
Deterministic Process Groups in

Tom Bergan
Nicholas Hunt, Luis Ceze, Steven D. Gribble

 University of Washington
UNIVERSITY OF WASHINGTON HUSKIESPAGE 1

JANUARY 6, 2009

UNIVERSITY OF WASHINGTON HUSKIESPAGE 2

JANUARY 6, 2009

PURPLE

GOLD

GRAY

INSTITUTIONAL PURPLE

METALLIC GOLD

WHITE

PANTONE 5265

PANTONE 7502

PANTONE COOL GRAY 11

PANTONE 273

PANTONE 871

WHITE

NOTE: The marks of The University of Washington are controlled under a licensing program administered by The Collegiate Licensing Company. Any use of these marks will require written approval from The Collegiate Licensing Company.

For a complete standards manual, please contact the University of

Washington Licensing Program: 206.685.8600 LOCATION:

 SEATTLE, WA

MASCOT:

 HUSKY

MASCOT NICKNAME:

 HARRY

ESTABLISHED DATE:

 1861

CONFERENCE:

 PAC 10

University of Washington ®

Washington ®

Dawgs ®

Real Dawgs Wear Purple ®

U of W ®

U Dub ®

U of W Huskies ®

UW Huskies ®

Husky™

Huskies ®

Woof ®

Helmet Logo™

Apple Cup™

Opening Day Regatta™

Yes No Restrictions
• University seal permitted on products for resale:

• Alterations to seal permitted:

• Overlaying / intersecting graphics permitted with seal:

• University licenses consumables:

• University licenses health & beauty products:

• University permits numbers on products for resale:

• Mascot caricatures permitted:

• Cross licensing with other marks permitted:

• NO USE of current player's name, image, or likeness is permitted on commercial products in violation of NCAA rules and

 regulations.

• NO REFERENCES to alcohol, drugs, or tobacco related products may be used in conjunction with University marks.

• University seal cannot be used on stationary or letterheads by anyone other than Official University departments.

• We encourage the use of our seal on licensed products, but we monitor the approval of items licensed. We want to see it on

 shirts, etc.

• Any other use is approved only with special approval from the University Licensing Office.

Yes No Restrictions
• University seal permitted on products for resale:

• Alterations to seal permitted:

• Overlaying / intersecting graphics permitted with seal:

• University licenses consumables:

• University licenses health & beauty products:

• University permits numbers on products for resale:

• Mascot caricatures permitted:

• Cross licensing with other marks permitted:

• NO USE of current player's name, image, or likeness is permitted on commercial products in violation of NCAA rules and

 regulations.

• NO REFERENCES to alcohol, drugs, or tobacco related products may be used in conjunction with University marks.

• University seal cannot be used on stationary or letterheads by anyone other than Official University departments.

• We encourage the use of our seal on licensed products, but we monitor the approval of items licensed. We want to see it on

 shirts, etc.

• Any other use is approved only with special approval from the University Licensing Office.

LOCATION:

 SEATTLE, WA

MASCOT:

 HUSKY

MASCOT NICKNAME:

 HARRY

ESTABLISHED DATE:

 1861

CONFERENCE:

 PAC 10

University of Washington ®

Washington ®

Dawgs ®

Real Dawgs Wear Purple ®

U of W ®

U Dub ®

U of W Huskies ®

UW Huskies ®

Husky™

Huskies ®

Woof ®

Helmet Logo™

Apple Cup™

Opening Day Regatta™

PURPLE GOLD GRAY METALLIC GOLDINSTITUTIONAL PURPLE

MADEIRA 1233

MADEIRA 1138

WHITE

POLY-NEON 1634

POLY-NEON 1738

WHITE

NOTE: The marks of The University of Washington are controlled under a licensing program administered by The Collegiate Licensing Company. Any use of these marks will require written approval from The Collegiate Licensing Company.

