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Abstract 

The Domain Name System (DNS) provides name 
service for the DARPA Internet. It is one of the 
largest name services in operation today, serves a 
highly diverse community of hosts, users, and net- 
works, and uses a unique combination of hierar- 
chies, caching, and datagram access. 

This paper examines the ideas behind the initial de- 
sign of the DNS in 1983, discusses the evolution of 
these ideas into the current implementations and us- 

ages, notes conspicuous surprises, successes and 
shortcomings, and attempts to predict its future evo- 
lution. 

1. Introduction 

The genesis of the DNS was the observation, circa 
1982, that the HOSTS.TXT system for publishing 
the mapping between host names and addresses was 
encountering or headed for problems. HOSTS.TXT 
is the name of a simple text file, which is centrally 
maintained on a host at the SRI Network Informa- 
tion Center (SRI-NIC) and distributed to all hosts in 
the Internet via direct and indirect file transfers. 
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The problems were that the file, and hence the costs 
of its distribution, were becoming too large, and that 
the centralized control of updating did not fit the 
trend toward more distributed management of the 
Internet. 

Simple growth was one cause of these problems; an- 
other was the evolution of the community using 
HOSTS.TXT from the NCP-based original AR- 
PANET to the IP/TCP-based Internet. The re- 

search ARPANET’s role had changed from being a 
single network connecting large timesharing systems 
to being one of the several long-haul backbone net- 
works linking local networks which were in turn 
populated with workstations. The number of hosts 
changed from the number of timesharing systems 
(roughly organizations) to the number of worksta- 
tions (roughly users). This increase was directly re- 
flected in the size of HOSTS.TXT, the rate of 
change in HOSTS.TXT, and the number of transfers 
of the file, leading to a much larger than linear in- 
crease in total resource use for distributing the file. 
Since organizations were being forced into manage- 
ment of local network addresses, gateways, etc., by 
the technology anyway, it was quite logical to want to 
partition the database and allow local control of local 
name and address spaces. A distributed naming sys- 
tem seemed in order. 

Existing distributed naming systems included the 
DARPA Internet’s IENll6 [IEN 1161 and the 
XEROX Grapevine [Birrell 821 and Clearinghouse 
systems [Oppen 831. The IEN services seemed 
excessively limited and host specific, and IEN 
did not provide much benefit to justify the costs of 
renovation. The XEROX system was then, and may 
still be, the most sophisticated name service in exis- 
tence, but it was not clear that its heavy use of repli- 
cation, light use of caching, and fixed number of hi- 
erarchy levels were appropriate for the heterogene- 
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ous and often chaotic style of the DARPA Internet. 
Importing the XEROX design would also have meant 
importing supporting elements of its protocol archi- 
tecture. For these reasons, a new design was begun. 

The initial design of the DNS was specified in [RFC 
882, RFC 883 1. The outward appearance is a hier- 
archical name space with typed data at the nodes. 
Control of the database is also delegated in a hierar- 
chical fashion. The intent was that the data types be 
extensible, with the addition of new data types con- 
tinuing indefinitely as new applications were added. 
Although the system has been modified and refined 
in several areas [RFC 973, RFC 9741, the current 
specifications [RFC 1034, RFC 10351 and usage are 
quite similar to the original definitions. 

Drawing an exact line between experimental use and 
production status is difficult, but 1985 saw some 
hosts use the DNS as their sole means of accessing 
naming information. While the DNS has not re- 
placed the HOSTS.TXT mechanism in many older 
hosts, it is the standard mechanism for hosts, par- 
ticularly those based on Berkeley UNIX, that track 
progress in network and operating system design. 

2. DNS Design 

The base design assumptions for the DNS were that 
it must: 

0 Provide at least all of the same information as 
HOSTS.TXT. 

0 Allow the database to be maintained in a distrib- 
uted manner. 

0 Have no obvious size limits for names, name 
components, data associated with a name, etc. 

0 Interoperate across the DARPA Internet and in 
as many other environments as possible. 

0 Provide tolerable performance. 

Derivative constraints included the following: 

0 The cost of implementing the system could only 
be justified if it provided extensible services. In 
particular, the system should be independent of 
network topology, and capable of encapsulating 
other name spaces. 

Q In order to be universally acceptable, the system 
should avoid trying to force a single OS, architec- 
ture, or organizational style onto its users. This 
idea applied all the way from concerns about case 
sensitivity to the idea that the system should be 
useful for both large timeshared hosts and iso- 
lated PCs. In general, we wanted to avoid any 
constraints on the system due to outside influ- 
ences and permit as many different implementa- 
tion structures as possible. 

