
Development of the Domain Name System*

Paul V. Mockapetris
USC Information Sciences Institute, Marina de1 Rey, California

Kevin J. Dunlap
Digital Equipment Corp., DECwest Engineering, Washington

Abstract

The Domain Name System (DNS) provides name
service for the DARPA Internet. It is one of the
largest name services in operation today, serves a
highly diverse community of hosts, users, and net-
works, and uses a unique combination of hierar-
chies, caching, and datagram access.

This paper examines the ideas behind the initial de-
sign of the DNS in 1983, discusses the evolution of
these ideas into the current implementations and us-

ages, notes conspicuous surprises, successes and
shortcomings, and attempts to predict its future evo-
lution.

1. Introduction

The genesis of the DNS was the observation, circa
1982, that the HOSTS.TXT system for publishing
the mapping between host names and addresses was
encountering or headed for problems. HOSTS.TXT
is the name of a simple text file, which is centrally
maintained on a host at the SRI Network Informa-
tion Center (SRI-NIC) and distributed to all hosts in
the Internet via direct and indirect file transfers.

* This research was supported by the Defense Ad-
vanced Research Projects Agency under contract
MDA903-87-C-07 19. Views and conclusions con-
tained in this report are the authors’ and should not
be interpreted as representing the official opinion or
policy of DARPA, the U.S. government, or any per-
son or agency connected with them.

Permission to cop! without fee all or pan of this material is granted provided

that the copies are not made or distribuwd for direct commercial adxmtage.

the ACM copyrIght notice and the title of the publication and 11s date appear.

and notice is gnen that copying is by permission of the Association for

Computing Machaner\. To cop? otherwise. or to republish. rcquwes a fee and/

or specific permission.

o 1988 ACM O-8979 l-279-9/88/008/0 123 $1.50

The problems were that the file, and hence the costs
of its distribution, were becoming too large, and that
the centralized control of updating did not fit the
trend toward more distributed management of the
Internet.

Simple growth was one cause of these problems; an-
other was the evolution of the community using
HOSTS.TXT from the NCP-based original AR-
PANET to the IP/TCP-based Internet. The re-

search ARPANET’s role had changed from being a
single network connecting large timesharing systems
to being one of the several long-haul backbone net-
works linking local networks which were in turn
populated with workstations. The number of hosts
changed from the number of timesharing systems
(roughly organizations) to the number of worksta-
tions (roughly users). This increase was directly re-
flected in the size of HOSTS.TXT, the rate of
change in HOSTS.TXT, and the number of transfers
of the file, leading to a much larger than linear in-
crease in total resource use for distributing the file.
Since organizations were being forced into manage-
ment of local network addresses, gateways, etc., by
the technology anyway, it was quite logical to want to
partition the database and allow local control of local
name and address spaces. A distributed naming sys-
tem seemed in order.

Existing distributed naming systems included the
DARPA Internet’s IENll6 [IEN 1161 and the
XEROX Grapevine [Birrell 821 and Clearinghouse
systems [Oppen 831. The IEN services seemed
excessively limited and host specific, and IEN
did not provide much benefit to justify the costs of
renovation. The XEROX system was then, and may
still be, the most sophisticated name service in exis-
tence, but it was not clear that its heavy use of repli-
cation, light use of caching, and fixed number of hi-
erarchy levels were appropriate for the heterogene-

123

ous and often chaotic style of the DARPA Internet.
Importing the XEROX design would also have meant
importing supporting elements of its protocol archi-
tecture. For these reasons, a new design was begun.

The initial design of the DNS was specified in [RFC
882, RFC 883 1. The outward appearance is a hier-
archical name space with typed data at the nodes.
Control of the database is also delegated in a hierar-
chical fashion. The intent was that the data types be
extensible, with the addition of new data types con-
tinuing indefinitely as new applications were added.
Although the system has been modified and refined
in several areas [RFC 973, RFC 9741, the current
specifications [RFC 1034, RFC 10351 and usage are
quite similar to the original definitions.

Drawing an exact line between experimental use and
production status is difficult, but 1985 saw some
hosts use the DNS as their sole means of accessing
naming information. While the DNS has not re-
placed the HOSTS.TXT mechanism in many older
hosts, it is the standard mechanism for hosts, par-
ticularly those based on Berkeley UNIX, that track
progress in network and operating system design.

2. DNS Design

The base design assumptions for the DNS were that
it must:

0 Provide at least all of the same information as
HOSTS.TXT.

0 Allow the database to be maintained in a distrib-
uted manner.

0 Have no obvious size limits for names, name
components, data associated with a name, etc.

0 Interoperate across the DARPA Internet and in
as many other environments as possible.

0 Provide tolerable performance.

Derivative constraints included the following:

0 The cost of implementing the system could only
be justified if it provided extensible services. In
particular, the system should be independent of
network topology, and capable of encapsulating
other name spaces.