PURPLE

GOLD

GRAY

INSTITUTIONAL PURPLE

METALLIC GOLD

WHITE

PANTONE 5265

PANTONE 7502

PANTONE COOL GRAY 11

PANTONE 273

PANTONE 871

WHITE

PURPLE GOLD GRAY METALLIC GOLDINSTITUTIONAL PURPLE

MADEIRA 1233

MADEIRA 1138

WHITE

POLY-NEON 1634

POLY-NEON 1738

WHITE

A Nondeterministic Program
global x=0

 t := x

 x := t + 1

 t := x

 x := t + 1

Thread 1 Thread 2

What is x?

x == 2 x == 2 x == 1
2

Nondeterministic IPC

 recv(..) recv(..)

Process 1 Process 2

Who gets msg A?

3

 send(msg=A)

 send(msg=B)

Process 0

 recv(msg=A)

 recv(msg=B) recv(msg=B)

 recv(msg=A)

why nondeterministic:
 multiprocessor hardware is
 unpredictable

Nondeterminism In Real Systems

4

shared-memory

IPC (e.g. pipes)

disks

why nondeterministic:
 multiprocessor hardware is
 unpredictable

network
why nondeterministic:
 packets arrive from
 external sources

posix signals
why nondeterministic:
 unpredictable scheduling, also
 can be triggered by users

. . .

why nondeterministic:
 drive latency is
 unpredictable

The Problem

5

‣ same input, different outputs

• Nondeterminism makes programs . . .

➡ hard to test

➡ hard to replicate for fault-tolerance

➡ hard to debug
‣ leads to heisenbugs

‣ replicas get out of sync

• Multiprocessors make this problem much worse!

Our Solution

6

New OS abstraction:

Deterministic Process Group (DPG)

Thread1

Process A

deterministic box

• OS support for deterministic execution
➡ of arbitrary programs
➡ attack all sources of nondeterminism (not just shared-memory)
➡ even on multiprocessors

Thread2

Process B

Thread3

Key Questions

7

1 What can be made deterministic?

2 What can we do about the
remaining sources of nondeterminism?

Key Questions

8

1 What can be made deterministic?

2 What can we do about the
remaining sources of nondeterminism?

- distinguish internal vs. external nondeterminism

Internal
nondeterminism

9

External
nondeterminism

• arises from scheduling
artifacts (hw timing, etc)

• arises from interactions
with the external world
(networks, users, etc)

Fundamental

can not be eliminated

NOT Fundamental

can be eliminated!

Internal
Determinism

10

External
Nondeterminism

network

deterministic box

users real time

Internal
Determinism

11

External
Nondeterminism

network

deterministic box

usersshared
memory

a programmer-defined
process group

pipes

private
files

real time

Process 1

Process 2

Process 3

Internal
Determinism

12

External
Nondeterminism

network

deterministic box

users

pipe

shared file

Process 4

shared
memory

pipes

private
files

?

real time

Process 1

Process 2

Process 3

Internal
Determinism

13

External
Nondeterminism

network

deterministic box

users

pipe

shared file

Process 4

shared
memory

pipes

private
files

sh
im

 p
ro

gram
Precisely controls
all external inputs

• value of input data
• time input data arrives

real time

Process 1

Process 2

Process 3

Internal
Determinism

14

External
Nondeterminism

network

deterministic box

users real time

(virtual machine)

operating system

user-space apps

An entire virtual machine could
go inside the deterministic box!

- too inflexible
- too costly

Deterministic Process Groups

15

Thread1

Process A

deterministic box

Shim Program:

sh
im

 p
ro

gram

network

Thread2 Thread3

Process B

OS ensures:

• internal nondeterminism is eliminated
(for shared-memory, pipes, signals, local files, ...)

• external nondeterminism funneled through shim program

• user-space program that precisely controls all external
nondeterministic inputs

user I/O

Contributions

16

Conceptual:

- identify internal vs. external nondeterminism

- key: internal nondeterminism can be eliminated!

Abstraction:

- Deterministic Process Groups (DPGs)

- control external nondeterminism via a shim program

Implementation:

- dOS, a modified version of Linux

- supports arbitrary, unmodified binaries

Applications:

- deterministic parallel execution

- record/replay

- replicated execution

Outline

17

• Deterministic Process Groups

• dOS: our Linux-Based Implementation

• Evaluation

• Example Uses
➡ a parallel computation
➡ a webserver

➡ system interface
➡ conceptual model

A Parallel Computation

18

parallel program

deterministic box

local input
files

This program executes deterministically!