The HOSTS.TXT emulation requirement was not 
particularly severe, but it did cause an early exami- 
nation of schemes for storing data other than name- 
to-address mappings. A hierarchical name space 
seemed the obvious and minimal solution for the dis- 
tribution and size requirements. The interoperability 
and performance constraints implied that the system 
would have to allow database information to be buff- 
ered between the client and the source of the data, 
since access to the source might not be possible or 
timely. 

The initial DNS design assumed the necessity of 
striking a balance between a very lean service and a 
completely general distributed database. A lean 
service was desirable because it would result in more 
implementation efforts and early availability. A gen- 
eral design would amortize the cost of introduction 
across more applications, provide greater functional- 
ity, and increase the number of environments in 
which the DNS would eventually be used. The 

“leanness” criterion led to a conscious decision to 
omit many of the functions one might expect in a 
state-of-the-art database. In particular, dynamic 
update of the database with the related atomicity, 
voting, and backup considerations was omitted. The 
intent was to add these eventually, but it was be- 
lieved that a system that included these features 
would be viewed as too complex to be accepted by 
the community. 

2.1 The architecwre 

The active components of the DNS are of two major 
types: name servers and resolvers. Name servers are 
repositories of information, and answer queries using 
whatever information they possess. Resolvers inter- 
face to client programs, and embody the algorithms 
necessary to find a name server that has the informa- 
tion sought by the client. 

These functions may be combined or separated to 
suit the needs of the environment. In many cases, it 
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is useful to centralize the resolver function in one or 
more special name servers for an organization. This 
structure shares the use of cached information, and 
also allows less capable hosts, such as PCs, to rely on 
the resolving services of special servers without need- 
ing a resolver in the PC. 

2.2 The name space 

The DNS internal name space is a variable-depth 
tree where each node in the tree has an associated 
label. The domain name of a node is the concatena- 
tion of all labels on the path from the node to the 
root of the tree. Labels are variable-length strings of 
octets, and each octet in a label can be any 8-bit 
value. The zero length label is reserved for the root. 
Name space searching operations (for operations de- 
fined at present) are done in a case-insensitive man- 
ner (assuming ASCII). Thus the labels “Paul”, 
“Paul”, and “PAUL”, would match each other. 
This matching rule effectively prohibits the creation 
of brother nodes with labels having equivalent spell- 
ing but different case. The rational for this system is 
that it allows the sources of information to specify its 
canonical case, but frees users from having to deal 
with case. Labels are limited to 63 octets and names 
are restricted to 256 octets total as an aid to imple- 
mentation, but this limit could be easily changed if 
the need arose. 

The DNS specification avoids defining a standard 
printing rule for the internal name format in order to 
encourage DNS use to encode existing structured 
names. Configuration files in the domain system 
represent names as character strings separated by 
dots, but applications are free to do otherwise. For 
example, host names use the internal DNS rules, so 
VENERA.ISI.EDU is a name with four labels (the 
null name of the root is usually omitted). Mailbox 
names, stated as USER@DOMAIN (or more gener- 
ally as local-part@?organization) encode the text to 
the left of the “a” in a single label (perhaps includ- 
ing ” .“) and use the dot-delimiting DNS configura- 
tion file rule for the part following the @. Similar 
encodings could be developed for file names, etc. 

The DNS also decouples the structure of the tree 
from any implicit semantics. This is not done to 
keep names free of all implicit semantics, but to 
leave the choices for these implicit semantics wide 
open for the application. Thus the name of a host 
might have more or fewer labels than the name of a 

user, and the tree is not organized by network or 
other grouping. Particular sections of the name 
space have very strong implicit semantics associated 
with a name, particularly when the DNS encapsulates 
an existing name space or is used to provide inverse 
mappings (e.g. IN-ADDR.ARPA, the IP addresses 
to host name section of the domain space), but the 
default assumption is that the only way to tell defi- 
nitely what a name represents is to look at the data 
associated with the name. 

The recommended name space structure for hosts, 
users, and other typical applications is one that mir- 
rors the structure of the organization controlling the 
local domain. This is convenient since the DNS fea- 
tures for distributing control of the database is most 
efficient when it parallels the tree structure. An ad- 
ministrative decision [RFC 9201 was made to make 
the top levels correspond to country codes or broad 
organization types (for example EDU for educa- 
tional, MIL for military, UK for Great Britain). 