Q In order to be universally acceptable, the system
should avoid trying to force a single OS, architec-
ture, or organizational style onto its users. This
idea applied all the way from concerns about case
sensitivity to the idea that the system should be
useful for both large timeshared hosts and iso-
lated PCs. In general, we wanted to avoid any
constraints on the system due to outside influ-
ences and permit as many different implementa-
tion structures as possible.

The HOSTS.TXT emulation requirement was not
particularly severe, but it did cause an early exami-
nation of schemes for storing data other than name-
to-address mappings. A hierarchical name space
seemed the obvious and minimal solution for the dis-
tribution and size requirements. The interoperability
and performance constraints implied that the system
would have to allow database information to be buff-
ered between the client and the source of the data,
since access to the source might not be possible or
timely.

The initial DNS design assumed the necessity of
striking a balance between a very lean service and a
completely general distributed database. A lean
service was desirable because it would result in more
implementation efforts and early availability. A gen-
eral design would amortize the cost of introduction
across more applications, provide greater functional-
ity, and increase the number of environments in
which the DNS would eventually be used. The

“leanness” criterion led to a conscious decision to
omit many of the functions one might expect in a
state-of-the-art database. In particular, dynamic
update of the database with the related atomicity,
voting, and backup considerations was omitted. The
intent was to add these eventually, but it was be-
lieved that a system that included these features
would be viewed as too complex to be accepted by
the community.

2.1 The architecwre

The active components of the DNS are of two major
types: name servers and resolvers. Name servers are
repositories of information, and answer queries using
whatever information they possess. Resolvers inter-
face to client programs, and embody the algorithms
necessary to find a name server that has the informa-
tion sought by the client.

These functions may be combined or separated to
suit the needs of the environment. In many cases, it

124

is useful to centralize the resolver function in one or
more special name servers for an organization. This
structure shares the use of cached information, and
also allows less capable hosts, such as PCs, to rely on
the resolving services of special servers without need-
ing a resolver in the PC.

2.2 The name space

The DNS internal name space is a variable-depth
tree where each node in the tree has an associated
label. The domain name of a node is the concatena-
tion of all labels on the path from the node to the
root of the tree. Labels are variable-length strings of
octets, and each octet in a label can be any 8-bit
value. The zero length label is reserved for the root.
Name space searching operations (for operations de-
fined at present) are done in a case-insensitive man-
ner (assuming ASCII). Thus the labels “Paul”,
“Paul”, and “PAUL”, would match each other.
This matching rule effectively prohibits the creation
of brother nodes with labels having equivalent spell-
ing but different case. The rational for this system is
that it allows the sources of information to specify its
canonical case, but frees users from having to deal
with case. Labels are limited to 63 octets and names
are restricted to 256 octets total as an aid to imple-
mentation, but this limit could be easily changed if
the need arose.

The DNS specification avoids defining a standard
printing rule for the internal name format in order to
encourage DNS use to encode existing structured
names. Configuration files in the domain system
represent names as character strings separated by
dots, but applications are free to do otherwise. For
example, host names use the internal DNS rules, so
VENERA.ISI.EDU is a name with four labels (the
null name of the root is usually omitted). Mailbox
names, stated as USER@DOMAIN (or more gener-
ally as local-part@?organization) encode the text to
the left of the “a” in a single label (perhaps includ-
ing ” .“) and use the dot-delimiting DNS configura-
tion file rule for the part following the @. Similar
encodings could be developed for file names, etc.

The DNS also decouples the structure of the tree
from any implicit semantics. This is not done to
keep names free of all implicit semantics, but to
leave the choices for these implicit semantics wide
open for the application. Thus the name of a host
might have more or fewer labels than the name of a

user, and the tree is not organized by network or
other grouping. Particular sections of the name
space have very strong implicit semantics associated
with a name, particularly when the DNS encapsulates
an existing name space or is used to provide inverse
mappings (e.g. IN-ADDR.ARPA, the IP addresses
to host name section of the domain space), but the
default assumption is that the only way to tell defi-
nitely what a name represents is to look at the data
associated with the name.

The recommended name space structure for hosts,
users, and other typical applications is one that mir-
rors the structure of the organization controlling the
local domain. This is convenient since the DNS fea-
tures for distributing control of the database is most
efficient when it parallels the tree structure. An ad-
ministrative decision [RFC 9201 was made to make
the top levels correspond to country codes or broad
organization types (for example EDU for educa-
tional, MIL for military, UK for Great Britain).

2.3 Data attached to names

Since the DNS should not constrain the data that
applications can attach to a name, it can’t fix the
data’s format completely. Yet the DNS did need to
specify some primitives for data structuring so that
replies to queries could be limited to relevant infor-
mation, and so the DNS could use its own services to
keep track of servers, server addresses, etc. Data for
each name in the DNS is organized as a set of re-
source records (RRs); each RR carries a well-known
type and class field, followed by applications data.
Multiple values of the same type are represented as
separate RRs.