• even on a multiprocessor

• supports parallel programs written in any language

‣ no heisenbugs!
‣ test input files, not interleavings

A Webserver

19

webserver
(many threads/processes)

deterministic box

network, etc

Deterministic Record/Replay

• implement in shim program

• requires no webserver modification

‣ significantly less to log (internal nondeterminism is eliminated)
‣ log sizes 1,000x smaller!

sh
im

Advantages

A Webserver

20

webserver

deterministic box network, etc

Fault-tolerant Replication

• implement replication protocol in shim programs
(paxos, virtual synchrony, etc)

‣ easy to replicate multithreaded servers
(internal nondeterminism is eliminated)

sh
im

Advantage

webserver

deterministic box

sh
im

A Webserver

21

Using DPGs to construct applications

webserver

deterministic part
(in a DPG)

nondeterministic part
(in a shim)

request
processing

low-level
network I/O

(bundle into requests)

Shim program defines the nondeterministic interface

• behaves deterministically w.r.t. requests rather than packets

Outline

22

• Deterministic Process Groups

• dOS: our Linux-Based Implementation

• Evaluation

• Example Uses
➡ a parallel computation
➡ a webserver

➡ system interface
➡ conceptual model

Deterministic Process Groups

23

Thread1

Process A

deterministic box
sh

im
 p

ro
gram

network

Thread2 Thread3

Process B

System Interface

• Just like ordinary linux processes

user I/O

• New system call creates a new DPG: sys_makedet()
‣ DPG expands to include all child processes

‣ same system calls, signals, and hw instruction set

‣ can be multithreaded

Deterministic Process Groups

24

Thread1

Process A

deterministic box
sh

im
 p

ro
gram

network

Thread2 Thread3

Process B

Two questions:

• What are the semantics of internal determinism?

user I/O

• How do shim programs work?

Deterministic Process Groups

25

Thread1

Process A

deterministic box

Thread2 Thread3

Process B

Internal Determinism

• Conceptually: executes as if serialized onto a logical timeline

• OS guarantees internal communication is scheduled
deterministically

‣ implementation is parallel

sh
im

 p
ro

gram

network

user I/O

Internal Determinism

26

Thread1 Thread2
Logical

Timeline

t=1

t=2

t=3

t=4

t=5

t=6

t=7

wr x

rd x

Each DPG has a logical timeline
‣ instructions execute as if serialized onto the logical timeline
‣ internal events are deterministic

wr y

rd y

read(pipe)

read(pipe)

rd z
blocking call

always reads same value of x

always blocks for 3 time steps
always returns same data

Internal Determinism

27

Thread1 Thread2
Logical

Timeline

t=1
t=2

t=3
t=4

t=5
t=6

t=7

wr x
rd x

wr y

rd y
read(pipe)

read(pipe)
rd z

blocking call

arbitrary delays in physical time
are possible

Physical time is not deterministic
‣ deterministic results, but not deterministic performance

External Nondeterminism

28

Thread1 Thread2
Logical

Timeline

t=1

t=2

t=3

t=4

t=5

t=6

t=7

wr x

rd x

wr y

rd y

read(socket)

read(socket)

rd z
blocking call

external channel

Physical
Time

packet
arrival

Two sources of nondeterminism:

• data returned by read()

• blocking time of read()

External Nondeterminism

29

Thread1 Thread2
Logical

Timeline

t=1

t=2

t=3

t=4

t=5

t=6

t=7

wr x

rd x

wr y

rd y

read(socket)

read(socket)

rd z

blocking call

Physical
Time

packet
arrival

external channel

Two sources of nondeterminism:

• data returned by read()

• blocking time of read()

External Nondeterminism

30

Thread1 Thread2
Logical

Timeline

t=1

t=2

t=3

t=4

t=5

t=6

t=7

wr x

rd x

wr y

rd y

read(socket)

read(socket)

rd z

blocking call

Physical
Time

packet
arrival

external channel

Two sources of nondeterminism:

• data returned by read()

• blocking time of read()

External Nondeterminism

31

Thread1 Thread2
Logical

Timeline

t=1

t=2

t=3

t=4

t=5

t=6

t=7

wr x

rd x

wr y

rd y

read(socket)

read(socket)

rd z
blocking call

Physical
Time

packet
arrival

Two sources of nondeterminism:

• data returned by read()

• blocking time of read()
‣ the what
‣ the when

sh
im

 p
ro

gram

Shim Example: Read Syscall

32

Logical
Timeline

t=3

DPG
Thread

Shim
Program OS

read()

t=2

t=4

“hello”

return(“hello”)

t=11

t=10

1

Shim can either . . .