2.3 Data attached to names 

Since the DNS should not constrain the data that 
applications can attach to a name, it can’t fix the 
data’s format completely. Yet the DNS did need to 
specify some primitives for data structuring so that 
replies to queries could be limited to relevant infor- 
mation, and so the DNS could use its own services to 
keep track of servers, server addresses, etc. Data for 
each name in the DNS is organized as a set of re- 
source records (RRs); each RR carries a well-known 
type and class field, followed by applications data. 
Multiple values of the same type are represented as 
separate RRs. 

Types are meant to represent abstract resources or 
functions, for example, host addresses and mail- 
boxes. About 15 are currently defined. The class 
field is meant to divide the database orthogonally 
from type, and specifies the protocol family or in- 
stance. The DARPA Internet has a class, and we 
imagined that classes might be allocated to CHAOS, 
ISO, XNS or similar protocol families. We also 
hoped to try setting up function-specific classes that 
would be independent of protocol (e.g. a universal 
mail registry). Three classes are allocated at present: 
DARPA Internet, CHAOS, and Hessiod. 

The decision to use multiple RRs of a single type 
rather than a including multiple values in a single RR 
differed from that used in the XEROX system, and 



was not a clear choice. The space efficiency of the 
single RR with multiple values was attractive, but the 
multiple RR option cut down the maximum RR size. 
This appeared to promise simpler dynamic update 
protocols, and also seemed suited to use in a lim- 
ited-size datagram environment (i.e. a response 
could carry only those items that fit in a maximum 
size packet without regard to partial RR transport). 

2.4 Database distribution 

The DNS provides two major mechanisms for trans- 
ferring data from its ultimate source to ultimate desti- 
nation: zones and caching. Zones are sections of the 
system-wide database which are controlled by a spe- 
cific organization. The organization controlling a 
zone is responsible for distributing current copies of 
the zones to multiple servers which make the zones 
available to clients throughout the Internet. Zone 
transfers are typically initiated by changes to the data 

B in the zone. Caching is a mechanism whereby data 
acquired in response to a client’s request can be lo- 
cally stored against future requests by the same or 
other client. 

Note that the intent is that both of these mechanisms 
be invisible to the user who should see a single data- 
base without obvious boundaries. 

Zones 

A zone is a complete description of a contiguous sec- 
tion of the total tree name space, together with some 
“pointer” information to other contiguous zones. 
Since zone divisions can be made between any two 
connected nodes in the total name space, a zone 
could be a single node or the whole tree, but is typi- 
cally a simple subtree. 

From an organization’s point of view, it gets control 
of a zone of the name space by persuading a parent 
organization to delegate a subzone consisting of a 
single node. The parent organization does this by 
inserting RRs in its zone which mark a zone division. 
The new zone can then be grown to arbitrary size 
and further delegated without involving the parent, 
although the parent always retains control of the in- 
itial delegation. For example, the ISI.EDU zone was 
created by persuading the owner of the EDU domain 
to mark a zone boundary between EDU and 
ISI.EDU. 

The responsibilities of the organization include the 
maintenance of the zone’s data and providing redun- 
dant servers for the zone. The typical zone is main- 
tained in a text form called a master file by some 
system administrator and loaded into one master 
server. The redundant servers are either manually 
reloaded, or use an automatic zone refresh algorithm 
which is part of the DNS protocol. The refresh algo- 
rithm queries a serial number in the master’s zone 
data, then copies the zone only if the serial number 
has increased. Zone transfers require TCP for reli- 
ability. 

A particular name server can support any number of 
zones which may or may not be contiguous. The 
name server for a zone need not be part of that 
zone. This scheme allows almost arbitrary distribu- 
tion, but is most efficient when the database is dis- 
tributed in parallel with the name hierarchy. When a 
server answers from zone data, as opposed to cached 
data, it marks the answer as being authoritative. 

A goal behind this scheme is that an organization 
should be able to have a domain, even if it lacks the 
communication or host resources for supporting the 
domain’s name service. One method is that organi- 
zations with resources for a single server can form 
buddy systems with another organization of similar 
means. This can be especially desirable to clients 
when the organizations are far apart (in network 
terms), since it makes the data available from sepa- 
rated sites. Another way is that servers agree to pro- 
vide name service for large communities such as 
CSNET and UUCP, and receive master files via mail 
or FTP from their subscribers. 

Caching 

In addition to the planned distribution of data via 
zone transfers, the DNS resolvers and combined 
name server / resolver programs also cache re- 
sponses for use by later queries. The mechanism for 
controlling caching is a time-to-live (TTL) field at- 
tached to each RR. This field, in units of seconds, 
represents the length of time that the response can 
be reused. A zero TTL suppresses caching. The 
administrator defines TTL values for each RR as part 
of the zone definition; a low TTL is desirable in that 
it minimizes periods of transient inconsistency, while 
a high TTL minimizes traffic and allows caching to 
mask periods of server unavailability due to network 
or host problems. Software components are re- 
quired to behave as if they continuously decre- 
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mented TTLs of data in caches. The recommended 
TT’L value for host names is two days. 

