
CSE 551
Design Exercise #1

A Virtual Machine Monitor for the Internet

First draft due: noon, Thursday, April 9, 2009
Final draft: 4:30pm, Thursday, April 16, 2009

An operating system, such as UNIX, provides several key pieces of functionality for its users: an
abstract virtual machine execution environment for running applications, strong isolation between
different users and different applications, persistent storage with access control, and so forth. The
Internet protocol suite is akin to an operating system for the network, but many traditional OS
services are lacking from the Internet, even today. Specifically, the designers of the Internet
intentionally ignored security, and thus they put very little effort into mechanisms to isolate users
from each other.

An extreme form of an operating system (which we’ll read about later in the quarter) is called a
virtual machine monitor (VMM). Instead of providing applications an abstract virtual execution
environment, a VMM provides an emulation of the physical hardware. In this way, a VMM can
run an operating system as an application, and if the OS it runs is itself a VMM, that OS can run an
OS as an application. (A VMM is usually implemented using virtual memory tricks, but that is
less important for our purposes.) The benefits of such an approach are several. First, it provides a
way of debugging a new operating system on top of an old one, running on the same hardware.
Legacy applications written for the previous system can continue to run, while applications are
ported to the new system. Isolation is easier, since typically the VMM is much smaller than a
traditional, full-service operating system – the VMM need only support the services provided by
the raw hardware. And other services, such as checkpointing and migration, become much easier,
since operations that block in the OS can be checkpointed by simply checkpointing the entire OS
running on the VMM.

The design question is: how would you build a VMM for the Internet? Such a system would be
able to host itself, and the Internet protocols, and potentially a completely different network
design, all on an emulation of the physical network hardware. The goal of such a system would be
to improve isolation and security: your VMM should be designed to provide strong isolation
between virtual Internets.

There are two parts to the question, which you should consider separately. First, how would you
virtualize the Internet from the perspective of end hosts? In other words, could you design a VMM
that made it appear (to the OS and applications running on top of it) that the machine was
connected to the Internet, when really it was connected to your new Internet VMM? Second, how
would you virtualize Internet routers? Routers exchange packets with each other for both data (to
forward packets to the destination) and control (to set up tables to know where to forward packets,
to recover from failures, and so forth). How would you virtualize them as well?

For your Internet VMM, you may modify end host software or router hardware or software. You
may not change the Internet protocols, however! We are much less interested in protocol specifics,
than with the sketch of your general approach – e.g., try to keep the writeup to 1-2 pages.