Types are meant to represent abstract resources or
functions, for example, host addresses and mail-
boxes. About 15 are currently defined. The class
field is meant to divide the database orthogonally
from type, and specifies the protocol family or in-
stance. The DARPA Internet has a class, and we
imagined that classes might be allocated to CHAOS,
ISO, XNS or similar protocol families. We also
hoped to try setting up function-specific classes that
would be independent of protocol (e.g. a universal
mail registry). Three classes are allocated at present:
DARPA Internet, CHAOS, and Hessiod.

The decision to use multiple RRs of a single type
rather than a including multiple values in a single RR
differed from that used in the XEROX system, and

was not a clear choice. The space efficiency of the
single RR with multiple values was attractive, but the
multiple RR option cut down the maximum RR size.
This appeared to promise simpler dynamic update
protocols, and also seemed suited to use in a lim-
ited-size datagram environment (i.e. a response
could carry only those items that fit in a maximum
size packet without regard to partial RR transport).

2.4 Database distribution

The DNS provides two major mechanisms for trans-
ferring data from its ultimate source to ultimate desti-
nation: zones and caching. Zones are sections of the
system-wide database which are controlled by a spe-
cific organization. The organization controlling a
zone is responsible for distributing current copies of
the zones to multiple servers which make the zones
available to clients throughout the Internet. Zone
transfers are typically initiated by changes to the data

B in the zone. Caching is a mechanism whereby data
acquired in response to a client’s request can be lo-
cally stored against future requests by the same or
other client.

Note that the intent is that both of these mechanisms
be invisible to the user who should see a single data-
base without obvious boundaries.

Zones

A zone is a complete description of a contiguous sec-
tion of the total tree name space, together with some
“pointer” information to other contiguous zones.
Since zone divisions can be made between any two
connected nodes in the total name space, a zone
could be a single node or the whole tree, but is typi-
cally a simple subtree.

From an organization’s point of view, it gets control
of a zone of the name space by persuading a parent
organization to delegate a subzone consisting of a
single node. The parent organization does this by
inserting RRs in its zone which mark a zone division.
The new zone can then be grown to arbitrary size
and further delegated without involving the parent,
although the parent always retains control of the in-
itial delegation. For example, the ISI.EDU zone was
created by persuading the owner of the EDU domain
to mark a zone boundary between EDU and
ISI.EDU.

The responsibilities of the organization include the
maintenance of the zone’s data and providing redun-
dant servers for the zone. The typical zone is main-
tained in a text form called a master file by some
system administrator and loaded into one master
server. The redundant servers are either manually
reloaded, or use an automatic zone refresh algorithm
which is part of the DNS protocol. The refresh algo-
rithm queries a serial number in the master’s zone
data, then copies the zone only if the serial number
has increased. Zone transfers require TCP for reli-
ability.

A particular name server can support any number of
zones which may or may not be contiguous. The
name server for a zone need not be part of that
zone. This scheme allows almost arbitrary distribu-
tion, but is most efficient when the database is dis-
tributed in parallel with the name hierarchy. When a
server answers from zone data, as opposed to cached
data, it marks the answer as being authoritative.

A goal behind this scheme is that an organization
should be able to have a domain, even if it lacks the
communication or host resources for supporting the
domain’s name service. One method is that organi-
zations with resources for a single server can form
buddy systems with another organization of similar
means. This can be especially desirable to clients
when the organizations are far apart (in network
terms), since it makes the data available from sepa-
rated sites. Another way is that servers agree to pro-
vide name service for large communities such as
CSNET and UUCP, and receive master files via mail
or FTP from their subscribers.

Caching

In addition to the planned distribution of data via
zone transfers, the DNS resolvers and combined
name server / resolver programs also cache re-
sponses for use by later queries. The mechanism for
controlling caching is a time-to-live (TTL) field at-
tached to each RR. This field, in units of seconds,
represents the length of time that the response can
be reused. A zero TTL suppresses caching. The
administrator defines TTL values for each RR as part
of the zone definition; a low TTL is desirable in that
it minimizes periods of transient inconsistency, while
a high TTL minimizes traffic and allows caching to
mask periods of server unavailability due to network
or host problems. Software components are re-
quired to behave as if they continuously decre-

126

mented TTLs of data in caches. The recommended
TT’L value for host names is two days.

Our intent is that cached answers be as good as an-
swers from an authoritative server, excepting changes
made within the TTL period. However, all compo-
nents of the DNS prefer authoritative information to
cached information when both are available locally.

