Model Checking and Systems Correctness

Mike He, Yihong Zhang
Agenda

● More backgrounds on model checking
 ○ Transition systems and temporal logics
 ○ Explicit-state model checking
 ○ Symbolic model checking
 ○ Abstract model checking

● Comparison with other systems verification tools
 ○ Interactive Verification
 ○ Automatic Verification (SMT)
 ○ Static Analysis
 ○ Symbolic Execution / Concolic Execution
Model Checking

- An automated technique for verifying if a finite-state program satisfies the specification.
- Goal: proving $M, s \models P$, where M is a finite state transition system, s is a state in M and P is a temporal logic formula.
- Why and when model checking.
 - Used for finite-state programs.
 - Control-intensive and concurrent systems (e.g., distributed systems).
 - When the specification can be expressed in fragments of temporal logic like CTL, LTL that can be solved efficiently.
 - Completely automatic, no manual proof burden.
Transition Systems

- For a program with state \(d \in D \). We define a transition system \(M \) over \(D \) to be a triple \((S, I, R)\) where
 - \(S = D \) is the set of states,
 - \(I \subseteq S \) is a set of initial states, and
 - \(R \subseteq S \times S \) is a transition relation.

- If \(D \) is finite, then \(M \) is called a finite-state transition system.
Modeling programs as transition systems

- $M = (S, I, R)$ where:
- $S = \{ (PC, p, b) \text{ for } PC \in [0, 2], p, b \in [0, 2^k) \}$
- $I = \{ (0, p, b) \text{ for all } p, b \}$
- $R = \{
 \begin{align*}
 (0, p, b) &\rightarrow (1, 0, b) \text{ for all } p, b; \\
 (1, p, 0) &\rightarrow (2, p, 0) \text{ for all } p; \\
 (1, p, b) &\rightarrow (1, p \oplus \text{lsb}(b), b >> 1) \text{ for all } p, b \text{ s.t. } b \neq 0 \\
 \end{align*}
\}$

0: $p := 0$

1: while $b \neq 0$

 $p := p \oplus \text{lsb}(b)$
 $b := b \gg 1$

endwhile

2: end
Red = initial states
Blue = terminal states
Reachable terminal states = \{(2,0,0), (2,1,0)\}
Temporal Logic

- We are interested in the transition behavior over time.
- Five basic temporal operators:
 - $X p$: p holds at the next point in time.
 - $p U q$: p holds until q holds.
 - $p V q$: p releases q; q holds until p holds (if ever).
 - $F p$: p holds at some future point (= true $U q$).
 - $G p$: p holds globally on the path (= false $V p$).
- These operators describe properties of a path π.
 - A path π is defined as an infinite sequence s_0, s_1, s_2, \ldots such $R(s_i, s_{i+1})$.
Examples

- **F lunch**
 - Lunch will come eventually

- **terminate U serve**
 - Requests are served until the connection terminates (if ever)

- **G (request -> F response)**
 - Each request is always followed by a response

- **F G (not p)**
 - p holds only finitely often

- **G (start -> F heat)**
 - Whenever the start button is pressed, the oven heats eventually
Linear Temporal Logic

- State formula (corresponding to facts that hold in a particular state)
 - \(f ::= \) true | false | p | not f | f1 or f2 | f1 and f2

- Path formula (only makes sense when evaluated along a particular path)
 - \(g ::= f | \) not g | g1 or g2 | g1 and g2 | \(X \) g | \(F \) g | \(G \) g | g1 \(U \) g2 | g1 \(V \) g2

- LTL universally quantifies over paths, describes linear-time properties (i.e., no branches).

- \(M, \pi \vDash f \leftrightarrow \text{“path formula } f \text{ holds along path } \pi \text{ in } M”. \)

- \(M, s \vDash f \leftrightarrow \text{“path formula } f \text{ holds along all path starting at } s \text{ in } M”. \)

- We can extend LTL with quantifications over path.
Computational Tree Logic * (CTL*)

- We extend **state** formulas with two new forms
- **E g** is a state formula, if g is a path formula
 - $M, s \models E g \iff$ there exists a path π starting at s where $M, \pi \models g$.
- **A g** is a state formula, if g is a path formula
 - $M, s \not\models A g \iff$ for all paths π starting at s, $M, \pi \not\models g$.
- **CTL** formulas describe branching-time properties.
 - Path quantifiers can talk about multiple possible futures
 - E.g., $EF \ p$
Computation Tree Logic (CTL)

