CSE 550: Systems for all

Au 2022

Ratul Mahajan
Distributed transactions

Atomic update of data across multiple nodes

Why is the data distributed?
 • Replication: Tolerate failures
 • No replication: Need more compute / storage
Fault tolerance in distributed systems

<table>
<thead>
<tr>
<th></th>
<th>Replication</th>
<th>Non-replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail stop</td>
<td>Paxos</td>
<td>2PC, 3PC</td>
</tr>
<tr>
<td>Byzantine</td>
<td>PBFT</td>
<td>N/A – why?</td>
</tr>
</tbody>
</table>
CAP theorem: Fundamental trade-off for fault tolerance

- Consistency (last written values are read)
- Availability (works can always be done)
- Partition tolerance (operate with arbitrary messages failures)

Can pick at most two
Over to Jiacheng and Yuan-Mao
Mid-quarter feedback

What is helping
• Lectures, papers, assignments

What can be improved
• Student presentations
• Online discussions
• More context on the readings on the Website
Rest of the quarter

Thus far, learned many of the fundamental techniques
 • Sharing resources, ordering events, handling failures, building large networks

Now, focus shifts to applications
 • Data stores (files, KV stores, structured data)
 • Data computation (streams, dataflow, ML)

Some fundamentals still coming
 • Security, correctness reasoning
Project

Proposal feedback is on Canvas

Email/call/chat if you have questions

The project has two goals (Hint: final report must reflect this)

- Learning: What did you learn from the project?
- Research: How did you advance the body of knowledge?