3. Current Implementation Status

The DNS is in use throughout the DARPA Internet.
[RFC 10311 catalogs a dozen implementations or
ports, ranging from the ubiquitous support provided
as part of Berkeley UNIX, though implementations
for IBM-PCs, Macintoshes, LISP machines, and
fuzzballs [Mills 8 81. Although the HOSTS .TXT
mechanism is still used by older hosts, the DNS is the
recommended mechanism. Hosts available through
HOSTS.TXT form an ever-dwindling subset of all
hosts; a recent measurement [Stahl 871 showed ap-
proximately 5,500 host names in the present
HOSTS.TXT, while over 20,000 host names were
available via the DNS.

The current domain name space is partitioned into
roughly 30 top level domains. Although a top level
domain is reserved for each country (approximately
25 in use, e.g. US, UK), the majority of hosts and
subdomains are named under six top level domains
named for organization types (e.g. educational is
EDU, commercial is COM). Some hosts claim mul-
tiple names in different domains, though usually one
name is primary and others are aliases. The SRI-
NIC manages the zones for a11 of the non-country,
top-level domains, and delegates lower domains to
individual universities, companies, and other organi-
zations who wish to manage their own name space.

The delegation of subdomains by the SRI-NIC has
grown steadily. In February of 1987, roughly 300
domains were delegated. As of March 1988, over
650 domains are delegated. Approximately 400 rep-
resent normal name spaces controlled by organiza-
tions other than the SRI-NIC, while 250 of these
delegated domains represent network address spaces
(i.e parts of IN-ADDR.ARPA) no longer controlled
by the NIC.

Two good examples of contemporary DNS use are
the so called “root servers” which are the redundant
name servers that support the top levels of the do-
main name space, and the Berkeley subdomain,

which is one of the domains delegated by the SRI-
NIC in the EDU domain.

3. I Root servers

The basic search algorithm for the DNS allows a
resolver to search “downward” from domains that it
can access already. Resolvers are typically config-
ured with “hints” pointing at servers for the root
node and the top of the local domain. Thus if a
resolver can access any root server it can access all
of the domain space, and if the resolver is in a net-
work partitioned from the rest of the Internet, it can
at least access local names.

Although a resolver accesses root servers less as the
resolver builds up cached information about servers
for lower domains, the availability of root servers is
an important robustness issue, and root server activ-
ity monitoring provides insights into DNS usage.

Since access to the root and other top level zones is
so important, the root domain, together with other
top-level domains managed by the SRI-NTC, is sup-
ported by seven redundant name servers. These
root servers are scattered across the major long haul
backbone networks of the Internet, and are also re-
dundant in that three are TOPS-20 systems running
JEEVES and four are UNIX systems running BIND.

The typical traffic at each root server is on the order
of a query per second, with correspondingly higher
rates when other root servers are down or otherwise
unavailable. While the broad trend in query rate has
generally been upward, day-to-day and month-to-
month comparisons of load are driven more by
changes in implementation algorithms and timeout
tuning than growth in client population. For exam-
ple, one bad release of popular domain software
drove averages to over five times the normal load for
extended periods. At present, we estimate that 50%
of all root server traffic could be eliminated by im-
provements in various resolver implementations to
use less aggressive retransmission and better caching.

The number of clients which access root servers can
be estimated based on measurement tools on the
TOPS-20 version. These root servers keep track of
the first 200 clients after root server initialization,
and the first 200 clients typically account for 90% or
more of all queries at any single server. Coordinated
measurements at the three TOPS-20 root servers
typically show approximately 350 distinct clients in
the 600 entries. The number of clients is falling as

137

more organizations adopt strategies that concentrate
queries and caching for accesses outside of the local
organization.

The clients appear to use static priorities for selecting
which root server to use, and failure of a particular
root server results in an immediate increase in traffic
at other servers. The vast majority of queries are
four types: all information (25 to 40%), host name to
address mappings (30-40%), address to host map-
pings (10 to 15%), and new style mail information
called MX (less than 10%). Again, these numbers
vary widely as new software distributions spread.
The root servers refer lo-15% of all queries to serv-
ers for lower level domains.

3.2 Berkeley

UNIX support for the DNS was provided by the Uni-
versity of California, Berkeley, partially as research
in distributed systems, and partially out of necessity
due to growth in the campus network [Dunlap 86a,
Dunlap 8 6b]. The result is the Berkeley Internet
Name Domain (BIND) server. Berkeley serves as an
example of a large delegated domain, though it is
certainly more sophisticated and has more experi-
ence than most.

With BIND, Berkeley became the first organization
on the DARPA Internet to bring up machines with
all their network applications solely dependent on
DNS for doing network host and address resolution.
Berkeley started to install machines on campus de-
pendent on the name server in the spring of 1985.
In the fall of 1985, the two mail gateways to the
DARPA Internet were converted to depend on the
DNS, this meant the entire campus had to adopt do-
main-style mail addresses.

Educating even the sophisticated Berkeley user com-
munity on the new form of addressing turned out to
be a major task. The single biggest objection from
the user community was due to mail addresses which
became obsolete, closely followed by the initial lack
of shorthands and search rules in the initial imple-
mentation.

