Deterministic Process Groups in oax

Tom Bergan
Nicholas Hunt, Luis Ceze, Steven D. Gribble

University of Washington

global x=0
Thread | Thread 2

Process O

4)

send (msg=A)
ksend(msg=B)

Process | l l Process 2

Who gets msg A?

shared-memory

why nondeterministic:
multiprocessor hardware is
unpredictable

IPC (e.g. pipes)
why nondeterministic:

multiprocessor hardware is
unpredictable

posix signals

why nondeterministic:
unpredictable scheduling, also
can be triggered by users

disks

why nondeterministic:
drive latency is
unpredictable

network

why nondeterministic:
packets arrive from
external sources

* Nondeterminism makes programs ...

= hard to test
» same input, different outputs

= hard to debug
» leads to heisenbugs

= hard to replicate for fault-tolerance
» replicas get out of sync

* Multiprocessors make this problem much worse!

® OS support for deterministic execution

= of arbitrary programs
= attack all sources of nondeterminism (not just shared-memory)
= even on multiprocessors

New OS abstraction:
Deterministic Process Group (DPG)

. I
E Thread, :

|
, Thread> Threads | .
| |
1 Process A Process B
| |

deterministic box

@ What can be made deterministic?

@ What can we do about the
remaining sources of hondeterminism?

@ What can be made deterministic?

- distinguish internal vs. external nondeterminism

@ What can we do about the
remaining sources of nhondeterminism?

e arises from scheduling * arises from interactions
artifacts (hw timing, etc) with the external world
(networks, users, etc)

NOT Fundamental Fundamental
can be eliminated! can not be eliminated

real time

users

deterministic box

|10

' shared l

. | memory

: Process |

: pipes

g (|) s

' private

' files I Process 2

s 22
Process 3

deterministic box

S — o't

users real time

a programmer-defined
process group

users real time

--------------------------------------- .. LB m ¥
B e W , o
shared]

c

deterministic box 12

(memory] :

: Process |))< network)
—— 2] |9

E private Q

E files Prcg)c?sas 2| < pipe >‘ --------------- :
i < ’(shared file "
Process 3 i E

8

' shared l

. | memory

: Process |
: pipes

g (|) s

' private

files Process 2
g (\ 200
Process 3

deterministic box

users real time

—
=
et
e
-)

~ %
-l

| Precisely controls
all external inputs

* value of input data
* time input data arrives |

13

users real time

— S -

user-space apps

\

\

An entire virtual machine could
go inside the deterministic box!

- too inflexible
- too costly

s (virtual macrﬁ))

deterministic box 14

operating syst

Thread,

—_] (

network)

Thread,

Process A Process B

:‘ Threads f

user |/O)

} weaSoud wiys |

deterministic

OS ensures:

box

e [internal] nondeterminism is eliminated

(for shared-memory, pipes, signals, local files, ...)

o [external] nondeterminism funneled through shim program

Shim Program:

* user-space program that precisely controls all [externall
nondeterministic inputs 5

Conceptual:
= identify internal vs. external nondeterminism
= key: internal nondeterminism can be eliminated!

Abstraction:
= Deterministic Process Groups (DPGs)
= control external nondeterminism via a shim program

Implementation:
= dOS, a modified version of Linux
= supports arbitrary, unmodified binaries

Applications:
= deterministic parallel execution
= record/replay

= replicated execution .

e Example Uses
= a parallel computation

= 3 webserver

* Deterministic Process Groups
= system interface

= conceptual model

e dOS: our Linux-Based Implementation

e Evaluation

|7

files

. parallel program <« local mputj

deterministic box

This program executes deterministically!

e even on a multiprocessor
o supports parallel programs written in any language

» no heisenbugs!
» test input files, not interleavings

|18

networlk, etc)
(many threads/processes)

: webserver

deterministic box

Deterministic Record/Replay

e implement in shim program
e requires no webserver modification

Advantages

» significantly less to log (internal nondeterminism is eliminated)
» log sizes 1,000x smaller!

19

network, etc)

webserver

deterministic box

Fault-tolerant Replication

e implement replication protocol in shim programs
(paxos, virtual synchrony, etc)

Advantage

» easy to replicate multithreaded servers
(internal nondeterminism is eliminated)

20

Using DPGs to construct appllcatlons

determlnlstlc part . | nondeterministic part
(|n a DPG) | (in a shim)
request |, IOW'IeIZf/IO
processing networ
(bundle into requests)
webserver

* behaves deterministically w.r.t. requests rather than packets

Shim program defines the nondeterministic interface

21

e Example Uses
= a parallel computation

= 3 webserver

* Deterministic Process Groups
= system interface

= conceptual model

e dOS: our Linux-Based Implementation

e Evaluation

22

. F v |

' i 2.3

. Thread, \ ~ai 3 (network)
:| w 19}

t - Thread Thread O |

: d = 3 -~ °§ -, user 1/O)
' Process A Process B =B
. -

deterministic box

System Interface

* New system call creates a new DPG: sys makedet ()
» DPG expands to include all child processes

® Just like ordinary linux processes
» same system calls, signals, and hw instruction set

» can be multithreaded

23

Thread, ﬁ
Thread; HThread3 H

Process A Process B

(network)

user I/O)

i weaSoud wiys |

deterministic box

Two questions:
* What are the semantics of |internal| determinism?