1 Monitor call (e.g., for record)

2 Control call (e.g., for replay)

Shim Example: Read Syscall

33

Logical
Timeline

t=3

DPG
Thread

Shim
Program OS

t=2

t=4

return(“hello”)

t=11

t=10

1

2

“hello”

Shim can either . . .

1 Monitor call (e.g., for record)

2 Control call (e.g., for replay)

t=10

“hello”

Shim Example: Replication

34

replication
protocol

DPG Replica 1

shim

multithreaded

server

DPG Replica 2

shim

multithreaded

server

DPG Replica 3

shim

multithreaded

server

We have implemented
this idea (see paper)

Key idea:

• protocol delivers (time,msg)
pairs to replicas

• ensure replicas see same
input at same logical time

Outline

35

• Deterministic Process Groups

• dOS: our Linux-Based Implementation

• Evaluation

• Example Uses
➡ a parallel computation
➡ a webserver

➡ system interface
➡ conceptual model

dOS Overview

36

➡ ~8,000 lines of code added or modified
➡ ~50 files changed or modified
➡ transparently supports unmodified binaries

Modified version of Linux 2.6.24/x86_64

Support for DPGs:

➡ subsystems modified:
- thread scheduling
- virtual memory
- system call entry/exit

Paper describes challenges in depth

➡ implement a deterministic scheduler
➡ implement an API for writing shim programs

talk focus

dOS: Deterministic Scheduler

37

Which deterministic execution algorithm?

• DMP-O, from prior work [Asplos09, Asplos10]

- other algorithms have better scalability, but

- . . . Dmp-O is easiest to implement

How does DMP-O work?

How does dOS implement DMP-O?

Deterministic Execution with DMP-O

38

Thread1 Thread2 Thread3

Key idea:

• serialize all communication
deterministically

Deterministic Execution with DMP-O

39

Thread1 Thread2 Thread3

parallelize
until there is

communication

Deterministic Execution with DMP-O

40

Thread1 Thread2 Thread3

parallelize
until there is

communication

x=..

x=..

x=..

serialize
communication

Ownership table

• assigns ownership of data to threads

• communication: thread wants data it doesn’t own

Logical
Timeline

t=1

t=2

t=3

t=4

dOS: Changes for DMP-O

42

Thread1 Thread2 Thread3

must instrument the system interface

• loads/stores
- for shared-memory

• system calls
- for in-kernel channels

- explicit: pipes, files, signals, ...

- implicit: address space, file descriptor
 table, ...

Ownership Table

dOS: Changes for DMP-O

43

Thread1 Thread2 Thread3

for shared-memory

• must instrument loads/stores
- use page-protection hw

• each thread has a shadow page table
- permission bits denote ownership

- page faults denote communication

- page granularity ownership

Ownership Table

dOS: Changes for DMP-O

44

Thread1 Thread2 Thread3

for in-kernel channels (pipes, etc.)

• must instrument system calls

• on syscall entry:
- decide what channels are used

 read(): pipe or file being read
 mmap(): the thread’s address space

- acquire ownership
 ownership table is just a hash-table

- any external channels?
 if yes: forward to shim program

Ownership Table

Many challenges

and complexities

(see paper)

Outline

45

• Deterministic Process Groups

• dOS: our Linux-Based Implementation

• Evaluation

• Example Uses
➡ a parallel computation
➡ a webserver

➡ system interface
➡ conceptual model

Evaluation Overview

46

➡ 8-core 2.8GHz Intel Xeon, 10GB RAM
➡ Each application ran in its own DPG

Setup

Key questions
➡ How much internal nondeterminism is eliminated?

