From Algorithm to Deployment

- ML Algorithms
 - Maths, Convergence, Proof, Models, Accuracy
- Programming
 - API
- Execution
- Hardware Design
 - Acceleration for specialized operators
 - Memory capacity, bandwidth
 - Memory hierarchy
 - Communication latency and bandwidth
 - Communication topology
API Abstraction

- **Vallina C/Python/…**
 - for-loops, array, scalar math ops
 - Tedious, Error-prone
- **Vectorized representation**
 - numpy, ndarray, dot. Linear algebra.
 - Multiple implems + Hide impl details
- **Operators**
 - MatMul, Softmax, Convolution
- **Layers**
 - Dense, Conv2D, Transformer
- **Models**
 - Layers
 - Control Flow
Machine Learning Frameworks / Compilers

- **User-friendly APIs**
 - Operators, Layers
 - Optimizers, Loss functions
 - Auto gradient, parameter update
 - Data loading
 - Multi-device, Multi-machine

- **Intermediate Representation**
 - Graph
 - High-level instruction sets (MLIR, LLVM)
 - Opportunities for auto optimization
 - (Imagine optimizing hand written C/Python)

- **Support various accelerator hardware**
 - Computation, Memory, Communication
TensorFlow: Graph

- **Node: Op**
 - Add, MatMul, Conv2D
 - Abstract device-, execution backend-, and language independent API
 - Implemented by Op Kernels written in C++, specialized on $<\text{Type}, \text{Device}>$

- **Edge: Data dependency**
 - Tensors (ref-counted, n-dimensional array buffers in device memory)
 - Control dependencies: A->B means A must finish before B can run
 - Resource handles to state (e.g. variables, input data pipelines)
TensorFlow: Graph

- Node: Op
- Edge: Data dependency

Graph Analysis & Transformation

- Auto gradient (chain rule)
- Dependency Analysis
- Split subgraph
Grappler: TensorFlow Graph Optimizations

Graph: High-level IR

Not the only IR

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf
Why transformations at the graph level?

- **Pros:**
 - Many optimizations can be easier to discover and express as high-level graph transformations
 - Example: `Matmul(Transpose(x), y) => Matmul(x, y, transpose_x=True)`
 - Graph is backend independent (TF runtime, XLA, TensorRT, TensorFlow.js, ...)
 - Interoperable with TensorFlow supported languages (protocol buffer format)
 - Optimizations can be applied at **runtime** or **offline** using our **standalone tool**
 - Lots of **existing models** (TF Hub, Google production models) available for learning
 - Pragmatic: Helps the most existing TensorFlow users get better “out-of-the-box” performance

- **Cons:**
 - Rewrites can be tricky to implement correctly, because of loosely defined graph semantics
 - In-place ops, side-effects, control flow, control dependencies
 - Protocol buffer dependence increases binary size
 - Currently requires extra graph format conversions in TF runtime
Graph Simplifications

```
S = tf.shape(A)  # S = [2, 2]
B = tf.ones(S)
```

```
S = tf.constant([2, 2])
B = tf.constant([[1, 1], [1, 1]])
```

```
S = tf.constant([2, 2])
B = tf.ones(S)
```
Constant folding optimizer: SimplifyGraph()

- Removes trivial ops, e.g., identity Reshape, Transpose of 1-d tensors, Slice(x) = x, etc.
- Rewrites that enable further constant folding, e.g.
 - Constant propagation through Enter
 - Switch(pred=x, value=x) => propagate False through port0, True through port1
 - Partial constant propagation through IdentityN
- Arithmetic rewrites that rely on known shapes or inputs, e.g.
 - Constant push-down:
 - Add(c1, Add(x, c2)) => Add(x, c1 + c2)
 - ConvND(c1 * x, c2) => ConvND(x, c1 * c2)
 - Partial constfold:
 - AddN(c1, x, c2, y) => AddN(c1 + c2, x, y),
 - Concat([x, c1, c2, y]) = Concat([x, Concat([c1, c2]), y])
 - Operations with neutral & absorbing elements:
 - x * Ones(s) => Identity(x), if shape(x) == output_shape
 - x * Ones(s) => BroadcastTo(x, Shape(s)), if shape(s) == output_shape
 - Same for x + Zeros(s), x / Ones(s), x * Zeros(s) etc.
 - Zeros(s) - y => Neg(y), if shape(y) == output_shape
 - Ones(s) / y => Recip(y) if shape(y) == output_shape
Arithmetic optimizer:

