible, graceful fallback to vanilla TCP/SSL

New getsockopt() returns session_id as hook for authentication
certificate-based authentication
password-based authentication

tcpcrypt handshake
● Server sends supported public

ciphers
● Client sends public key & supported

symmetric ciphers
● Server generates & encrypts

symmetric master key under client’
s public key

● Client decrypts and now both sides
have the symmetric key

Putting the Handshake in TCP

Regular TCP setup tcpcrypt part 1

Putting the Handshake in TCP

Regular TCP setup tcpcrypt full handshake

Only 1 extra message? How?

tcpcrypt full handshake
● First two messages encode

info in TCP options
● INIT1 and INIT2 too large

for options, so have to use
application data

● Delays application data by
one RTT (from 3rd
message to below “crypto
on”)

tcp options

Options can have up to 40 bytes.

src: wikipedia

A tcpcrypt encrypted packet

A tcpcrypt encrypted packet
● Data is encrypted

(confidentiality)
● Headers + data are

MAC’d (integrity)
● Also MAC dashed

items (not in header)
● Don’t MAC ports,

checksum so NATs
still work

Session resumption - no latency!

tcpcrypt init handshake Session Resume

Great, how does that work?

● Session caching and
session ID like in SSL

● NEXTK1 = 9 bytes of next
session ID

● Fall back to full
handshake if cache miss

Session Resume

Great, how does that work?

● Session ID calculated by
HMAC’ing a value with
the session secret

● Session secret built
during init by HMAC’ing
the initial parameters and
then iterate over time

● HMAC is a keyed hashing
algorithm.

Session Resume

Certificate-based Authentication
● Server signs the shared Session ID with its private

key
● Batch Sign

○ SIGN requires encryption using server’s private
key which is as expensive as standard SSL

○ Server can sign a batch of Session IDs to
amortize of the cost of SIGN function

○ Session ID is not secret

Weak Password Authentication

● Client and server share a secret
● C->S

○ MAC(hash(salt, realm, secret), TAG_C || Session ID)
● S->C

○ MAC(hash(salt, realm, secret), TAG_S || Session ID)
● Client and server can verify if the other end

knows hash(salt, realm, secret) or not

Strong Password Authentication
● In Weak Password Authentication, adversary can

impersonate the server to get the h = hash(salt, realm,
secret) and then use a dictionary to guess the secret

● Use Diffie-Hellman problem to generate a shared key
○ h0 = H0(password, user name, server name)
○ h1 = H1(password, user name, server name)
○ g is a generator of group G (order of G is a prime

number q)
○ U,V are randomly chosen in G

Strong Password Authentication

Server:
g, h0, g^h1, U, V, beta

Client:
g, h0, h1, U, V, alpha

Strong Password Authentication

Server:
g, h0, g^h1, U, V, beta

Client:
g, h0, h1, U, V, alpha

g^(alpha) * U^(h0)

g^(beta) * V^(h0)

Strong Password Authentication

Server:
g, h0, g^h1, U, V, beta
g^(alpha) * U^(h0)

Client:
g, h0, h1, U, V, alpha
g^(beta) * V^(h0)

Strong Password Authentication

Server:
g, h0, g^h1, U, V, beta
g^(alpha)

Client:
g, h0, h1, U, V, alpha
g^(beta)

Strong Password Authentication

Server:
g, h0, g^h1, U, V, beta
g^(alpha)

g^(alpha*beta)
g^(beta*h1)

Client:
g, h0, h1, U, V, alpha
g^(beta)

g^(alpha*beta)
g^(beta*h1)

Strong Password Authentication

Server:
g, h0, g^h1, U, V, beta
g^(alpha)

Client:
g, h0, h1, U, V, alpha
g^(beta)

h = H(h0, g^(alpha), g^(beta), g^(alpha*beta), g(beta*h1))
C->S : MAC(h, TAG_C || Session ID)
S->C : MAC(h, TAG_S || Session ID)

Implementation

● Linux Kernel Implementation
○ Port OpenSSL into kernel for RSA support
○ Incompatible with TCP segment offloading

● Userspace Implementation
○ Use divert socket to access TCP packets
○ Track connections, calculate checksum, rewrite

sequence number,...
○ IPC call for getsockopt

Implementation

● OpenSSL
○ Modify OpenSSL’s BIO layer to leverage the shared

Session ID
○ Use a single worker thread to batch sign all incoming

SSL connections

Connection Rate

Main bottleneck is public key operations. RSA
decryption is much slower than encryption.

