CSE 550: Systems for All

Ratul Mahajan ratul@cs
Lequn Chen lqchen@cs
Who we are
Ratul
Lequn
“q” pronounces like “ch”
Shanghai Jiao Tong University -> UW
Research: ML Model Serving (Advisor: Arvind Krishnamurthy), interested in building systems / writing code in general.
Hobbies: Cooking, Outdoor activities
Fun fact:
Course structure
CSE 550: Systems for All

Quals course that covers foundational systems topics from:
 Operating Systems, Networks, Distributed Systems, Databases

No “real” prerequisites
 Designed to allow first-year grads from other areas to engage
 Functional knowledge of real systems will be helpful

Gateway course to CSE 551, 552, and 561 or a terminal course for
students desiring breadth

Goal: A thorough understanding and appreciation of the work your
systems colleagues are doing!
Course organization

1. Read papers
 • Deeply read 1-2 per class
 • Shallow reads (optional)

Check out: https://derekchia.com/how-to-read-a-research-paper-3-pass-approach/
 • Deep read = All three passes
 • Shallow read = 1st pass
Course organization

2. Discuss papers
 • For each lecture, we will post a small set of questions on the assigned papers.
 • We'll create one thread per discussion question set.
 • You're required to add a comment to the discussion for each of the threads by 9am on
 the day of the class (to give time for everyone to read the responses before class.)
 • For each thread, pick one of the questions in the question set to answer.

 • Free-form discussion
Course organization

3. Lead paper discussion in groups of 2
 • Understand the key ideas and state of the art
 • Rough presentation content
 • What problem is being solved?
 • Paper’s key solution idea(s) / insights
 • Other ways to solve the problem (one source: optional readings)
 • State of the art (one source: optional readings)
 • Incorporate Ed discussion
 • In-class discussion questions
 • Sign up sheet on the course Web page

Ratul will do a short intro to the topic prior to that
Send your slides and other materials to Lequn after the class
Course organization

4. Two assignments
 • Meant to clarify the nature of systems contributions and tooling issues (a defining feature of Systems)
 • Done in groups of 2 or 3
 • Already posted (or will be soon)
Course organization

5. Project 3

- Independent research project or in-depth assignment from us
 - Seed ideas will be posted soon
- Groups of 2 or 3
- Conclude with writeup of results.
Course organization

No exams!
Tools

Canvas for projects/assignments
Ed for discussions
Slides posted on the Web page after the lecture
 • Adapted from Arvind and Kurtis

Feedback:
 • email/chat
 • mid-quarter eval (anonymous)
 • feedback.cs.washington.edu (anonymous)
Office hours

Opportunity to have more personal interactions with us

- Ratul: Immediately after class, and on-demand
- Lequn: Wed 2:30pm - 3:30pm at Allen 220
Grading

• Online discussions: 10%
• In-class discussion leading and participation: 10%
• Two assignments: 25% + 25%
• Project: 30%
Late policy, getting off-track

Each **person** gets three late days for reading responses.

If your assignments/projects will be late, reach out to us beforehand

Special circumstances: Come talk to us
Class attendance

It is a discussion-oriented class, so attending in person is important

But if you cannot make it, attend via Zoom
 • Link on Canvas calendar

Recording will be available
 • Quality might vary (again, class discussions)
Questions?
Course content
system

/sɪstəm/

See definitions in:
All Physiology Computing Science Gambling Music

noun
plural noun: systems

1. a set of things working together as parts of a mechanism or an interconnecting network.
 "the state railroad system"
 Similar: structure organization order arrangement complex

2. a set of principles or procedures according to which something is done; an organized scheme or method.
 "a multiparty system of government"
 Similar: method methodology technique process procedure

Definitions from Oxford Languages
Our focus

Software systems
 • Though the overlap with hardware is large!

Understand how software systems achieve a specific external behavior
 • e.g., deliver videos, online social network, email, ML execution

Comprises of many components
 • Components interact and cooperate to provide overall behavior
 • They typically have (well) specified interfaces

Large-scale, running across thousands or millions of hardware devices
Let’s build a social network together

Assume that you have computer hardware
Common themes across systems

Correctness – does it work as advertised?
Reliability – stay functional as components fail
Performance
Scalability
Efficiency
Security