While the DNS transition was painful, the need was
clear, as shown in the following table which gives the
number of hosts, subnets, and finally subdomains in
use at Berkeley over the last three years. For exam-
ple, from January 1986 to February 1987, Berkeley
added 735 hosts in 250 working days, an average of

three new hosts each working day.

Date Hosts Subnets Subdomains

January 1986 267 14
February 1987 1002 44
March 1988 1991 86 5

Note that Berkeley has recently divided its domain
into multiple zones for administrative convenience.

4. Surprises

Operation of the DNS has revealed several issues
that came as surprises to the developers, but on re-
flection seem quite unsurprising.

4.1 Refinement of semantics

The main role of the DNS is to act as a repository for
information, and the initial assumption was that the
form and content of that information was well-un-
derstood. This turned out to be a bad assumption.
Even existing common concepts such as IP host ad-
dresses were sources of problems; we knew that we
would have to support multiple addresses for a single
host, but we were drawn into long discussions of
whether the addresses attached to a host name
should be ordered, and if so, by what metric.

4.2 Performance

The performance of the underlying network was
much worse than the original design expected.
Growth in the number of networks overtaxed gate-
way mechanisms for keeping track of connectivity,
leading to lost paths and unidirectional paths. At the
same time, growth in load plus the addition of many
lower speed links led to longer delays. These prob-
lems were manifest at the root servers, where logs
reveal many instances of repeated copies of the same
query from the same source. Even though the
TOPS-20 root servers take less than 100 millisec-
onds to process the- vast majority of queries, clients
typically see response times of 500 milliseconds to 5
seconds, even for the closest root server, depending
on their location in the Internet. The situation for
queries to the delegated domains is often much
worse, both because of network troubles, and be-
cause the name servers for these domains are often
on heavily loaded hosts on less-central networks.
Queries from the ARPANET to delegated domains
typically take 3 to 10 seconds during prime time,
with 30 to 60 second times as occasional worst cases.

128

It is interesting to note that these times to access a
remote name server are similar to those seen for the
XEROX homogeneous name service [Larson 851.

A related surprise was the difficulty in making rea-
sonable measurements of DNS performance. We
had planned to measure the performance of DNS
components in order to estimate costs for future en-
hancement and growth, and to guide tuning of exist-
ing retransmission intervals, but the measurements
were often swamped by unrelated effects due to gate-
way changes, new DNS software releases, and the
like. Many of the servers perform better as their
load increases due to fewer page faults, but this is
clearly not a stable situation over the long term, lead-
ing to concerns about behavior should network per-
formance improve and be able to deliver higher
loads to the servers.

The performance of lookups for queries that did not
need network access was a pleasant surprise. We
were replacing a fairly simple host table lookup with
a more complicated database, so even if cache ac-
cess worked very well, we might slow existing appli-
cations down a great deal. However, the new
mechanisms are typically as good or better than the
old, regardless of implementation. The reason for
this is that the old mechanisms were created for a
much smaller database and were not adjusted as the
size of database grew explosively, while the new soft-
ware was based on the assumption of a very large
database.

4.3 Negative caching

The DNS provides two negative responses to queries.
One says that the name in question does not exist,
while the other says that while the name in question
exists, the requested data does not. The first might
be expected if a name were misspelled, while the
second might result if a query asked for the host type
of a mailbox or the mailing list members of a host+
These responses were expected to be rare.

Initial monitoring of root server activity showed a
very high percentage (20 to 60%) of these responses.
Logs revealed that many of these queries were gener-
ated by programs using old-style host names, or
names from other mail internets (e.g. UUCP). In
the latter case, mailers would often use a call to the
name to address conversion routines to test whether
an address was valid in the DARPA Internet, even

though this might be easily determined by other
means. Since few UUCP mail addresses are valid
domain names, this resulted in a negative response
from a root server, coupled with a delay for the non-
local query.

We expected that the negative responses would de-
crease, and perhaps vanish, as hosts converted their
names to domain-name format and as we asked mail
software maintainers to modify their programs. Even
though these steps were taken, negative responses
stayed in the lo-50% range, with a typical percent-
age of 25%.

The reason is that the corrective measures were off-
set by the spread of programs which provided short-
hand names through a search list mechanism. The
search lists produce a steady stream of bad names as
they try alternatives; a mistyped name may now lead
to several name errors rather than one. Our conclu-
sion is that any naming system that relies on caching
for performance may need caching for negative re-
sults as well. Such a mechanism has been added to
the DNS as an optional feature, with impressive per-
formance gains in cases where it is supported in both
the involved name servers and resolvers. This fea-
ture will probably become standard in the future.

