
Experience with 
Processes and 

Monitors in Mesa
Butler W. Lampson

David D. Redell

Presented by Priyal and Tina 



Outline
● Introduction
● Monitors
● Condition Variables 

○ Different ways to notify 

● Processes
● Discussion Questions



Introduction
● Built at Xerox PARC in late 1970s



Introduction
● Built at Xerox PARC in late 1970s
● Problem they are trying to solve: Concurrency between lightweight 

processes (threads today) 
○ Multiple processes running in a time sliced fashion in Pilot 
○ Want to support a preemptive scheduler

https://www.google.com/url?q=https://courses.cs.washington.edu/courses/cse550/21au/papers/CSE550.Pilot.pdf&sa=D&source=editors&ust=1633912947365000&usg=AOvVaw1KBgb8REMKKwV2opOBGco5


● Built at Xerox PARC in late 1970s
● Problem they are trying to solve: Concurrency between lightweight 

processes (threads today)
○ Multiple processes running in a time sliced fashion in Pilot 
○ Want to support a preemptive scheduler

● Both the OS and programs written in Mesa, natural to design language to 
contain concurrency support

Introduction

https://www.google.com/url?q=https://courses.cs.washington.edu/courses/cse550/21au/papers/CSE550.Pilot.pdf&sa=D&source=editors&ust=1633912947373000&usg=AOvVaw28cBFICo5I3Fg5GANbNBr7


● Built at Xerox PARC in late 1970s
● Problem they are trying to solve: Concurrency between lightweight 

processes (threads today)
○ Multiple processes running in a time sliced fashion in Pilot 
○ Want to support a preemptive scheduler

● Both the OS and programs written in Mesa, natural to design language to 
contain concurrency support

● Two approaches
○ Shared Memory 
○ Message passing

Introduction

https://www.google.com/url?q=https://courses.cs.washington.edu/courses/cse550/21au/papers/CSE550.Pilot.pdf&sa=D&source=editors&ust=1633912947386000&usg=AOvVaw0y9fKpZR_zBroQQCiuiv6k


● Built at Xerox PARC in late 1970s
● Problem they are trying to solve: Concurrency between lightweight 

processes (threads today)
○ Multiple processes running in a time sliced fashion in Pilot 
○ Want to support a preemptive scheduler

● Both the OS and programs written in Mesa, natural to design language to 
contain concurrency support

● Two approaches
○ Shared Memory - why?
○ Message passing

Introduction

https://www.google.com/url?q=https://courses.cs.washington.edu/courses/cse550/21au/papers/CSE550.Pilot.pdf&sa=D&source=editors&ust=1633912947400000&usg=AOvVaw2uFxh-TylLMJMZTnCZaA67


● Structure that contains a lock, data, and code
○ Similar to a class in Java

Monitors



● Structure that contains a lock, data, and code
○ Similar to a class in Java

● Synchronize processes

Monitors



● Structure that contains a lock, data, and code
○ Similar to a class in Java

● Synchronize processes
● All of the data is private

Monitors



● Structure that contains a lock, data, and code
○ Similar to a class in Java

● Synchronize processes
● All of the data is private
● Three types of procedures:

○ Entry (monitor, public)
○ Internal (monitor, private)

Monitors



● Structure that contains a lock, data, and code
○ Similar to a class in Java

● Synchronize processes
● All of the data is private
● Three types of procedures:

○ Entry (monitor, public)
○ Internal (monitor, private)
○ External (non-monitor, public)

Monitors



● Queues that keep track of processes waiting for a condition to become 
true 

Condition Variables



● Queues that keep track of processes waiting for a condition to become 
true 

● To enter the queue, processes call wait()

Condition Variables



● Queues that keep track of processes waiting for a condition to become 
true 

● To enter the queue, processes call wait()
● Processes leave the queue when some other process calls notify() on the 

CV

Condition Variables



● Queues that keep track of processes waiting for a condition to become 
true 

● To enter the queue, processes call wait()
● Processes leave the queue when some other process calls notify() on the 

CV
● Each CV is associated with a timeout

Condition Variables



● Queues that keep track of processes waiting for a condition to become 
true 

● To enter the queue, processes call wait()
● Processes leave the queue when some other process calls notify() on the 

CV
● Each CV is associated with a timeout
● Note:

○ Condition variables do not have any mechanism to verify if the condition is true/false. 
That is the responsibility of the programmer. 

Condition Variables



Code Snippet



Code Snippet



Code Snippet



Code Snippet



Code Snippet



Code Snippet



Code Snippet



Code Snippet



Code Snippet - Question



Code Snippet - Answer



● TIMEOUT
○ Do processes that hit TIMEOUT throw an exception?
○

● ABORT 
○ Do processes need to listen to an ABORT?
○

● BROADCAST
○ Can you replace a NOTIFY with a BROADCAST? 

Alternatives to NOTIFY

Calls made to the Conditional Variable:
● wait()
● notify()

● abort()
● broadcast()



● TIMEOUT
○ Condition variables associated with some timeout variable t
○ Does not throw exception

Alternatives to NOTIFY



● TIMEOUT
○ Condition variables associated with some timeout variable t
○ Does not throw exception

● ABORT
○ When process resumes, throws Aborted exception
○ Aborted process does not have to listen

Alternatives to NOTIFY



● TIMEOUT
○ Condition variables associated with some timeout variable t
○ Does not throw exception

● ABORT
○ When process resumes, throws Aborted exception
○ Aborted process does not have to listen

● BROADCAST
○ All processes waiting in a condition variable’s queue wakes up
○ Can always use a BROADCAST where NOTIFY is used

Alternatives to NOTIFY



Bug in Code Snippet



Bug in Code Snippet



● A Mesa process can be thought of as a modern-day thread 

Processes



● A Mesa process can be thought of as a modern-day thread 
● Represented by a 10-byte descriptor called ProcessState and a frame

○ Frame can be thought of as a stack frame, which keeps track of the procedures that a 
given process calls

Processes



● A Mesa process can be thought of as a modern-day thread 
● Represented by a 10-byte descriptor called ProcessState and a frame

○ Frame can be thought of as a stack frame, which keeps track of the procedures that a 
given process calls

● Created using the Process module
○ Fork
○ Join
○ End
○ Detach
○ Abort 
○ Yield

Processes



● At a given time, a process can be in only one of the following queues:
○ Ready Queue
○ Monitor lock Queue
○ Condition Variable Queue
○ Fault Queue

Processes



● Difference between how Hoare and Mesa monitors handle waking up 
after a NOTIFY?

○ What can you assume about the monitor’s state after waking up?
○ How does it change the use of while vs if

● What are the different ways to deadlock in Mesa?
● How can implementing monitors defeat priority queues?
● What is the exception handling mechanism in Mesa? 

○ How does it interact with Monitors?

● What are the correctness/performance benefits of providing concurrency 
models at different layers of the system?

Discussion Questions