Our intent is that cached answers be as good as an- 
swers from an authoritative server, excepting changes 
made within the TTL period. However, all compo- 
nents of the DNS prefer authoritative information to 
cached information when both are available locally. 

3. Current Implementation Status 

The DNS is in use throughout the DARPA Internet. 
[RFC 10311 catalogs a dozen implementations or 
ports, ranging from the ubiquitous support provided 
as part of Berkeley UNIX, though implementations 
for IBM-PCs, Macintoshes, LISP machines, and 
fuzzballs [Mills 8 81. Although the HOSTS .TXT 
mechanism is still used by older hosts, the DNS is the 
recommended mechanism. Hosts available through 
HOSTS.TXT form an ever-dwindling subset of all 
hosts; a recent measurement [Stahl 871 showed ap- 
proximately 5,500 host names in the present 
HOSTS.TXT, while over 20,000 host names were 
available via the DNS. 

The current domain name space is partitioned into 
roughly 30 top level domains. Although a top level 
domain is reserved for each country (approximately 
25 in use, e.g. US, UK), the majority of hosts and 
subdomains are named under six top level domains 
named for organization types (e.g. educational is 
EDU, commercial is COM). Some hosts claim mul- 
tiple names in different domains, though usually one 
name is primary and others are aliases. The SRI- 
NIC manages the zones for a11 of the non-country, 
top-level domains, and delegates lower domains to 
individual universities, companies, and other organi- 
zations who wish to manage their own name space. 

The delegation of subdomains by the SRI-NIC has 
grown steadily. In February of 1987, roughly 300 
domains were delegated. As of March 1988, over 
650 domains are delegated. Approximately 400 rep- 
resent normal name spaces controlled by organiza- 
tions other than the SRI-NIC, while 250 of these 
delegated domains represent network address spaces 
(i.e parts of IN-ADDR.ARPA) no longer controlled 
by the NIC. 

Two good examples of contemporary DNS use are 
the so called “root servers” which are the redundant 
name servers that support the top levels of the do- 
main name space, and the Berkeley subdomain, 

which is one of the domains delegated by the SRI- 
NIC in the EDU domain. 

3. I Root servers 

The basic search algorithm for the DNS allows a 
resolver to search “downward” from domains that it 
can access already. Resolvers are typically config- 
ured with “hints” pointing at servers for the root 
node and the top of the local domain. Thus if a 
resolver can access any root server it can access all 
of the domain space, and if the resolver is in a net- 
work partitioned from the rest of the Internet, it can 
at least access local names. 

Although a resolver accesses root servers less as the 
resolver builds up cached information about servers 
for lower domains, the availability of root servers is 
an important robustness issue, and root server activ- 
ity monitoring provides insights into DNS usage. 

Since access to the root and other top level zones is 
so important, the root domain, together with other 
top-level domains managed by the SRI-NTC, is sup- 
ported by seven redundant name servers. These 
root servers are scattered across the major long haul 
backbone networks of the Internet, and are also re- 
dundant in that three are TOPS-20 systems running 
JEEVES and four are UNIX systems running BIND. 

The typical traffic at each root server is on the order 
of a query per second, with correspondingly higher 
rates when other root servers are down or otherwise 
unavailable. While the broad trend in query rate has 
generally been upward, day-to-day and month-to- 
month comparisons of load are driven more by 
changes in implementation algorithms and timeout 
tuning than growth in client population. For exam- 
ple, one bad release of popular domain software 
drove averages to over five times the normal load for 
extended periods. At present, we estimate that 50% 
of all root server traffic could be eliminated by im- 
provements in various resolver implementations to 
use less aggressive retransmission and better caching. 

The number of clients which access root servers can 
be estimated based on measurement tools on the 
TOPS-20 version. These root servers keep track of 
the first 200 clients after root server initialization, 
and the first 200 clients typically account for 90% or 
more of all queries at any single server. Coordinated 
measurements at the three TOPS-20 root servers 
typically show approximately 350 distinct clients in 
the 600 entries. The number of clients is falling as 
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more organizations adopt strategies that concentrate 
queries and caching for accesses outside of the local 
organization. 