5. Successes

5.1 Variable depth hierarchy

The variable-depth hierarchy is used a great deal
and was the right choice for several reasons:

0 The spread of workstation and local network
technology meant that organizations participating
in the Internet were finding a need to organize
within themselves.

0 The organizations were of vastly different size,
and hence needed different numbers of organiza-
tional levels. For example, both large interna-
tional companies and small startups are registered
in the domain system.

0 The variable depth hierarchy makes it possible to
encapsulate any fixed level or variable level sys-
tem. For example, the UK’s own name service
(NRS) and the DNS mutually encapsulate each
other’s name space. This scheme may also be
used in the future to interoperate with the direc-
tory service under development by the IS0 and
CCITT.

129

Many networks that do not use the DNS protocols
and datatypes have standardized on the DNS hierar-
chical name syntax for mail addressing [Quarterman
861.

5.2 Organizational structuring of names

While the particular top-level organizational struc-
ture used by the current DNS is quite controversial,
the principle that names are independent of net-

work, topology, etc. is quite popular. The future
structure of the top levels is likely to continue to be a
subject of debate. Most proposals generate a
roughly equivalent amount of support and condem-
nation. In the authors’ opinion, the only real possi-
bility for wholesale change is a political decision to
change the structure of the domain name space to
resemble the name space proposed for the ISO/
CCITT directory service. This is r-rot a technical is-
sue as the DNS is flexible enough to accommodate
almost any political choice.

5.3 Datagram access

The use of datagrams as the preferred method for
accessing name servers was successful and probably
was essential, given the unexpectedly bad perform-
ance of the DARPA Internet. The restriction to ap-
proximately 512 bytes of data turns out not to be a
problem, performance is much better than that
achieved by TCP circuits, and OS resources are not
tied up.

The only obvious drawback to datagram access is the
need to develop and refine retransmission strategies
that are already quite well developed for TCP.
Much unnecessary traffic is generated by resolvers
that were developed to the point of working, but
whose authors lost interest before tuning, or by sys-
tems that imported well known versions of code but
do not track tuning updates.

5.4 Additional section processing

When a name server answers a query, in addition to
whatever information it uses to answer the question,
it is free to include in the response any other infor-
mation it sees fit, as Iong as the data fits in a single
datagram. The idea was to allow the responding
server to anticipate the next logical request and an-
swer it before it was asked without significant added
communication cost. For example, whenever the
root servers pass back the name of a host, they in-

clude its address (if available), on the assumption
that the host address is needed to use other informa-
tion. Experiments show that this feature cuts query
traffic in half.

5.5 Caching

The caching discipline of the DNS works well, and
given the unexpectedly bad performance of .the In-
ternet, was essential to the success of the system.

The only problems with caching relate to databases
and query strategies that make it less reliable or use-
ful. For example, RRs of the same type at a particu-
lar node should have the same TTL so that they will
time out simultaneously, but administrators some-
times assign TTLs in the mistaken idea that they are
assigning some sort of priority. Administrators also
are very fond of picking short TTLs so that their
changes take effect rapidly, even if changes are very
rare and do not need the timeliness.

A related concern is the security and reliability prob-
lems caused by indiscriminate caching. Several ex-
isting resolvers cache all information in responses
without regard to its reasonableness. This has re-

sulted in numerous instances where bad information
has circulated and caused problems. Similar difficul-
ties were encountered when one administrator re-
versed the TTL and data values, resulting in the dis-
tribution of bad data with a TTL of several years.
While various measures have reduced the vulnerabil-
ity to error, the security of the present system does
depend on the integrity of the network addressing
mechanism, and this is questionable in an era of lo-
cal networks and PCs.

5.6 Mail address cooperation

Agreement between representatives of the CSNET,
BITNET, UUCP, and DARPA Internet communities
led to an agreement to use organizationally struc-
tured domain names for mail addressing and routing.
While the transition from the messy multiply-en-
coded mail addresses of the past is far from com-
plete, the possibility of cleaning up mail addresses
has been clearly demonstrated.

6. Shortcomings

6.1 Type and class growth

When the draft DNS specifications were made avail-
able in 1983, the one nearly unanimous criticism was

130

that the type and class data specifiers, which were 8
bits in the draft, should be expanded to 16, or even
32 bits, to allow for new definitions. Over the first
five years of DNS use, two new types have been
adopted, two types have been dropped, and two new
classes have been allocated. Clearly, either the de-
mand for new types and classes was completeIy mis-
understood, or the current DNS makes new defini-
tions too difficult.

While one problem is that almost all existing software
regards types and classes as compile-time constants,
and hence requires recompilation to deal with
changes, a less tractable problem is that new data
types and classes are useless until their semantics are
carefully designed and published, applications cre-
ated to use them, and a consensus is reached to use
the new system across the Internet. This means that
new types face a series of technical and political hur-

dles.