- Arithmetic simplifications
 - Flattening: \(a+b+c+d \Rightarrow AddN(a, b, c, d) \)
 - Hoisting: \(AddN(x * a, b * x, x * c) \Rightarrow x * AddN(a+b+c) \)
 - Simplification to reduce number of nodes:
 - Numeric: \(x+x+x \Rightarrow 3*x \)
 - Logic: \(!(x > y) \Rightarrow x <= y \)

- Broadcast minimization
 - Example: \((\text{matrix1} + \text{scalar1}) + (\text{matrix2} + \text{scalar2}) \Rightarrow (\text{matrix1} + \text{matrix2}) + (\text{scalar1} + \text{scalar2})\)

- Better use of intrinsics
 - \(\text{Matmul}(\text{Transpose}(x), y) \Rightarrow \text{Matmul}(x, y, \text{transpose}_x=True) \)

- Remove redundant ops or op pairs
 - \(\text{Transpose}(\text{Transpose}(x, \text{perm}), \text{inverse}_\text{perm}) \)
 - \(\text{BitCast}(\text{BitCast}(x, \text{dtype}1), \text{dtype}2) \Rightarrow \text{BitCast}(x, \text{dtype}2) \)
 - Pairs of elementwise involutions \(f(f(x)) \Rightarrow x \) (Neg, Conj, Reciprocal, LogicalNot)
 - Repeated idempotent ops \(f(f(x)) \Rightarrow f(x) \) (DeepCopy, Identity, CheckNumerics...)

- Hoist chains of unary ops at Concat/Split/SplitV
 - \(\text{Concat}([\text{Exp}(\text{Cos}(x)), \text{Exp}(\text{Cos}(y)), \text{Exp}(\text{Cos}(z))]) \Rightarrow \text{Exp}(\text{Cos}(\text{Concat}([x, y, z]))) \)
 - \([\text{Exp}(\text{Cos}(y)) \text{ for } y \text{ in } \text{Split}(x)] \Rightarrow \text{Split}(\text{Exp}(\text{Cos}(x)), \text{num_splits}) \)
Layout optimizer

Node 4
- NHWC to NCHW
- Conv in NCHW
- NCHW to NHWC

Node 5
- BiasAdd in NHWC

Node 6
- Relu

Node 7
- MaxPool in NHWC

Node 8
- NHWC to NCHW
- Conv in NCHW
- NCHW to NHWC

Node 9
- BiasAdd in NHWC

Node 48
- NCHW to NHWC
- Conv in NCHW
- NCHW to NHWC

Node 48
- NCHW to NHWC
- Conv in NCHW
- NCHW to NHWC

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf
Remapper optimizer: Op fusion

- Replaces commonly occurring subgraphs with optimized fused "monolithic" kernels
 - Examples of patterns fused:
 - Conv2D + BiasAdd + <Activation>
 - Conv2D + FusedBatchNorm + <Activation>
 - Conv2D + Squeeze + BiasAdd
 - MatMul + BiasAdd + <Activation>

- Fusing ops together provides several performance advantages:
 - Completely eliminates Op scheduling overhead (big win for cheap ops)
 - Increases opportunities for ILP, vectorization etc.
 - Improves temporal and spatial locality of data access
 - E.g. MatMul is computed block-wise and bias and activation function can be applied while data is still "hot" in cache.