* How do shim programs work!?

24

deterministic box

Internal Determinism

. P 5
A Threadi | | 5 j¢—>(network)
:[: » B2
I ¢ O 3§
[Threada) | Threads |, 1 | user 1/0)
' Process A Process B =8

e OS guarantees[internall communication is scheduled

deterministically

* Conceptually: executes as if serialized onto a logical timeline
» implementation is parallel

25

Logical

Thread, W™ Thread;
Timeline

wWr X t%l
tTZ rd x -« always reads same value of x
tT3 read (pipe)

rd y tT4 | | always blocks for 3 time steps

| blocking call <«——

rd z tT 5 | always returns same data

tT6 read (pipe)

t=7 Wr Y

Each DPG has a logical timeline
» instructions execute as if serialized onto the logical timeline

» [internallevents are deterministic

26

Logical

Thread, W™ Thread;
Timeline

wWr X t%l

t=2 rd x

p arbitrary delays in physical time
are possible

t=3 read (pipe)
rd y tT4 | blocking call
rd z tT5

tT6 read(pipe)

=7 WX y

(_I.

Physical time is not deterministic
» deterministic results, but not deterministic performance

27

Logical Physical
Thread, . & . Thread; y
Timeline Time
WY X t%l external channel
tTZ rd x l
tT3 read (socket)
t=4 |
£ Y | { blocking call packet
rd z tTS v PUUPUSPEEELLL arrival
tT6 read (socket)

t=7 wWr y

Two sources of nondeterminism:

® data returned by read()
® blocking time of read ()

28

Logical Physical
Thread, . & . Thread> y
Timeline Time
WY X t%l external channel
tTZ rd x l
t=3 read (socket)
rd y tL4 iblocking call B packet
| ---------- arrival
tTS read (socket) <"
tT6 Wr Vv

rd z t=7

Two sources of nondeterminism:

® data returned by read()
® blocking time of read ()

29

Logical Physical
Thread, . & . Thread> y
Timeline Time
WY X t%l external channel
tTZ rd x l
t=3 read (socket) __packet
| ¥ blocking call ~ ___.----=""" arrival
tT4 read (socket) <~
tTS Wr y
rd y tT6

rd z t=7

Two sources of nondeterminism:

® data returned by read()
® blocking time of read ()

30

Logical Physical
Thread, -O8!c Thread; 4
Timeline Time
WX X t%l
tTZ rd x
tT3 read (socket)
rd y tT4 | o ” packet
OCKINg Ca i
rd z L | 8 arrival
| v «
tT6 read (socket)

t=7 wWr y

Two sources of nondeterminism:

® data returned by read() » the what
® blocking time of read () » the when

31

Logical
Timeline

t=2

DPG
Thread

Shim
Program OS5

return(“hello”) | .

Shim can either...

@ Monitor call (e.g., for record)

@ Control call (e.g., for replay)
AN

32

Logical DPG
Timeline Thread

t=2

Shim
Program OS

i return(“hello”) i

Shim can either...
@ Monitor call (e.g., for record)

@ Control call (e.g., for replay)
AN

J

33

Key idea: We have implemented

this idea (see paper)

® protocol delivers (time,msg) licati
pairs to replicas eplication

® ensure replicas see same PrOtOCOI

input at same |ogical time

dgm . ﬂgm - N d?n
multithreaded multithreaded multithreaded

server | i . server | | server

DPG Replica | DPG Replica 2 DPG Replica 3

34

e Example Uses
= a parallel computation

= 3 webserver

* Deterministic Process Groups
= system interface

= conceptual model

e dOS: our Linux-Based Implementation

e Evaluation

35

Modified version of Linux 2.6.24/x86 64

= ~8,000 lines of code added or modified
= ~50 files changed or modified

= transparently supports unmodified binaries

Support for DPGs:

= implement a|deterministic scheduler

= implement an API for writing shim programs

= subsystems modified:
- thread scheduling
- virtual memory

Paper describes challenges in depth

36

Which deterministic execution algorithm?
e DMP-O, from prior work [Asplos0,Asplos|0]

- other algorithms have better scalability, but
- ... Dmp-0O is easiest to implement

How does DMP-O work?
How does dOS implement DMP-0?

37

Thread, Thread> Threads

Key idea:

® serialize all communication

deterministically

38

Thread, Thread> Threads

parallelize
until there is >
communication

39

Logical

Thread, Thread; Threads Timeline
parallelize
until there is > £=1
communication
serialize N D= R
communication Ix= £=2

(_|-
Il
w

Ownership table

® assigns ownership of data to threads

® communication: thread wants data it doesn’t own

40

Thread| Thread; Threads

Ownership Table

must instrument the system interface

® Joads/stores
- for shared-memory T

® system calls T
- for in-kernel channels
- explicit: pipes, files, signals, ...
- implicit: address space, file descriptor
table, ...