(log sizes for record/replay)
➡ How much overhead does dOS impose?
➡ How much does dOS affect parallel scalability?

Verifying determinism
➡ used the racey deterministic stress test [ISCA02, MarkHill]

Eval: Record Log Sizes

47

dOS
➡ implemented an “execution recorder” shim

➡ also uses page-level ownership-tracking
➡ . . . but has to record internal nondeterminism

fmm

lu

ocean

radix

water

dOS SMP-ReVirt

1 MB
11 MB
1 MB
1 MB
5 MB

83 GB
11 GB
28 GB
88 GB
58 GB

(log size per day)

8,800x bigger!

SMP-ReVirt (a hypervisor) [VEE 08]

Log size comparison

Eval: dOS Overheads

48

Possible sources of overhead
‣ deterministic scheduling
‣ shim program interposition

Ran each benchmark in three ways:

‣ without a DPG (ordinary, nondeterministic)

‣ with a DPG only

‣ with a DPG and an “execution recorder” shim program

scheduling overheads

shim overheads

Eval: dOS Overheads

49

Apache
‣ 16 worker threads
‣ serving 100KB static pages

Nondet (no DPG)
DPG (no shim):
DPG (with record shim):

saturates 1 gigabit network
26% throughput drop
78% throughput drop (over Nondet)

Chromium
‣ process per tab
‣ scripted user session (5 tabs, 12 urls)

DPG (no shim):
DPG (with record shim):

1.7x slowdown
1.8x slowdown (over Nondet)

‣ serving 10 KB static pages

DPGs saturate 1 gigabit network

Eval: dOS Overheads

50

0x

3x

5x

8x

10x

blackscholes lu pbzip dedup fmm make

D
P
G

 s
lo

w
d
o
w

n

2 threads
4 threads
8 threads

Parallel application slowdowns
‣ DPG only
‣ relative to nondeterministic execution

preserves scalability

5x = 5 times slower with DPGs

fine-grained
sharingloses scalability

1x

Wrap Up

51

➡ new OS abstraction
➡ eliminate or control sources of nondeterminism

Deterministic Process Groups

➡ Linux-Based implementation of DPGs
➡ use cases demonstrated: deterministic execution, record/

replay, and replicated execution

dOS

Also in the paper . . .
➡ many more implementation details
➡ a more thorough evaluation
➡ thoughts on a “from scratch” implementation

Thank you!

Questions?

52

http://sampa.cs.washington.edu

C:\DOS

C:\DOS\RUN

C:\DOS\RUN\DETERM~1.EXE

http://sampa.cs.washington.edu
http://sampa.cs.washington.edu

Discussion

How can we “constructively” make use of
DPG?

Is OS the right place to provide determinism?
How else can we provide deterministic
program execution? Language, Compiler,
Hardware? What are the pros and cons of each
approach?
ewm87: “each source of non-determinism should handle itself”
wysem: “do we really want/need deterministic execution for
everything?”
danyangz: “the cost of making the scheduling deterministic is quite
large...better to use some invariance reasoning”

Why do we need deterministic processes?

bornholt: “The demand for determinism seems like a side effect of
terrible abstractions for concurrency.”

Is DPG a perfect solution for
debugging/testing?

osandov: “make data race bugs harder to find”
naveenks: “since many multi-threaded bugs are
due to race-conditions and concurrency, how does
debugging inside a DPG help catch those bugs?”
lijl: “when customers encouter a bug, the
developers should be able to reproduce the bug
even on a completely different machine”

How robust is the determinism enforced inside
a DPG? What if the programmer add a single
debug print statement?

billzorn: “It's like not getting the best of either
world: the determinism is fragile and complicated.”

What are the preconditions to use DPG for
your application? What are the properties that
are not compulsory but good to have?

unmodified
performance-insensitive
no randomness

share as few things as possible
have a small number of external communications

Are there any constraints/assumptions that
can be relaxed in DPG to give us better
performance?

antoinek “the false-sharing problem technically is the exact same
thing as for cache lines, but with two major differences:
1) the 4K pages on x86 are generally 64x larger than cache lines
2) even false sharing at a relatively low rate can quickly become

really expensive, because execution has to switch to serialized”