The clients appear to use static priorities for selecting 
which root server to use, and failure of a particular 
root server results in an immediate increase in traffic 
at other servers. The vast majority of queries are 
four types: all information (25 to 40%), host name to 
address mappings (30-40%), address to host map- 
pings (10 to 15%), and new style mail information 
called MX (less than 10%). Again, these numbers 
vary widely as new software distributions spread. 
The root servers refer lo-15% of all queries to serv- 
ers for lower level domains. 

3.2 Berkeley 

UNIX support for the DNS was provided by the Uni- 
versity of California, Berkeley, partially as research 
in distributed systems, and partially out of necessity 
due to growth in the campus network [Dunlap 86a, 
Dunlap 8 6b]. The result is the Berkeley Internet 
Name Domain (BIND) server. Berkeley serves as an 
example of a large delegated domain, though it is 
certainly more sophisticated and has more experi- 
ence than most. 

With BIND, Berkeley became the first organization 
on the DARPA Internet to bring up machines with 
all their network applications solely dependent on 
DNS for doing network host and address resolution. 
Berkeley started to install machines on campus de- 
pendent on the name server in the spring of 1985. 
In the fall of 1985, the two mail gateways to the 
DARPA Internet were converted to depend on the 
DNS, this meant the entire campus had to adopt do- 
main-style mail addresses. 

Educating even the sophisticated Berkeley user com- 
munity on the new form of addressing turned out to 
be a major task. The single biggest objection from 
the user community was due to mail addresses which 
became obsolete, closely followed by the initial lack 
of shorthands and search rules in the initial imple- 
mentation. 

While the DNS transition was painful, the need was 
clear, as shown in the following table which gives the 
number of hosts, subnets, and finally subdomains in 
use at Berkeley over the last three years. For exam- 
ple, from January 1986 to February 1987, Berkeley 
added 735 hosts in 250 working days, an average of 

three new hosts each working day. 

Date Hosts Subnets Subdomains 

January 1986 267 14 
February 1987 1002 44 
March 1988 1991 86 5 

Note that Berkeley has recently divided its domain 
into multiple zones for administrative convenience. 

4. Surprises 

Operation of the DNS has revealed several issues 
that came as surprises to the developers, but on re- 
flection seem quite unsurprising. 

4.1 Refinement of semantics 

The main role of the DNS is to act as a repository for 
information, and the initial assumption was that the 
form and content of that information was well-un- 
derstood. This turned out to be a bad assumption. 
Even existing common concepts such as IP host ad- 
dresses were sources of problems; we knew that we 
would have to support multiple addresses for a single 
host, but we were drawn into long discussions of 
whether the addresses attached to a host name 
should be ordered, and if so, by what metric. 

4.2 Performance 

The performance of the underlying network was 
much worse than the original design expected. 
Growth in the number of networks overtaxed gate- 
way mechanisms for keeping track of connectivity, 
leading to lost paths and unidirectional paths. At the 
same time, growth in load plus the addition of many 
lower speed links led to longer delays. These prob- 
lems were manifest at the root servers, where logs 
reveal many instances of repeated copies of the same 
query from the same source. Even though the 
TOPS-20 root servers take less than 100 millisec- 
onds to process the- vast majority of queries, clients 
typically see response times of 500 milliseconds to 5 
seconds, even for the closest root server, depending 
on their location in the Internet. The situation for 
queries to the delegated domains is often much 
worse, both because of network troubles, and be- 
cause the name servers for these domains are often 
on heavily loaded hosts on less-central networks. 
Queries from the ARPANET to delegated domains 
typically take 3 to 10 seconds during prime time, 
with 30 to 60 second times as occasional worst cases. 
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It is interesting to note that these times to access a 
remote name server are similar to those seen for the 
XEROX homogeneous name service [Larson 851. 

A related surprise was the difficulty in making rea- 
sonable measurements of DNS performance. We 
had planned to measure the performance of DNS 
components in order to estimate costs for future en- 
hancement and growth, and to guide tuning of exist- 
ing retransmission intervals, but the measurements 
were often swamped by unrelated effects due to gate- 
way changes, new DNS software releases, and the 
like. Many of the servers perform better as their 
load increases due to fewer page faults, but this is 
clearly not a stable situation over the long term, lead- 
ing to concerns about behavior should network per- 
formance improve and be able to deliver higher 
loads to the servers. 

The performance of lookups for queries that did not 
need network access was a pleasant surprise. We 
were replacing a fairly simple host table lookup with 
a more complicated database, so even if cache ac- 
cess worked very well, we might slow existing appli- 
cations down a great deal. However, the new 
mechanisms are typically as good or better than the 
old, regardless of implementation. The reason for 
this is that the old mechanisms were created for a 
much smaller database and were not adjusted as the 
size of database grew explosively, while the new soft- 
ware was based on the assumption of a very large 
database. 