- A separate mechanism allows the TensorFlow compiler to cluster subgraphs and generate fused kernel code on-the-fly
TensorFlow 2.0: Eager Execution

Graph Execution

- Build graph
- `tf.Session`: owns all states
- `sess.run()`: run the graph

Eager Execution:

- Numpy-like
- PyTorch gain popularity because of eager execution
- `print(x)`
- Support for dynamic models using easy-to-use Python control flow
TensorFlow 2.0: Eager Execution

● Upside:
 ○ Fast debugging with immediate run-time errors and integration with Python tools
 ○ Support for dynamic models using easy-to-use Python control flow

● Downside:
 ○ Slow
 ■ Interpreting Python code
 ■ Fixed, unoptimized code path
 ■ Issue kernels one by one
 ■ No op fusion
 ■ No graph optimizations

● User friendly + Performance
 ○ `tf.function()` / `torch.jit.script()`
 ■ Trace Python code once for given input specs (function signature, e.g., dtype, shape)
 ■ Eager code -> Graph
TensorFlow: Data Parallel Training

- One 1000-element mini-batch == Ten 100-element mini-batches
- Easiest way to use multiple GPUs
 - Replicate the model across GPUs
 - Shard data across GPUs
 - Compute gradient on each GPU
 - Aggregate gradients
 - Sync: wait for slowest
 - Async: different semantics
 - Gradient of old parameters
 - Convergence?
Data Parallelism: Parameter Server

- **API:**
 - `ps.push(key, gradient)`
 - `ps.pull(key)`

- **Roles:**
 - **Server:** Key-value store; Merge gradient
 - **Worker:** Calculate gradient

- **Consistency Model**
 - **Sequential (Sync)**
 - **Eventual (Async)**
 - **Bounded Delay (tuneable)**

- **Server bottleneck:**
 - **High bandwidth demand**
 - **Synchronized burst**
 - **How to fix it? (Multi-server!)**

https://www.cs.cmu.edu/~muli/file(parameter_server_osdi14.pdf)
Data Parallelism: Parameter Server

- Multiple servers
 - Shard across Key space.
- How to deal with skewed key space (e.g., string as keys)?
- How to deal with server load imbalance?
- This reminds you of a paper...
Data Parallelism: Parameter Server

- **Multiple servers**
 - Shard across Key space.
 - Each server is responsible for a range of keys.
 - Chord?!
 - Load balancing of keys: hashing
 - Load balancing of servers: virtual nodes

Uber Horovod: Challenges with PS

- **Worker:PS ratio**
 - Single PS: bottleneck
 - One PS per worker: all-to-all, may saturate network switch

- **Integration with existing TensorFlow program**
 - Service discovery for PS and worker
 - Modify code to shard parameters explicitly

Data Parallelism: Collective Communication

Page 4-7,11-12,18-47

● Advantage:
 ○ The number of devices does not affect the latency
 ○ Bandwidth optimal
 ○ Interconnect topology aware
 ○ Minimal modification to code (allreduce)
Machine Learning Parallelism

● Data Parallelism
 ○ Small model; Large dataset;
 ○ Replicate model; Shard dataset; Sync update
 ○ Collective communication

● Model Parallelism
 ○ Large model: a model might require multiple devices
 ○ Pipeline parallelism
 ■ Partition a model into several stages
 ■ Less communication; More idle time
 ○ Operator parallelism
 ■ Partition an operator along some dimensions
 ■ More communication; Less idle time
 ○ Point-to-point communication
Pipeline Parallelism

- No pipeline: bubbles
- GPipe
 - Split a mini-batch as many “micro-batch”
 - Memory: linear to micro-batches
- PipeDream
 - Async update (1F1B)
 - Lose accuracy
Pipeline Parallelism

- No pipeline: bubbles
- GPipe
 - Split a mini-batch as many “micro-batch”
 - Memory: linear to micro-batches
- PipeDream
 - Async update (1F1B)
 - Lose accuracy
- PipeDream-Flush
 - Sync; Alternate Forward & Backward
 - Save memory: linear to pipeline stages
- Megatron-2 Virtual Pipeline
 - Place multiple stages on the same device
 - More communication; Less bubble
Operator Parallelism

