
KLEE

Symbolic Execution

How would you test this program?

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

Symbolic Execution

How would you test this program?

Exhaustively! 264 inputs to try…

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

x

y

Symbolic Execution

How would you test this program?

Exhaustively! 264 inputs to try…

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

x

y

Symbolic Execution

How would you test this program?

Randomly? 1/264 chance that a random input crashes.

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

x

y

Symbolic Execution

How would you test this program?

Randomly? 1/264 chance that a random input crashes.

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

x

y

Symbolic Execution

How would you test this program?

Logically!

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z == 2x
z == y
y == x+10
…
y = 2x and 2x = x+10
…
y = 20, x = 10

Symbolic Execution

How would you test this program?

Logically!

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

x

y

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z != y

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z != y

no
crash

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z != y

no
crash

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z = y z = 2*x ∧ z != y

if (y == x+10)
no
crash

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z = y z = 2*x ∧ z != y

if (y == x+10)

z = 2*x ∧ z = y  
∧ y != x+10

no
crash

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z = y z = 2*x ∧ z != y

if (y == x+10)

z = 2*x ∧ z = y  
∧ y != x+10

no
crash

no
crash

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z = y z = 2*x ∧ z != y

if (y == x+10)

z = 2*x ∧ z = y  
∧ y != x+10

no
crash

no
crash

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z = y z = 2*x ∧ z != y

if (y == x+10)

z = 2*x ∧ z = y  
∧ y = x+10

z = 2*x ∧ z = y  
∧ y != x+10

no
crash

no
crash

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z = y z = 2*x ∧ z != y

if (y == x+10)

z = 2*x ∧ z = y  
∧ y = x+10

z = 2*x ∧ z = y  
∧ y != x+10

no
crash

no
crashcrash!

true

z = 2*x;

Symbolic Execution

void test_me(int x, int y) {
 int z = 2*x;
 if (z == y)
 if (y == x+10)
 abort();
}

z = 2*x

if (z == y)

z = 2*x ∧ z = y z = 2*x ∧ z != y

if (y == x+10)

z = 2*x ∧ z = y  
∧ y = x+10

z = 2*x ∧ z = y  
∧ y != x+10

no
crash

no
crashcrash!

true

z = 2*x;

Is the path feasible? Or is the path condition contradictory?
Ask a friendly SMT solver!

Symbolic Execution

Is the path satisfiable?
z = 2*x ∧ z = y ∧ y = x+10

Symbolic Execution

Is the path satisfiable?
z = 2*x ∧ z = y ∧ y = x+10

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)

(assert (= z (* x 2)))
(assert (= z y))
(assert (= y (+ x 10)))

(check-sat)
(get-model)

Symbolic Execution

Is the path satisfiable?
z = 2*x ∧ z = y ∧ y = x+10

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)

(assert (= z (* x 2)))
(assert (= z y))
(assert (= y (+ x 10)))

(check-sat)
(get-model)

sat
(model
 (define-fun z () Int
 20)
 (define-fun x () Int
 10)
 (define-fun y () Int
 20)
)

Symbolic Execution

That’s great! But what about…

• Vagaries of a real language (C)

• Interaction with libraries

• Input/output (files, command line)

And then, make it fast enough to use.

Symbolic Execution

That’s great! But what about…

• Vagaries of a real language (C)

• Interaction with libraries

• Input/output (files, command line)

And then, make it fast enough to use.

Symbolic Execution

That’s great! But what about…

• Vagaries of a real language (C)

• Interaction with libraries

• Input/output (files, command line)

And then, make it fast enough to use.

Symbolic Execution

That’s great! But what about…

• Vagaries of a real language (C)

• Interaction with libraries

• Input/output (files, command line)

And then, make it fast enough to use.

KLEE is symbolic execution that actually works.

KLEE Architecture

• An “operating system” for “symbolic processes”

• Actually: symbolic execution for LLVM bitcode

• “Forks” on every branch, to evaluate both sides

This all sounds like a terrible idea.

KLEE Architecture

To make it fast:

• Concretize instructions wherever possible

• Don’t fork for infeasible paths (ask an SMT solver)

• Don’t keep executing a path once it reaches an error

• Don’t model memory as a single flat array

• Bad for SMT solvers — instead, model each object
as a distinct array

• Model each possibility in a points-to set as a
different state

Compact State Representation

• Lots and lots of states! (up to 100k, 1GB RAM)

• Each state needs to track all memory objects in that
state — but most memory objects are rarely changed

• Copy-on-write at object granularity

• Heap is an immutable map for sharing between states

• And can be cloned in constant time when forking

Query Optimization

• Execution time dominated by constraint solving — so
do as little constraint solving as possible

• Constraint Independence

• Only include constraints from the current state if
they affect the query being evaluated

• {i < j, j < 20, k > 0} and query i=20

Query Optimization

• Counter-example Cache

• KLEE makes many redundant queries

• Naive cache: just map each query to its result

• Fancier cache: can index subsets and supersets of a
query

• If A is unsatisfiable, then A ∧ X is unsatisfiable

• If A ∧ X is satisfiable, then A is satisfiable

• If A is satisfiable, its solution might also be a
solution to A ∧ X (and this is cheap to check)

Query Optimization

Number of queries reduced by 95%
Runtime reduced by 10x

State Scheduling

• The core of KLEE is a loop that chooses the next
symbolic state to evaluate

• Random Path Selection

• State is a binary tree (nodes are forks)

• Randomly select a path through the tree, and
execute the node at the leaf

• Why? Favors nodes high in the tree (more
freedom), and avoids fork bombs from loops

State Scheduling

• Coverage-Optimized Search

• There is a heuristic.

• Guides the search towards uncovered instructions

• These two strategies are applied in round-robin style

Environment Modeling

• Real programs run on real operating systems and use
real files and stuff

• Files and other inputs could be symbolic

• Need to model all system calls for symbolic inputs
(read, write, stat, …)

• Modeling system calls rather than libc makes
implementation easier — can just compile some
libc using our system call implementations

• Can model failing system calls, and provide replay for
failing test cases (via ptrace)

Evaluation

• Ran KLEE over all GNU coreutils

coverage versus coreutils test suite

Evaluation

• Can use symbolic execution to check equivalence of
two implementations

• Compared Coreutils to Busybox

Evaluation

• Tested the HiStar kernel, executing a single process
that executes up to three system calls

Discussion

• Is coverage a good metric for measuring the quality
of tests?

• KLEE’s not easy to use — where is the trade-off
between wrangling KLEE and just writing tests?

• SAGE — as an x86 symbolic execution engine — is
more usable?

• Handling environment is hard — KLEE shoots for
100% accuracy, SAGE doesn’t. How important is it?

• Is it web scale? Is it Google scale?

