KLEE

Symbolic Execution

How would you test this program?

void test_me(int x,
Nt z = 2%X;
if (z == y)

1f (y == x+10)
abort();

int y) {

Symbolic Execution

How would you test this program?

yA

void test_me(int x,
Nt z = 2%X;
it (z == y)

1f (y == x+10)
abort();

Exhaustively! 264 inputs to try...

int y) {

Symbolic Execution

How would you test this program?

yA

void test_me(int x,
Nt z = 2%X;
it (z == y)

1f (y == x+10)
abort();

Exhaustively! 264 inputs to try...

int y) {

Symbolic Execution

How would you test this program?

Y1 . . .
void test_me(int x, int y) {

Nt z = 2%X;

it (z == y)
1f (y == x+10)

abort();

Randomly? 1/264 chance that a random input crashes.

Symbolic Execution

How would you test this program?

void test_me(int x, int y) {
o Nt z = 2%X;
) . . if (z == y)
: 1f (y == x+10)
abort();

Randomly? 1/264 chance that a random input crashes.

Symbolic Execution

How would you test this program?

Z == 2X void test_me(int x, int y) {
Z == int z = 2#%x;

y == X+10 if (z == y)

. if (y == x+10)

y = 2x and 2x = x+10 abort();

3

y: ZO, X = 10

Logically!

Symbolic Execution

How would you test this program?

void test_me(int x, int y) {
Nt z = 2%X;
if (z == y)
1f (y == x+10)
abort();

Logically!

Symbolic Execution

vold test_me(int x, int y) {
Nt z = 2%X;
if (z == y)
1f (y == x+10)
abort();

Symbolic Execution

vold test_me(int x, int y) {
Nt z = 2#%X;
if (z == y)
1f (y == x+10)
abort();

Symbolic Execution

vold test_me(int x, int y) {
Nt z = 2#%X;
if (z == y)
1f (y == x+10)
abort();

Symbolic Execution

vold test_me(int x, int y) {
Nt z = 2#%X;
if (z == y)
1f (y == x+10)
abort();

—>

Symbolic Execution

vold test_me(int x, int y) {
Nt z = 2#%X;
if (z == y)
1f (y == x+10)
abort();

7

Symbolic Execution

vold test_me(int x, int y) {
1INt z = 2%X;
if (z == y)
1f (y == x+10)
abort();

1}

Symbolic Execution

vold test_me(int x, int y) {
1INt z = 2%X;
if (z == y)
1f (y == x+10)
abort();

—>

Symbolic Execution

l true

Z = 2%X;

Z=2%X

if (z == y)
Z2=2"xXAzZl=Yy

vold test_me(int x, int y) {
int z = 2*x; Z=2"xnz=y
1f (z == y)
“if (y == x+10)
abort();

if (y == xt+10)

Symbolic Execution

l true

Z = 2%X;

Z=2%X

if (z == y)
Z2=2"xXAzZl=Yy

vold test_me(int x, int y) {
int z = 2*x; Z=2"xnz=y
if (z == y)
1f (y == x+10)
abort();

if (y == xt+10)

-TP>

Symbolic Execution

l true

Z = 2%X;

Z=2%X

if (z == y)
Z2=2"xXAzZl=Yy

vold test_me(int x, int y) {
int z = 2*x; Z=2"xnz=y
if (z == y)
1t (y == x+10)
abort();

if (y == xt+10)

-TP>

Symbolic Execution

l true

Z = 2%X;

Z=2%X

if (z == y)
Z2=2"xXAzZl=Yy

vold test_me(int x, int y) {
int z = 2*x; Z=2"xnz=y
if (z == y)
=Pif (y == x+10)
abort();

if (y == xt+10)

Symbolic Execution

l true

Z = 2%X;

Z=2%X

void test_me(int x, int y) { iz =y
int z = 2*x; z=2*xnz=Yy z=2*xnzl=y

1f (z == y) o
if (y == x+10) ; (yz_*_ o
/ = X 7 =
= abort(); Ay =410

Symbolic Execution

l true

Z = 2%X;

Z=2%X

vold test_me(int x, int y) {

int /7 = 2*X° Z=Z*X/\Z=y Z=Z*X/\Z!=y
)
11C.(Z . y) if (y == x+10)
if (y == x+10)
) Z=2"XNZ=Y

abort(); AY = x+10

} o g

Symbolic Execution

l true
‘ Z = 2%X;

lz:zw

void test_me(int x, int y) { iz =y
int z = 2*x; z=2*XAZ=Y z=2*XAZl=y

it (z == y) DU
if (y == x+10) lf_(yz:x 1@)_
abort(); “ Y = X410 >

} o g

s the path teasible? Or is the path condition contradictory?
Ask a friendly SMT solver!