- Alpa
 - https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_zheng-lian min.pdf
 - Data + Pipeline + Operator parallelism
 - Two tier network topology
Model Serving (Inference)

- Latency constraint for real-time tasks
 - e.g., end-to-end latency < 10ms
- Multi-tenancy
 - e.g., multiple models on one GPU cluster
- Request rate fluctuation
 - Piecewise stationary + burst
- Hardware utilization
 - batching under latency constraint
- GPU cluster management
 - load balancing
 - horizontal scaling
Inference Characteristics on GPUs

- Very predictable execution latency
- Concurrent execution increases throughout but significantly sacrifices predictability
- Execution latency is linear to batch size
 - $\text{latency}(bs) := k \times bs + c$
 - $\text{throughput}(bs) := \frac{bs}{\text{latency}(bs)} \propto -1/bs$

Model Serving Systems

● Roles:
 ○ Client
 ○ Frontend servers
 ■ Accept client requests
 ■ Preprocessing (e.g., image decoding)
 ■ Forward request to backend
 ■ Postprocessing (e.g., index to label)
 ■ Send response back to client
 ○ Backend servers
 ■ Run models with GPU
 ○ Scheduler
 ■ Backend allocation
 ■ Model mapping
 ■ Execution plan
Model Serving System: Scheduling

● Schedule:
 ○ Which GPU to run this batch?
 ○ Which requests are included in this batch?
 ○ When to start running this batch?

● Distributed scheduling (Nexus [SOSP’19])
 ○ Request lifetime: Client -> Frontend -> Backend -> Frontend -> Client
 ○ Frontend, Backend -> Scheduler: stats
 ○ Scheduler -> Frontend: List of backends for round robin
 ○ Scheduler -> Backend: Duty cycle (list of model + batch size)
 ○ Backend: pick requests for the next batch; run DNN on GPU back-to-back
 ○ Scheduler, Frontend, Backend all make parts of scheduling decisions
Model Serving System: Scheduling

- **Schedule:**
 - Which GPU to run this batch?
 - Which requests are included in this batch?
 - When to start running this batch?

- **Distributed scheduling (Nexus [SOSP’19]):**
 - Scheduler, Frontend, Backend all make parts of scheduling decisions

- **Centralized scheduling (Clockwork [OSDI’20]):**
 - Client -> Frontend -> **Scheduler** -> Backend -> **Scheduler** -> Client
 - Scheduler can have precision control over backend execution
 - Frontend, Backend are simple, non-decision-making.
 - Scheduler on every request’s data path
 - Bottleneck! (Network bandwidth & CPU)
Model Serving System: Scheduling

- **Schedule:**
 - Which GPU to run this batch?
 - Which requests are included in this batch?
 - When to start running this batch?

- **Distributed scheduling (Nexus [SOSP’19]):**
 - Scheduler, Frontend, Backend all make parts of scheduling decisions

- **Centralized scheduling (Clockwork [OSDI’20]):**
 - Scheduler can have precision control over backend execution
 - Bottleneck! (Network bandwidth & CPU)

- **Centralized scheduling (Symphony [under review]):**
 - Scheduler only exchange metadata
 - Multi-core scalable scheduling algorithm
 - Better scheduling quality (bigger batch size, higher goodput under latency constraint)
Model Serving System: Scheduling

- **Notation:**
 - \(b \): batch size
 - \(l(b) \): latency of batch size \(b \)
 - \(N \): the number of GPUs

- **Variables:** \(b, N \)

- **Batching equations**
 - Total throughput > Request rate
 - \(N \cdot b/l(b) > RPS \)
 - Queuing delay + Execution < latency SLO
 - Non-coordinated: \((1 + 1) \cdot l(b) < SLO \)
 - Coordinated: \((1/N + 1) \cdot l(b) < SLO \)