Thread| Thread; Threads

Ownership Table

for shared-memory

® must instrument loads/stores
- use page-protection hw T

® each thread has a shadow page table T
- permission bits denote ownership
- page faults denote communication
- page granularity ownership

Ownership Table Thread, Thread; Threads

for in-kernel channels (pipes, etc.) Many challenges
and complexities

® must instrument system calls

o , (see paper)
on syscall entry:

- decide what channels are used

read(): pipe or file being read
mmap (): the thread’s address space

"
-
-
-

- acquire ownership
ownership table is just a hash-table

- any external channels?
if yes: forward to shim program I

P
$ 44

e Example Uses
= a parallel computation

= 3 webserver

* Deterministic Process Groups
= system interface

= conceptual model

e dOS: our Linux-Based Implementation

e Evaluation

45

Setup

= 8-core 2.8GHz Intel Xeon, I0GB RAM
= Each application ran in its own DPG

Verifying determinism
= used the racey deterministic stress test [SCA02 MarkHill

Key questions

= How much internal nondeterminism is eliminated!?
(log sizes for record/replay)

= How much overhead does dOS impose!

= How much does dOS affect parallel scalability?

46

dOS

= implemented an “execution recorder” shim

SMP-ReVirt (a hypervisor) [VEE 08]

= also uses page-level ownership-tracking
= _..but has to record internal nondeterminism

Log size comparison

dOS SMP-ReVirt
fmm | MB 83 GB (log size per day)
lu || MB || GB
ocean L AMB 28 GB
radix ~ImMB 88 GB : 8,800x bigger!
water 5 MB 58 GB

47

Possible sources of overhead
» deterministic scheduling
» shim program interposition

Ran each benchmark in three ways:
» without a DPG (ordinary, nondeterministic)

I scheduling overheads
» with a DPG only

I shim overheads

» with a DPG and an “execution recorder” shim program

48

Apache
» |6 worker threads
» serving |00KB static pages

DPGs saturate | gigabit network

» serving 10 KB static pages

Nondet (no DPG) saturates | gigabit network
DPG (no shim): 26% throughput drop

DPG (with record shim): 78% throughput drop (over Nondet)

Chromium
» process per tab
» scripted user session (5 tabs, 12 urls)

DPG (no shim): |.7x slowdown

DPG (with record shim): |.8x slowdown (over Nondet)
49

Parallel application slowdowns
» DPG only
» relative to nondeterministic execution

| 0x fine-grain - = 2 thread
loses scalability f - 4Eh:::d:
NG x:’ -
: " ‘ : 8 threads
'8 Lo
3 5x 5x = 5 times slower with DPGs |
7 om o - W‘J V7
preserves scalability| =
- X
| x ._.cwj
Ox

blackscholes lu pbzip dedup fmm make

50

Deterministic Process Groups
= new OS abstraction
= ecliminate or control sources of nondeterminism

dOS

= | inux-Based implementation of DPGs
= use cases demonstrated: deterministic execution, record/
replay, and replicated execution

Also in the paper...

= many more implementation details
= a more thorough evaluation
= thoughts on a “from scratch” implementation

51

Questions!?

http://sampa.cs.washington.edu

C:\DOS
C: \DOS\RUN
C:\DOS\RUN\DETERM~1 .EXE

52

http://sampa.cs.washington.edu
http://sampa.cs.washington.edu

Discussion

How can we “constructively” make use of
DPG?

Is OS the right place to provide determinism?
How else can we provide deterministic

program execution? Language, Compiler,
Hardware? What are the pros and cons of each

approach?

ewma87: “each source of non-determinism should handle itself”
wysem: “do we really want/need deterministic execution for
everything?”

danyangz: “the cost of making the scheduling deterministic is quite
large...better to use some invariance reasoning”

Why do we need deterministic processes?

bornholt: "The demand for determinism seems like a side effect of
terrible abstractions for concurrency.”

Is DPG a perfect solution for
debugging/testing?

osandov: "make data race bugs harder to find”

naveenks: "since many multi-threaded bugs are
due to race-conditions and concurrency, how does
debugging inside a DPG help catch those bugs?”

lijl: "when customers encouter a bug, the
developers should be able to reproduce the bug
even on a completely different machine”

How robust is the determinism enforced inside
a DPG? What if the programmer add a single
debug print statement?

billzorn: "It's like not getting the best of either
world: the determinism is fragile and complicated.”

What are the preconditions to use DPG for
vour application? What are the properties that
are not compulsory but good to have?

unmodified
performance-insensitive
no randomness

share as few things as possible
have a small number of external communications

Are there any constraints/assumptions that
can be relaxed in DPG to give us better
performance?

antoinek “the false-sharing problem technically is the exact same
thing as for cache lines, but with two major differences:

1) the 4K pages on x86 are generally 64x larger than cache lines
2) even false sharing at a relatively low rate can quickly become
really expensive, because execution has to switch to serialized”

