
Scalable Address
Spaces using RCU
Balanced Trees

1

2

RCU : Read-Copy-Update

RCU is a synchronization mechanism that is
optimized for read-mostly situations.

The basic idea behind RCU is to split updates
into "removal" and "reclamation" phases.

Removal - Delete references to data items.
Reclamation - Freeing the removed data item.

Works because a pointer update is atomic.

a. Remove pointers to a data structure, so
that subsequent readers cannot gain a
reference to it.

b. Wait for all previous readers to complete
their RCU read-side critical sections.

c. At this point, there cannot be any readers
who hold references to the data structure, so
it now may safely be reclaimed.

3

RCU Core API

a. rcu_read_lock()
b. rcu_read_unlock()
c. synchronize_rcu() / call_rcu()
d. rcu_assign_pointer()
e. rcu_dereference()

4

RCU Example

void foo_update_a(int new_a)

{

 struct foo *new_fp;

 struct foo *old_fp;

 new_fp = kmalloc(sizeof(*new_fp), …);

 spin_lock(&foo_mutex);

 old_fp = gbl_foo;

 *new_fp = *old_fp;

 new_fp->a = new_a;

 rcu_assign_pointer(gbl_foo, new_fp);

 spin_unlock(&foo_mutex);

 synchronize_rcu();

 kfree(old_fp);

}
5

 struct foo {

 int a;

 char b;

 long c;

 };

 struct foo *gbl_foo;

 DEFINE_SPINLOCK(foo_mutex);

 int foo_get_a(void)

 {

 int retval;

 rcu_read_lock();

 retval = rcu_dereference(gbl_foo)->a;

 rcu_read_unlock();

 return retval;

 }

6

Discussion

7

co
un

t
 “

sc
al

e”

page #1

30

Brief meta-analysis

12

8

Isn’t this just COW?
How does it compare to MVCC?

Are there cases in which one is better
than the others?

What are the trade-offs?

9

Optimizing for writes
RCU makes the read case fast

What about use cases where we do a
lot of writes?

10

User space RCU
Use cases?
 memcached

Tradeoffs?

11

Exokernel designs
How would exokernel solve VM
scalability?

Can we do it with lower complexity
than with RCU?

12

Generalizing
What are typical application
workloads?

How common is driving VM this hard?

13

Other use-cases
What other parts of the Linux Kernel
can take advantage of this?

14

Functional vs Scalable
General principle?
 Functional DS -> C implementation

15

Commutativity
Can we understand the VM interface
using the scalable commutativity rule?