Symbolic Execution

s the path satistiable?
Z2=2"XAZ=yAYy=x+10

Symbolic Execution

s the path satistiable?
Z2=2"XAZ=yYAYy=Xx+10

(declare-const x)
(declare-const y)
(declare-const z)

(assert (= z (*x x 2)))
(assert (= z y))
(assert (= y (+ X)))

(check-sat)
(get-model)

Symbolic Execution

s the path satistiable?
Z2=2"XAZ=yYAYy=Xx+10

(declare-const x)

(declare-const y) ?;gdel
(declare-const z) (define-fun z ()

20)

Z3
(assert (= z (* x 2))) # L
(assert (= z y)) (dfg;ne fun x (O

(assert (=y (+ x 10))) (define-fun y ()
20)

(check-sat))
(get-model)

Symbolic Execution

That's great! But what about...

e Vagaries of a real language (C)

e Interaction with libraries

 |Input/output (files, command line)

And then, make it fast enough to use.

Symbolic Execution

That's great! But what about...

e Vagaries of a real language (C)

e Interaction with libraries

 |Input/output (files, command line)

And then, make it fast enough to use.

/

KLEE is symbolic execution that actually works.

KLEE Architecture

« An “operating system” for “symbolic processes”
 Actually: symbolic execution for LLVM bitcode

e "Forks” on every branch, to evaluate both sides

This all sounds like a terrible idea.

KLEE Architecture

To make it fast:

e Concretize instructions wherever possible

e Don't fork for infeasible paths (ask an SMT solver)

« Don’t keep executing a path once it reaches an error

e Don’t model memory as a single flat array

e Bad for SMT solvers — instead, model each object
as a distinct array

* Model each possibility in a points-to set as a
different state

Compact State Representation

e Lots and lots of states! (up to 100k, 1GB RAM)

e Each state needs to track all memory objects in that
state — but most memory objects are rarely changed

« Copy-on-write at object granularity
e Heap is an immutable map for sharing between states

* And can be cloned in constant time when forking

Query Optimization

e Execution time dominated by constraint solving — so
do as little constraint solving as possible

e Constraint Independence

e Only include constraints from the current state if
they affect the query being evaluated

e {i<],]<20, k>0}and queryi=20

Query Optimization

e Counter-example Cache
e KLEE makes many redundant queries
* Nalve cache: just map each query to its result

e Fancier cache: can index subsets and supersets of a
query
e IT A s unsatisfiable, then A A X is unsatisfiable

e If A A Xis satisfiable, then A is satisfiable

« |f A is satisfiable, its solution might also be a
solution to A A X (and this is cheap to check)

Query Optimization

Optimizations || Queries | Time (s) | STP Time (s)
None 13717 300 281
Independence 13717 166 148
Cex. Cache 8174 177 156
All 699 20 10

Number of queries reduced by 95%
Runtime reduced by 10x

State Scheduling

« The core of KLEE is a loop that chooses the next
symbolic state to evaluate

« Random Path Selection
 State is a binary tree (nodes are forks)

e Randomly select a path through the tree, and
execute the node at the leaf

« Why? Favors nodes high in the tree (more
freedom), and avoids fork bombs from loops

State Scheduling

e Coverage-Optimized Search
e There Is a heuristic.
e Guides the search towards uncovered instructions

e These two strategies are applied in round-robin style

Environment Modeling

e Real programs run on real operating systems and use
real files and stuff

 Files and other inputs could be symbolic

* Need to model all system calls for symbolic inputs
(read, write, stat, ...)

* Modeling system calls rather than 1ibc makes
implementation easier — can just compile some

libc using our system call implementations

« Can model failing system calls, and provide replay for
failing test cases (via ptrace)

Evaluation

e Ran KLEE over all GNU coreutils

100%
X .
S 50%
- !
= (T
< !
= ; ;
gs :
ea) —50% o
€3
-
N
—100% T—;5 2% 50 75

coverage versus coreutils test suite

Evaluation

« Can use symbolic execution to check equivalence of

two Imple

mentations

o Comparec

Coreutils to Busybox

Input BUSYBOX COREUTILS

comm tl.txt t2.txt [does not show difference] [shows difference]

tee - [does not copy twice to stdout] [does]

tee "" <tl.txt [infinite loop] [terminates]

cksum / "4294967295 0 /" "/: Is a directory"
split / "/: Is a directory"

tr [duplicates input on stdout] "missing operand"

[O \\<II 1]
sum -s <tl.txt
tail -21
unexpand -f
split -

ls --color-blah

"97 1 -"
[rejects]
[accepts]
[rejects]
[accepts]

"binary operator expected"
"97 1"
[accepts]
[rejects]
[accepts]
[rejects]

tl.txt: a t2.txt: b

Evaluation

« Tested the HiStar kernel, executing a single process

that executes up to three system calls

Test Random | KLEE | ELOC ‘
With Disk 50.1% | 67.1% 4617
No Disk 48.0% 76.4% 2662

Discussion

* |s coverage a good metric for measuring the quality
of tests?

e KLEE's not easy to use — where is the trade-off
between wrangling KLEE and just writing tests?

 SAGE — as an x86 symbolic execution engine — Is
more usable?

« Handling environment is hard — KLEE shoots for
100% accuracy, SAGE doesn’t. How important is it?

 |s it web scale? Is it Google scale?