A methodology or guidelines to aid in the design of
new types of information is needed. This is more
complicated than just listing the values of interest for
an application, since it often involves the design of
special name space sections, TTL selections to pro-
duce acceptable performance and semantics, and
decisions whether to produce a desired binding
through one lookup or a sequence of smaller bind-
ings. The single lookup method often seems over-
whelmingly attractive to a particular application de-
signer despite the fact that it may overlap or conflict
with another application’s data. Another factor is
that members of the Internet have different views on
the proper assumptions or approach for a particular
problem.

Mail is an exampIe. After much debate, the MX
data type and system [RFC 9741 defined a standard
method for routing mail, based on the DOMAIN
part or a LOCAL-PARTQDOMAIN mail address.
MX represented a simple addition to the DNS itself,
but required changes to all mail servers, and its
benefits required a “critical mass” of mailers. Nu-
merous suggestions have been made to extend the
DNS to provide mail destination registry down to the
individual user level, and the basics of such a service
are within our understanding, but consensus for a
single plan remains elusive. Part of the constituency
demands that user level mail binding be an option on
top of MX, while others advocate a fresh start, with

lots of features for mail forwarding, list maintenance,
etc. The best choice seems to be one in which agent
binding is always a choice, but that a mailer which
chooses to map to the mailbox level can do so if the
mailbox data is also available.

6.2 Easy upgrading of applications

Converting network applications to use the DNS is
not a simple task. It would be ideal if a11 the applica-
tions converting from HOSTS.TXT could be recom-
piled to use the DNS and have everything work, but
this is rarely the case.

Part of the problem is transient failure. A distributed
naming system, by its very nature, has periods that it
can not access particular information. Applications
must handle this condition appropriately. Mailers
looking up mail destinations should not discard mail
due to these transient failures, and can not afford to
wait indefinitely. Even if such failures are antici-

pated to be quite rare once the DNS stabilizes, we
face a chicken-and-egg problem in converting mail-
ers to use the new software.

Another part of the problem is that access to the
naming system needs to be integrated into the oper-
ating system to a much greater degree than providing
system call to the resolver. Users need to be able to
access these services at the shell level and specify
search lists and defaults in a manner consistent with
other system operations.

6.3 Distribution of control vs. distribution of ex-
pertise or responsibility

Distributing authority for a database does not distrib-
ute a corresponding amount of expertise. Maintain-
ers fix things until they work, rather than until they
work well, and want to use, not understand, the sys-
tems they are provided. Systems designers should
anticipate this, and try to compensate by technical
means. The DNS furnishes several examples of this
principle:

0 The initial policy was that we would delegate a
domain to any organization which filled out a
form listing its redundant servers and other essen-
tials. Instead we should have required that the
organization demonstrate redundant servers with
real data in them before we delegated the do-
main, and probably should have insisted that they
be on different networks, rather than trusting as-

131

surances that the servers did not represent a sin-
gle point of failure.

0 The documentation for the system used examples
which were easily explained in the narration.
Sample TTL values which mapped to an hour
were always copied; text that said the values
should be a few days was ignored. Documenta-
tion should always be written with the assumption
that only the examples are read.

0 Debugging of the system was hampered by ques-
tions about software versions and parameters.
These values should be accessible via the proto-
col.

7. Conclusions

Just as the classification of many of the previous is-
sues into “successes”, “surprises”, and “shortcom-
ings” is open to debate based on the perspective of
the reader, so too is the question “Was the DNS a
good idea?“.

Modifications to the HOSTS.TXT scheme could
have postponed the need for a new system, and re-
duced the quantitative arguments for the DNS. The
DNS has probably not yet reduced the community-
wide administrative, communication, or support
load. However, the need to distribute functionality
was, we believe, inexorable. This need, together
with the new functionality and opportunities for fu-
ture services must be the key criteria for judgment.
From the authors’ perspective, they justify the DNS.

There are a lot of choices we might make differently
if we were starting over, but the main pieces of ad-
vice which would have been valuable when we were
starting are:

0 Caching can work in a heterogeneous environ-
ment, but should include features for caching
negative responses as well.

0 It is often more difficult to remove functions from
systems than it is to get a new function added.
All of a community would not convert to a new
service; instead some will stay with the old, some
will convert to the new, and some will support
both. This has the unfortunate effect of making
all functions more complex as new features are
added.

0 The most capable implementors lose interest once
a new system delivers the level of performance
they expect; they are not easily motivated to opti-
mize their use of others’ resources or provide eas-
ily used guidelines for the administrators that use
the systems. Distributed software should include a
version number and table of parameters which
can be interrogated. If possible, systems should
include technical means for transferring tuning
parameters, or at least defaults, to all installations
without requiring the attention of system main-
tainers.

0 Allowing variations in the implementation struc-
ture used to provide service is a great idea; allow-
ing variation in the provided service causes prob-
lems.

