CSE 550: Systems for all

Au 2021

Ratul Mahajan
Transport protocol challenges

Flow control
 • Do not send faster than the receiver’s consumption capacity

Congestion control
 • Do not send faster than the networks delivery capacity
Congestion control challenges

Network capacity is unknown
- Individual links can vary from less than 100 Kbps to more than 100 Gbps

Network capacity varies with time
- E.g., distance from cellular base stations or WiFi access points

Network capacity is shared
- Don’t know how many other users are there and their needs
What if you send too slow?
What if you send too fast?
Congestion Collapse in the 1980s

- Early TCP used fixed size window (e.g., 8 packets)
 - Initially fine for reliability
- But something happened as the network grew
 - Links stayed busy but transfer rates fell by orders of magnitude!
Nature of Congestion

• Routers/switches have internal buffering

![Diagram of network traffic with input and output buffers and fabric in the middle.]}
Nature of Congestion (2)

• Simplified view of per port output queues
 • Typically FIFO (First In First Out), discard when full
Nature of Congestion (3)

Queues help by absorbing bursts when input > output rate

But if input > output rate persistently, queue will overflow
 This is congestion

Congestion is a function of the traffic patterns – can occur even if every link has the same capacity
Effects of Congestion

- Goodput (packets/sec) vs. Offered load (packets/sec)
 - Capacity
 - Desired response
 - Congestion collapse

- Delay (seconds) vs. Offered load (packets/sec)
 - Onset of congestion
Effects of Congestion (2)

As offered load rises, congestion occurs as queues begin to fill:

- Delay and loss rise sharply with load
- Throughput $< \text{load}$ (due to loss)
- Goodput $< \ll \text{throughput}$ (due to spurious retransmissions)

None of the above is good!

Want network performance just before congestion
Congestion control design space: Congestion indicator

Several possible signals, with different pros/cons

<table>
<thead>
<tr>
<th>Signal</th>
<th>Example Protocol</th>
<th>Pros / Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet loss</td>
<td>TCP</td>
<td>Hard to get wrong</td>
</tr>
<tr>
<td></td>
<td>Cubic TCP (Linux)</td>
<td>Hear about congestion late</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other events can cause loss</td>
</tr>
<tr>
<td>Packet delay</td>
<td>BBR (Google)</td>
<td>Hear about congestion early</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Need to infer congestion</td>
</tr>
<tr>
<td>Router indication</td>
<td>ECN, DCTCP</td>
<td>Hear about congestion early</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requires router support</td>
</tr>
</tbody>
</table>
Congestion control design space: Control mechanism

Two main controls, but hybrids also possible

<table>
<thead>
<tr>
<th>Control</th>
<th>Example Protocol</th>
<th>Pros/Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window based</td>
<td>TCP</td>
<td>Self-clocking</td>
</tr>
<tr>
<td></td>
<td>Cubic TCP (Linux)</td>
<td>Can be Jittery</td>
</tr>
<tr>
<td></td>
<td>DCTCP</td>
<td></td>
</tr>
<tr>
<td>Rate based</td>
<td>BBR (Google)</td>
<td>Smoother</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tricky estimation</td>
</tr>
</tbody>
</table>
Over to Diya and Peter