CSE 550: Systems for all

Au 2021

Ratul Mahajan
What is SDN?

Not quite “software-defined”
 • Network control planes were always software defined

Not quite “centralized control”

Separation of control and data planes
 • Enables centralization but not centralization is not pre-requisite
Why might you want to separate control and data plane?

Arbitrary control over how packets are forwarded

Complex requirements can be hard to specify in terms of distributed, local rules

- Suppose you wanted all paths in the network to be of length 10
Traffic engineering case study
Traffic engineering journey

• SPF with load-based cost
• SPF with static cost
• CSPF (used in MPLS)
• SDN
Limitations of static-cost SPF
CSPF

Each ingress router measures traffic that it is sending to other routers.

Ingress router finds paths that can accommodate its traffic:
 • Shortest path that meets the capacity constraint (CSPF)

Ingress router asks other routers if they can use the path:
 • Necessary because all ingress routers are operating independently.
Same example with CSPF
But CSPF has issues too

Local, greedy allocation
(Distributed CSPF)

Globally optimal allocation
(Centralized)
SWAN: SDN based TE
Inter-DC WAN: A critical, expensive resource

But it was being used highly inefficiently
Inefficiency of the inter-DC WAN

Normalized throughput vs. Hours of the day

- Peak
- Mean

Average utilization = 46%

Normalized traffic on a busy link between data centers
Root cause: Service-level allocations

Operators configure individual services with maximum sending rate

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>.....</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEA → NYC (80)</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>.....</td>
</tr>
<tr>
<td>SEA → CHI (100)</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>.....</td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inefficient: The combined maximum is uncommon

Unreliable: Load can exceed capacity when failures occur

Slow to change: Must change all allocations to add services or network links
Centralized control can increase efficiency

- **Service 1**
 - Priority: Bg
 - Weight: 1

- **Service 2**
 - Priority: Bg
 - Weight: 2

- **Service 3**
 - Priority: Non-bg
 - Weight: 1

Average utilization = 46%

Peak

Mean

- Background traffic
- Non-background traffic

Peak before adapting

Peak after adapting

> 50% peak reduction
SWAN

Controller

1. Traffic demand
2. Service allocations
3. Network configuration
4. Topology

Service 1
- Priority: Bg
- Weight: 1

Services

WAN
Challenge: Congestion during network updates

Link capacity: 10
Flow size: 6.6
Solution: Congestion-free update plans

Link capacity: 10
Flow size: 6.6
Computing congestion-free update plans

- Leave scratch capacity s on each link
 - Guarantees a plan with at most $\left\lceil \frac{1}{s} \right\rceil - 1$ steps

Find a plan with minimum number of steps using an LP
 - Search for a feasible plan with 1, 2, ..., max steps

Use scratch capacity for background traffic
 - Bound its experienced congestion
Efficiency improvement with SWAN

Throughput (relative to optimal)
Over to Innocent and Sirui