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● Built at Xerox PARC in late 1970s
● Problem they are trying to solve: Concurrency between lightweight 

processes (threads today)
○ Multiple processes running in a time sliced fashion in Pilot 
○ Want to support a preemptive scheduler

● Both the OS and programs written in Mesa, natural to design language to 
contain concurrency support

● Two approaches
○ Shared Memory - why?
○ Message passing

Introduction
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● Structure that contains a lock, data, and code
○ Similar to a class in Java

● Synchronize processes
● All of the data is private
● Three types of procedures:

○ Entry (monitor, public)
○ Internal (monitor, private)
○ External (non-monitor, public)

Monitors
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● Queues that keep track of processes waiting for a condition to become 
true 

● To enter the queue, processes call wait()
● Processes leave the queue when some other process calls notify() on the 

CV
● Each CV is associated with a timeout
● Note:

○ Condition variables do not have any mechanism to verify if the condition is true/false. 
That is the responsibility of the programmer. 

Condition Variables
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● TIMEOUT
○ Do processes that hit TIMEOUT throw an exception?
○

● ABORT 
○ Do processes need to listen to an ABORT?
○

● BROADCAST
○ Can you replace a NOTIFY with a BROADCAST? 

Alternatives to NOTIFY

Calls made to the Conditional Variable:
● wait()
● notify()

● abort()
● broadcast()
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● TIMEOUT
○ Condition variables associated with some timeout variable t
○ Does not throw exception

● ABORT
○ When process resumes, throws Aborted exception
○ Aborted process does not have to listen

● BROADCAST
○ All processes waiting in a condition variable’s queue wakes up
○ Can always use a BROADCAST where NOTIFY is used

Alternatives to NOTIFY
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● A Mesa process can be thought of as a modern-day thread 
● Represented by a 10-byte descriptor called ProcessState and a frame

○ Frame can be thought of as a stack frame, which keeps track of the procedures that a 
given process calls

● Created using the Process module
○ Fork
○ Join
○ End
○ Detach
○ Abort 
○ Yield

Processes



● At a given time, a process can be in only one of the following queues:
○ Ready Queue
○ Monitor lock Queue
○ Condition Variable Queue
○ Fault Queue

Processes



● Difference between how Hoare and Mesa monitors handle waking up 
after a NOTIFY?

○ What can you assume about the monitor’s state after waking up?
○ How does it change the use of while vs if

● What are the different ways to deadlock in Mesa?
● How can implementing monitors defeat priority queues?
● What is the exception handling mechanism in Mesa? 

○ How does it interact with Monitors?

● What are the correctness/performance benefits of providing concurrency 
models at different layers of the system?

Discussion Questions