4.3 Negative caching 

The DNS provides two negative responses to queries. 
One says that the name in question does not exist, 
while the other says that while the name in question 
exists, the requested data does not. The first might 
be expected if a name were misspelled, while the 
second might result if a query asked for the host type 
of a mailbox or the mailing list members of a host+ 
These responses were expected to be rare. 

Initial monitoring of root server activity showed a 
very high percentage (20 to 60%) of these responses. 
Logs revealed that many of these queries were gener- 
ated by programs using old-style host names, or 
names from other mail internets (e.g. UUCP). In 
the latter case, mailers would often use a call to the 
name to address conversion routines to test whether 
an address was valid in the DARPA Internet, even 

though this might be easily determined by other 
means. Since few UUCP mail addresses are valid 
domain names, this resulted in a negative response 
from a root server, coupled with a delay for the non- 
local query. 

We expected that the negative responses would de- 
crease, and perhaps vanish, as hosts converted their 
names to domain-name format and as we asked mail 
software maintainers to modify their programs. Even 
though these steps were taken, negative responses 
stayed in the lo-50% range, with a typical percent- 
age of 25%. 

The reason is that the corrective measures were off- 
set by the spread of programs which provided short- 
hand names through a search list mechanism. The 
search lists produce a steady stream of bad names as 
they try alternatives; a mistyped name may now lead 
to several name errors rather than one. Our conclu- 
sion is that any naming system that relies on caching 
for performance may need caching for negative re- 
sults as well. Such a mechanism has been added to 
the DNS as an optional feature, with impressive per- 
formance gains in cases where it is supported in both 
the involved name servers and resolvers. This fea- 
ture will probably become standard in the future. 

5. Successes 

5.1 Variable depth hierarchy 

The variable-depth hierarchy is used a great deal 
and was the right choice for several reasons: 

0 The spread of workstation and local network 
technology meant that organizations participating 
in the Internet were finding a need to organize 
within themselves. 

0 The organizations were of vastly different size, 
and hence needed different numbers of organiza- 
tional levels. For example, both large interna- 
tional companies and small startups are registered 
in the domain system. 

0 The variable depth hierarchy makes it possible to 
encapsulate any fixed level or variable level sys- 
tem. For example, the UK’s own name service 
(NRS) and the DNS mutually encapsulate each 
other’s name space. This scheme may also be 
used in the future to interoperate with the direc- 
tory service under development by the IS0 and 
CCITT. 
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Many networks that do not use the DNS protocols 
and datatypes have standardized on the DNS hierar- 
chical name syntax for mail addressing [Quarterman 
861. 

5.2 Organizational structuring of names 

While the particular top-level organizational struc- 
ture used by the current DNS is quite controversial, 
the principle that names are independent of net- 

work, topology, etc. is quite popular. The future 
structure of the top levels is likely to continue to be a 
subject of debate. Most proposals generate a 
roughly equivalent amount of support and condem- 
nation. In the authors’ opinion, the only real possi- 
bility for wholesale change is a political decision to 
change the structure of the domain name space to 
resemble the name space proposed for the ISO/ 
CCITT directory service. This is r-rot a technical is- 
sue as the DNS is flexible enough to accommodate 
almost any political choice. 

5.3 Datagram access 

The use of datagrams as the preferred method for 
accessing name servers was successful and probably 
was essential, given the unexpectedly bad perform- 
ance of the DARPA Internet. The restriction to ap- 
proximately 512 bytes of data turns out not to be a 
problem, performance is much better than that 
achieved by TCP circuits, and OS resources are not 
tied up. 

The only obvious drawback to datagram access is the 
need to develop and refine retransmission strategies 
that are already quite well developed for TCP. 
Much unnecessary traffic is generated by resolvers 
that were developed to the point of working, but 
whose authors lost interest before tuning, or by sys- 
tems that imported well known versions of code but 
do not track tuning updates. 

5.4 Additional section processing 

When a name server answers a query, in addition to 
whatever information it uses to answer the question, 
it is free to include in the response any other infor- 
mation it sees fit, as Iong as the data fits in a single 
datagram. The idea was to allow the responding 
server to anticipate the next logical request and an- 
swer it before it was asked without significant added 
communication cost. For example, whenever the 
root servers pass back the name of a host, they in- 

clude its address (if available), on the assumption 
that the host address is needed to use other informa- 
tion. Experiments show that this feature cuts query 
traffic in half. 

5.5 Caching 

The caching discipline of the DNS works well, and 
given the unexpectedly bad performance of .the In- 
ternet, was essential to the success of the system. 

