
Scalable Address 
Spaces using RCU 
Balanced Trees

1



2

RCU : Read-Copy-Update

RCU is a synchronization mechanism that is 
optimized for read-mostly situations.

The basic idea behind RCU is to split updates 
into "removal" and "reclamation" phases.

Removal - Delete references to data items.
Reclamation - Freeing the removed data item.

Works because a pointer update is atomic.



a. Remove pointers to a data structure, so 
that subsequent readers cannot gain a 
reference to it.

b. Wait for all previous readers to complete 
their RCU read-side critical sections.

c. At this point, there cannot be any readers 
who hold references to the data structure, so 
it now may safely be reclaimed.

3



RCU Core API

a.    rcu_read_lock()
b.    rcu_read_unlock()
c.    synchronize_rcu() / call_rcu()
d.    rcu_assign_pointer()
e.    rcu_dereference()
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RCU Example

void foo_update_a(int new_a)

{

    struct foo *new_fp;

    struct foo *old_fp;

   new_fp = kmalloc(sizeof(*new_fp), … );

   spin_lock(&foo_mutex);

   old_fp = gbl_foo;

   *new_fp = *old_fp;

   new_fp->a = new_a;

   rcu_assign_pointer(gbl_foo, new_fp);

   spin_unlock(&foo_mutex);

   synchronize_rcu();

   kfree(old_fp);

}
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    struct foo {

    int a;

    char b;

    long c;

    };

    struct foo *gbl_foo;

    DEFINE_SPINLOCK(foo_mutex);

    int foo_get_a(void)

    {

    int retval;

    rcu_read_lock();

    retval = rcu_dereference(gbl_foo)->a;

    rcu_read_unlock();

    return retval;

    }
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Discussion
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Isn’t this just COW?
How does it compare to MVCC?

Are there cases in which one is better 
than the others?

What are the trade-offs?
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Optimizing for writes
RCU makes the read case fast

What about use cases where we do a 
lot of writes?
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User space RCU
Use cases? 
    memcached

Tradeoffs?
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Exokernel designs
How would exokernel solve VM 
scalability?

Can we do it with lower complexity 
than with RCU?
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Generalizing
What are typical application 
workloads?

How common is driving VM this hard?
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Other use-cases
What other parts of the Linux Kernel 
can take advantage of this?
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Functional vs Scalable
General principle?
      Functional DS -> C implementation
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Commutativity
Can we understand the VM interface 
using the scalable commutativity rule?