8. Directions for future work

Although the DNS is in production use and hence
difficult to change, other research in naming sys-
tems, particularly the emerging IS0 X.500 directory
services, may provide the impetus for additions:

0 Support for X.500 style addresses for mail, etc.
could be constructed as a layer on top of the
DNS, albeit without the sophisticated protection,
update, and structuring rules of X.500. Use of
the data description techniques from the IS0
standards might provide a better mechanism for
adding data types than the present data structur-
ing rules, while the proven DNS infrastructure
could speed prototyping of IS0 applications.

0 The value of a ubiquitous name service and con-
sistent name space at all levels of the protocol
suite and operating system seems obvious, but it is
equally obvious that tradeoffs between perform-
ance, generality, and distribution require at least
different styles of use at different levels. For ex-
ample, a system suitable for managing file names
on a local disk would be substantially different
from a system for maintaining an internet wide
mailing list. The challenge here is to develop an
approach which, at least conceptually, structures
the total task into layers or some other coherent
organization.

0 Research in naming systems has typically resulted
in proposaIs for systems which could replace or
encapsulate all other systems, or systems which
allow translations between separate name spaces,
data formats, etc. Both approaches have advan-

132

tages and drawbacks. The present DNS and ef-
forts to unify its name space without special do-
mains for specific networks, etc. place the DNS
in the first category. However, its success is uni-
versal enough to be encouraging while not enough
to solve the user’s difficulty with obscure encod-
ings from other systems. Technical and/or politi-
cal solutions to the growing complexity of naming
will be a growing need.

References

[Birrell 8 21

[Dunlap 86a]

[Dunlap 86b]

[IEN 1161

[Larson 851

[Mills 881

[Owen 831

Birrell, A. D., Levin, R., Need-
ham, R. M., and Schroeder, M.

D., “Grapevine: An Exercise in
Distributed Computing”, Commu-
nications of ACM 25, 4:260-274,
April 1982.

Dunlap, K. J., Bloom, J. M., “Ex-
periences Implementing BIND, A
Distributed Name Server for the
DARPA Internet”, Proceedings
USENIX Summer Conference,
Atlanta, Georgia. June 1986,
pages 172-181.

Dunlap, K. J., “Name Server Op-
erations Guide for BIND”, Unix
System Manager’s Manual,
SMM-11. 4.3 Berkeley Software
Distribution, Virtual VAX- 11 Ver-
sion. University of California.
April 1986.

Postel, Jon, “Internet Name Serv-
er”, IEN 116, August 1979.

Larson, Personal communication.

Mills, D.L., “The Fuzzball”, Pro-
ceedings ACM SIGCOMM 88
Symposium, August, 1988.

D. C. Oppen and Y. K. Dalal,
“The Clearinghouse: A decentral-
ized agent for locating named ob-
jects in a distributed environ-
ment”, ACM Transactions on Of-
fice Information Systems
1(3):230-253, July 1983. An ex-
panded version of this paper is
available as Xerox Report
OPD-T8 103, October 198 1.

[Quarterman 861 Quarterman, John S,., and Hos-

kins, Josiah C., “Notable Com-

[RFC 8821

[RFC 8831

[RFC 9201

[RFC 9731

[RFC 9741

[RFC 10311

[RFC 10341

[RFC 10351

[Stahl 871

puter Networks”, Communications
of the ACM, October 1986, vol-
ume 29, number 10.

P. Mockapetris, “Domain names -
Concepts and Facilities,” RFC
882, USC/Information Sciences
Institute, November 1983. (Obso-
lete, superseded by RFC 1034.)

P. Mockapetris, “Domain names -
Implementation and Specifica-
tion, ” RFC 883, USC/Information
Sciences Institute, November
1983. (Obsolete, superseded by
RFC 1035.)

Postel, Jon, and Reynolds, Joyce,
“Domain Requirements”, RFC
920, October 1984.

Mockapetris, Paul V., “Domain
System Changes and Observa-
tions”, RFC 973, January 1986.

Partridge, Craig, “Mail Routing
and the Domain System”, RFC
974, January 1986.

W. Lazear, “MILNET Name Do-
main Transition”, RFC 103 1, No-
vember 1987.

P. Mockapetris, “Domain names -
Concepts and Facilities, ” RFC
1034, USC/Information Sciences
Institute, November 1987.

P. Mockapetris, “Domain names -
Implementation and Specifica-
tion , ” RFC 1035, USC/Informs-
tion Sciences Institute, November
1987.

M. Stahl, “DDN Domain Naming
- Administration, Registration,
Procedures and Policy”, Second
TCP/IP Interoperability Confer-
ence, December, 1987

Note: In the above references, “RFC” refers to pa-
pers in the Request for Comments series and “IEN”
refers to the DARPA Internet Experiment Notes.
Both the RFCs and IENs may be obtained from the
Network Information Center, SRI International,
Menlo Park , CA 94025, or from the authors of the
papers.

133