The only problems with caching relate to databases 
and query strategies that make it less reliable or use- 
ful. For example, RRs of the same type at a particu- 
lar node should have the same TTL so that they will 
time out simultaneously, but administrators some- 
times assign TTLs in the mistaken idea that they are 
assigning some sort of priority. Administrators also 
are very fond of picking short TTLs so that their 
changes take effect rapidly, even if changes are very 
rare and do not need the timeliness. 

A related concern is the security and reliability prob- 
lems caused by indiscriminate caching. Several ex- 
isting resolvers cache all information in responses 
without regard to its reasonableness. This has re- 

sulted in numerous instances where bad information 
has circulated and caused problems. Similar difficul- 
ties were encountered when one administrator re- 
versed the TTL and data values, resulting in the dis- 
tribution of bad data with a TTL of several years. 
While various measures have reduced the vulnerabil- 
ity to error, the security of the present system does 
depend on the integrity of the network addressing 
mechanism, and this is questionable in an era of lo- 
cal networks and PCs. 

5.6 Mail address cooperation 

Agreement between representatives of the CSNET, 
BITNET, UUCP, and DARPA Internet communities 
led to an agreement to use organizationally struc- 
tured domain names for mail addressing and routing. 
While the transition from the messy multiply-en- 
coded mail addresses of the past is far from com- 
plete, the possibility of cleaning up mail addresses 
has been clearly demonstrated. 

6. Shortcomings 

6.1 Type and class growth 

When the draft DNS specifications were made avail- 
able in 1983, the one nearly unanimous criticism was 
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that the type and class data specifiers, which were 8 
bits in the draft, should be expanded to 16, or even 
32 bits, to allow for new definitions. Over the first 
five years of DNS use, two new types have been 
adopted, two types have been dropped, and two new 
classes have been allocated. Clearly, either the de- 
mand for new types and classes was completeIy mis- 
understood, or the current DNS makes new defini- 
tions too difficult. 

While one problem is that almost all existing software 
regards types and classes as compile-time constants, 
and hence requires recompilation to deal with 
changes, a less tractable problem is that new data 
types and classes are useless until their semantics are 
carefully designed and published, applications cre- 
ated to use them, and a consensus is reached to use 
the new system across the Internet. This means that 
new types face a series of technical and political hur- 

dles. 

A methodology or guidelines to aid in the design of 
new types of information is needed. This is more 
complicated than just listing the values of interest for 
an application, since it often involves the design of 
special name space sections, TTL selections to pro- 
duce acceptable performance and semantics, and 
decisions whether to produce a desired binding 
through one lookup or a sequence of smaller bind- 
ings. The single lookup method often seems over- 
whelmingly attractive to a particular application de- 
signer despite the fact that it may overlap or conflict 
with another application’s data. Another factor is 
that members of the Internet have different views on 
the proper assumptions or approach for a particular 
problem. 

Mail is an exampIe. After much debate, the MX 
data type and system [RFC 9741 defined a standard 
method for routing mail, based on the DOMAIN 
part or a LOCAL-PARTQDOMAIN mail address. 
MX represented a simple addition to the DNS itself, 
but required changes to all mail servers, and its 
benefits required a “critical mass” of mailers. Nu- 
merous suggestions have been made to extend the 
DNS to provide mail destination registry down to the 
individual user level, and the basics of such a service 
are within our understanding, but consensus for a 
single plan remains elusive. Part of the constituency 
demands that user level mail binding be an option on 
top of MX, while others advocate a fresh start, with 

lots of features for mail forwarding, list maintenance, 
etc. The best choice seems to be one in which agent 
binding is always a choice, but that a mailer which 
chooses to map to the mailbox level can do so if the 
mailbox data is also available. 

6.2 Easy upgrading of applications 

Converting network applications to use the DNS is 
not a simple task. It would be ideal if a11 the applica- 
tions converting from HOSTS.TXT could be recom- 
piled to use the DNS and have everything work, but 
this is rarely the case. 

Part of the problem is transient failure. A distributed 
naming system, by its very nature, has periods that it 
can not access particular information. Applications 
must handle this condition appropriately. Mailers 
looking up mail destinations should not discard mail 
due to these transient failures, and can not afford to 
wait indefinitely. Even if such failures are antici- 

pated to be quite rare once the DNS stabilizes, we 
face a chicken-and-egg problem in converting mail- 
ers to use the new software. 

Another part of the problem is that access to the 
naming system needs to be integrated into the oper- 
ating system to a much greater degree than providing 
system call to the resolver. Users need to be able to 
access these services at the shell level and specify 
search lists and defaults in a manner consistent with 
other system operations. 