Authentication Cost

Authentication
can be 25x
faster with
batching.

Latency

tcpcrypt has
lower latency
than SSL.

Demo: Wireshark + TCP options
sudo ./launch_tcpcryptd.sh

http://tcpcrypt.org/fame.php

wireshark (passive eavesdropping)
ip.addr == 171.66.3.196

graceful fallback

without “sudo ./launch_tcpcryptd.sh”

cleartext GET request

http://tcpcrypt.org/fame.php
http://tcpcrypt.org/fame.php

Q: Why don’t people actually deploy tcpcrypt? Is it because people don’t care

about security or people are happy with SSL’s performance?

ewm87: “people get very nervous about changing security protocols”
eamullen: “Maybe if it the implementation was verified, people would be more ready to
adopt it.”
jtoman: “Sure you could implement these primitives using getsockopt, but good luck doing
that in PHP running on apache (or even PHP running via FCGI).”
bornholt: “It's one of those clean sheet designs that wasn't viable when current systems
were being designed but that makes perfect sense now (like, say, Rust).”

Q: Why don’t people actually deploy tcpcrypt? Is it because people don’t care

about security or people are happy with SSL’s performance?
vsriniv2:
1. Deploying TCP options is impossible on today's internet.
2. tcpcrypt is susceptible to attacks that dramatically restrict its utility -- downgrade and
MITM attacks are possible
3. When Http is treated as a transport (albeit a not-great one, with pipelining but not split
transactions), encryption and ag,uthentication are better deployed at that layer.

billzorn:
“I just don't think people care enough about security to catalyze a major shift
in something as massive and boring as infrastructure. I don't see how
encrypting all of my traffic would help that much when there are still major
security concerns about things like browsers and OSs.”

Q: Should we have encryption in transport layer in the first place?

lijl: “I still think encryption should be done in the application level. This is
definitely more a religious question, but adding encryption to the transport
layer just seems to break the abstraction provided by the OSI model. And to
the ubiquitous problem, is it possible to simply add a layer in the OS network
stack or even in glibc to encrypt all network messages?”

antoine: “Besides the religious reasons mentioned above, I would also like to
mention a more practical point: updates.”

Q: Do you agree that it makes sense to separate confidentiality/integrity from

authentication? Are the first two guarantees more fundamental than the third

one? Do you ever only need the first two guarantees without the third one?

wysem: “it seems to make sense to build confidentially/integrity into the network stack
itself (at TCP) instead of forcing this on application developers. It adds a level of protection
for everyone and allows those requiring more to add at the application level.”
“Given the increasingly mobile nature of computing, are mobile processors
implementations of hardware encryption/AES sufficiently efficient to promote use of this
idea? “

naveenks: This should help me remain anonymous and be certain that my
traffic can't be snooped by anyone or be tampered by anyone.

Q: Does it make sense to further separate confidentiality from integrity and push

one of them further down the network stack?

wysem: “it seems to make sense to build confidentially/integrity into the network stack
itself (at TCP) instead of forcing this on application developers. It adds a level of protection
for everyone and allows those requiring more to add at the application level.”
“Given the increasingly mobile nature of computing, are mobile processors
implementations of hardware encryption/AES sufficiently efficient to promote use of this
idea? “

naveenks: “ I can imagine cases where I want just integrity but not
confidentiality. “

Comments:

jrw12: “This paper' analysis of what's wrong with modern crypto on
the web is right on.”

naveenk: “how easy would it be to build a Tor like system on top of tcpcrypt?”

