EX
P
Mo

erience wit

1

"0CESSES Nl

N1tors in Mesa

Butler W. Lampson
David D. Redell

Presented by Priyal and Tina

Outline

e Introduction
e Monitors

e Condition Variables
o Different ways to notify

Processes
Discussion Questions

INntroduction

e Built at Xerox PARC in late 1970s

INntroduction

e Problem they are trying to solve: Concurrency between lightweight

processes (threads today)

o Multiple processes running in a time sliced fashion in Pilot
o Want to support a preemptive scheduler

https://www.google.com/url?q=https://courses.cs.washington.edu/courses/cse550/21au/papers/CSE550.Pilot.pdf&sa=D&source=editors&ust=1633912947365000&usg=AOvVaw1KBgb8REMKKwV2opOBGco5

INntroduction

e Both the OS and programs written in Mesa, natural to design language to
contain concurrency support

https://www.google.com/url?q=https://courses.cs.washington.edu/courses/cse550/21au/papers/CSE550.Pilot.pdf&sa=D&source=editors&ust=1633912947373000&usg=AOvVaw28cBFICo5I3Fg5GANbNBr7

INntroduction

e Two approaches
o Shared Memory
o Message passing

https://www.google.com/url?q=https://courses.cs.washington.edu/courses/cse550/21au/papers/CSE550.Pilot.pdf&sa=D&source=editors&ust=1633912947386000&usg=AOvVaw0y9fKpZR_zBroQQCiuiv6k

INntroduction

e Two approaches
o Shared Memory - why?
o Message passing

https://www.google.com/url?q=https://courses.cs.washington.edu/courses/cse550/21au/papers/CSE550.Pilot.pdf&sa=D&source=editors&ust=1633912947400000&usg=AOvVaw2uFxh-TylLMJMZTnCZaA67

Monitors

e Structure that contains a lock, data, and code
o Similar to a classin Java

Monitors

e Synchronize processes

Monitors

e All of the data is private

Monitors

e Three types of procedures:
o Entry (monitor, public)
o Internal (monitor, private)

Monitors

e Three types of procedures:
o Entry (monitor, public)
o Internal (monitor, private)
o External (non-monitor, public)

Condition Variables

e Queues that keep track of processes waiting for a condition to become
true

Condition Variables

e To enter the queue, processes call wait()

Condition Variables

e Processes leave the queue when some other process calls notify() on the
cv

Condition Variables

e FEach CVis associated with a timeout

Condition Variables

e Note;:

o Condition variables do not have any mechanism to verify if the condition is true/false.
That is the responsibility of the programmer.

Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [size: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage > size
DO WAIT moreAvailable ENDLOOP:

p <« <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER]| = BEGIN

<put back chunk of size words & update availableStorage>:
NOTIFY moreAvailable END;

Expand:PUBLIC PROCEDURE [pOld: POINTER, size: INTEGER] RETURNS [pNew: POINTER] = BEGIN
pNew <« Allocate(size];
<copy contents from old block to new block>:
Free[pOld] END:

END.

Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [Si:(’: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP;

p « <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER]| = BEGIN

<put back chunk of size words & update availableStorage>:
NOTIFY moreAvailable END;

Expand:PUBuc PROCEDURE U)Old: POINTER, siz¢: INTEGER] RETURNS [pNew: POINTER| = BEGIN
pNew « Allocatelsizel];
<copy contents from old block to new block>:
Free[pOld)] END:

END.

Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE |[size: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP:

p + <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER] = BEGIN

<put back chunk of size words & update availableStorage>:
NOTIFY moreAvailable END;

Expand:PUBuc PROCEDURE U)Old: POINTER, siz¢: INTEGER] RETURNS [pNew: POINTER| = BEGIN
pNew « Allocatelsizel];
<copy contents from old block to new block>:
Free[pOld)] END:

END.

Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [size: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP;

p < <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER] = BEGIN
<put back chunk of size words & update availableStorage>:
NOTIFY moreAvailable END;

E.rpand:PUBLlC PROCEDURE [pO/d: POINTER, size: INTEGER] RETURNS [pNew: POINTER| = BEGIN
pNew « Allocate|size];
<copy contents from old block to new block>:
Free[pOld] END:

END.

Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [size: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP:

p « <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER] = BEGIN

<put back chunk of size words & update availableStorage>
NOTIFY moreAvailable END:

Expand:PUBLIC PROCEDURE [pOld: POINTER, size: INTEGER] RETURNS [pNew: POINTER] = BEGIN
pNew <« Allocate(size];
<copy contents from old block to new block>:
Free[pOld] END:

END.

Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [size: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP:

p « <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER]| = BEGIN

<put back chunk of size words & update availableStorage>:
NOTIFY moreAvailable END;

Expand:PUBLIC PROCEDURE [pOld: POINTER, size: INTEGER] RETURNS [pNew: POINTER] = BEGIN
pNew <« Allocate[size];
<copy contents from old block to new block>:
Free[pOld] END:

END.

Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [Si:(’: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP;

p « <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER] = BEGIN

<put back chunk of size words & update availableStorage>:
NOTIFY moreAvailable END;

Expand:PUBuc PROCEDURE U)Old: POINTER, siz¢: INTEGER] RETURNS [pNew: POINTER| = BEGIN
pNew « Allocatelsizel];
<copy contents from old block to new block>:
Free[pOld)] END:

END.

Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [size: INTEGER
RETURNS [p: POINTER]| = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP:

p < <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER] = BEGIN
<put back chunk of size words & update availableStorage>:
NOTIFY moreAvailable END;

Expand:PUBLIC PROCEDURE [pOId: POINTER, size: INTEGER] RETURNS [pNew: POINTER] = BEGIN
pNew <« Allocate[size];
<copy contents from old block to new block>;
Free[pOld] END;

END.

Code Snippet - Question

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [size: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP:

p < <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER]| = BEGIN

<put back chunk of size words & update availableStorage>:
NOTIFY moreAvailable END;

Expand:PUBLIC PROCEDURE [pOld: POINTER, size: INTEGER] RETURNS [pNew: POINTER] = BEGIN
pNew <« Allocate[size];
<copy contents from old block to new block>;
Free[pOld] END:

END.

Code Snippet - Answer

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [size: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP;

p « <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER] = BEGIN
<put back chunk of size words & update availableStorage>:
NOTIFY moreAvailable END;

Exp(dePUBLIC. PROCEDURE [])Oldl POINTER, Size: INTEGER] RETURNS [pNew: POINTER]| = BEGIN
pNew « Allocatelsizel];
<copy contents from old block to new block>:
Free[pOld] END:

END.

Alternatives to NOTIFY

e TIMEOUT
o Do processes that hit TIMEOUT throw an exception?

e ABORT

o Do processes need to listen to an ABORT?

e BROADCAST
o Canyou replace a NOTIFY with a BROADCAST?

Calls made to the Conditional Variable:
e wait() e abort()
e notify() e broadcast()

Alternatives to NOTIFY

o TIMEOUT

o Condition variables associated with some timeout variable t
o Does not throw exception

Alternatives to NOTIFY

e ABORT

o When process resumes, throws Aborted exception
o Aborted process does not have to listen

Alternatives to NOTIFY

e BROADCAST

o All processes waiting in a condition variable’s queue wakes up
o Can always use a BROADCAST where NOTIFY is used

Bug In Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [size: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP;

p « <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER] = BEGIN
<put back chunk of size words & update availableStorage>;
NOTIFY moreAvailable END;

Expand:PUBLlC PROCEDURE [])OId: POINTER, Size: INTEGER] RETURNS [pNew: POINTER]| = BEGIN
pNew « Allocate|size];
<copy contents from old block to new block>:
Free[pOld] END:

END.

Bug In Code Snippet

StorageAllocator: MONITOR = BEGIN
availableStorage: INTEGER:
moreAvailable: CONDITION:

Allocate: ENTRY PROCEDURE [size: INTEGER
RETURNS [p: POINTER] = BEGIN
UNTIL availableStorage = size
DO WAIT moreAvailable ENDLOOP;

p « <remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, Size: INTEGER] = BEGIN
<put back chunk of size words & update availableStorage>;
NOTIFY moreAvailable END;

Expand:PUBLlC PROCEDURE [])OId: POINTER, Size: INTEGER] RETURNS [pNew: POINTER]| = BEGIN
pNew « Allocate|size];
<copy contents from old block to new block>:
Free[pOld] END:

END.

Processes

e A Mesa process can be thought of as a modern-day thread

Processes

e Represented by a 10-byte descriptor called ProcessState and a frame

o Frame can be thought of as a stack frame, which keeps track of the procedures that a
given process calls

Processes

e C(reated using the Process module

o Fork
Join
End
Detach
Abort
Yield

O O O O O

Processes

e Atagiventime, a process can be in only one of the following queues:
o Ready Queue
o Monitor lock Queue
o Condition Variable Queue
0 Fault Queue

Discussion Questions

e Difference between how Hoare and Mesa monitors handle waking up
after a NOTIFY?

o What can you assume about the monitor's state after waking up?
o How does it change the use of while vs if

e What are the different ways to deadlock in Mesa?
e How can implementing monitors defeat priority queues?

e What s the exception handling mechanism in Mesa?
o How does it interact with Monitors?

e What are the correctness/performance benefits of providing concurrency
models at different layers of the system?