6.3 Distribution of control vs. distribution of ex- 
pertise or responsibility 

Distributing authority for a database does not distrib- 
ute a corresponding amount of expertise. Maintain- 
ers fix things until they work, rather than until they 
work well, and want to use, not understand, the sys- 
tems they are provided. Systems designers should 
anticipate this, and try to compensate by technical 
means. The DNS furnishes several examples of this 
principle: 

0 The initial policy was that we would delegate a 
domain to any organization which filled out a 
form listing its redundant servers and other essen- 
tials. Instead we should have required that the 
organization demonstrate redundant servers with 
real data in them before we delegated the do- 
main, and probably should have insisted that they 
be on different networks, rather than trusting as- 
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surances that the servers did not represent a sin- 
gle point of failure. 

0 The documentation for the system used examples 
which were easily explained in the narration. 
Sample TTL values which mapped to an hour 
were always copied; text that said the values 
should be a few days was ignored. Documenta- 
tion should always be written with the assumption 
that only the examples are read. 

0 Debugging of the system was hampered by ques- 
tions about software versions and parameters. 
These values should be accessible via the proto- 
col. 

7. Conclusions 

Just as the classification of many of the previous is- 
sues into “successes”, “surprises”, and “shortcom- 
ings” is open to debate based on the perspective of 
the reader, so too is the question “Was the DNS a 
good idea?“. 

Modifications to the HOSTS.TXT scheme could 
have postponed the need for a new system, and re- 
duced the quantitative arguments for the DNS. The 
DNS has probably not yet reduced the community- 
wide administrative, communication, or support 
load. However, the need to distribute functionality 
was, we believe, inexorable. This need, together 
with the new functionality and opportunities for fu- 
ture services must be the key criteria for judgment. 
From the authors’ perspective, they justify the DNS. 

There are a lot of choices we might make differently 
if we were starting over, but the main pieces of ad- 
vice which would have been valuable when we were 
starting are: 

0 Caching can work in a heterogeneous environ- 
ment, but should include features for caching 
negative responses as well. 

0 It is often more difficult to remove functions from 
systems than it is to get a new function added. 
All of a community would not convert to a new 
service; instead some will stay with the old, some 
will convert to the new, and some will support 
both. This has the unfortunate effect of making 
all functions more complex as new features are 
added. 

0 The most capable implementors lose interest once 
a new system delivers the level of performance 
they expect; they are not easily motivated to opti- 
mize their use of others’ resources or provide eas- 
ily used guidelines for the administrators that use 
the systems. Distributed software should include a 
version number and table of parameters which 
can be interrogated. If possible, systems should 
include technical means for transferring tuning 
parameters, or at least defaults, to all installations 
without requiring the attention of system main- 
tainers. 

0 Allowing variations in the implementation struc- 
ture used to provide service is a great idea; allow- 
ing variation in the provided service causes prob- 
lems. 

8. Directions for future work 

Although the DNS is in production use and hence 
difficult to change, other research in naming sys- 
tems, particularly the emerging IS0 X.500 directory 
services, may provide the impetus for additions: 

0 Support for X.500 style addresses for mail, etc. 
could be constructed as a layer on top of the 
DNS, albeit without the sophisticated protection, 
update, and structuring rules of X.500. Use of 
the data description techniques from the IS0 
standards might provide a better mechanism for 
adding data types than the present data structur- 
ing rules, while the proven DNS infrastructure 
could speed prototyping of IS0 applications. 

0 The value of a ubiquitous name service and con- 
sistent name space at all levels of the protocol 
suite and operating system seems obvious, but it is 
equally obvious that tradeoffs between perform- 
ance, generality, and distribution require at least 
different styles of use at different levels. For ex- 
ample, a system suitable for managing file names 
on a local disk would be substantially different 
from a system for maintaining an internet wide 
mailing list. The challenge here is to develop an 
approach which, at least conceptually, structures 
the total task into layers or some other coherent 
organization. 

0 Research in naming systems has typically resulted 
in proposaIs for systems which could replace or 
encapsulate all other systems, or systems which 
allow translations between separate name spaces, 
data formats, etc. Both approaches have advan- 
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tages and drawbacks. The present DNS and ef- 
forts to unify its name space without special do- 
mains for specific networks, etc. place the DNS 
in the first category. However, its success is uni- 
versal enough to be encouraging while not enough 
to solve the user’s difficulty with obscure encod- 
ings from other systems. Technical and/or politi- 
cal solutions to the growing complexity of naming 
will be a growing need. 
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