- CTL is a fragment of CTL* where each temporal operator is preceded by a path quantifier.
- Equivalently, in CTL, if \(p \) and \(q \) are state formulas,
 - \(\text{AX} \ p, \ \text{AF} \ p, \ \text{AG} \ p, \ \text{A} (p \ U \ q), \ \text{A} (p \ V \ q) \) are state formulas, and
 - \(\text{EX} \ p, \ \text{EF} \ p, \ \text{EG} \ p, \ \text{E} (p \ U \ q), \ \text{E} (p \ V \ q) \) are state formulas.
Examples: CTL

- what does $\text{AX } p$ look like?
- what does $\text{EG } p$ look like?
- what does $\text{E } (p \cup q)$ look like?
- what does $\text{A } (p \cup q)$ look like?
Examples

- **EF (start and not ready)**
 - Can get to a state where start holds by ready doesn’t

- **AG (EF restart)**
 - It is always possible (from any state) to enter restart

- **AF (AG p)**
 - No matter what, p eventually always holds on all paths

- **AG (AF crit)**
 - On all paths at all times, can always enter crit later
LTL vs CTL

LTL
- e.g., $FG\, p$

CTL
- e.g., $AG\, (EF\, p)$

CTL*
Discussion

https://tinyurl.com/550mc

1. What kind of system properties people would like to verify?
2. Are they expressible in temporal logic?
Explicit-state Model Checking

- To check whether $M, s \Vdash P$ for all s in initial states I
- Compute $\text{sat}(P)$, the set of all states that satisfy P
 - … by reasoning about the temporal operators
- Check if I is a subset of $\text{sat}(P)$.
- The state explosion problem.
Symbolic Model Checking

- Idea: represent the initial states and the transition relation as predicates.

\[(PC = 0 \land p' = 0 \land b' = b \land PC' = 1)\]
\[\lor (PC = 1 \land b = 0 \land p' = p \land b' = b \land PC' = 2)\]
\[\lor (PC = 1 \land b \neq 0 \land p' = p \oplus \text{lsb}(b) \land b' = b \gg 1 \land PC' = 1)\]
\[\lor (PC = 2 \land p' = p \land b' = b \land PC' = 2).\]

0: \(p := 0 \)

1: \(\text{while } b \neq 0 \)
\[p := p \oplus \text{lsb}(b) \]
\[b := b \gg 1 \]
\text{endwhile}

2: \text{end}
Symbolic Model Checking

- Doing it naively will still instantiate all the states.
 - E.g., $E (p_1 U p_2)$.
- Use Binary Decision Diagram.
Abstractions in Model Checking

- Still too many states for even moderate programs.
- Consider a ~1000 LoC program with a few dozen 32-bit int variables
 - $1000 \times 36 \times 2^{32} \approx 1.5 \times 10^{14}$ states.
- Idea: build an alternative TS that is an approximation of the original TS.
 - The approximate TS should be more conservative.
 - If M' is an conservative approximation of M, then properties hold for M' also hold for M.
 - Therefore, if M' verifies, so will M.
Abstractions in Model Checking

- Define the abstract state to be D'.
- Define h to be the abstraction function from D to D'.
- M' is an abstract model of M if
 - For all d', if exists some d s.t. $d' = h(d)$ and d is some initial state in M, then d' should also be an initial state in M'; and
 - For all d'_1, d'_2, if exists some d_1, d_2, s.t., $d'_1 = h(d_1)$, $d'_2 = h(d_2)$ where (d_1, d_2) is a transition in M, then (d'_1, d'_2) should also be a transition in M'.
- M' is a minimal model of M if changing replace the “then” part with “if and only if”.
 - Any other abstract model of M is necessarily a superset of the minimal model.
Problems with the minimal model

- To check minimal model, one still need to find global concrete witnesses from the transition relation of the original model (i.e., d_1, d_2 where $R(d_1, d_2)$ holds).
- Intuitively, no information is lost in the minimal model, so checking the minimal model is as hard as the checking the original model.

Definition 3.3. \hat{M}_{min} is the transition system over \hat{D} given by

1. $\hat{I}_{\text{min}}(\hat{d})$ iff $\exists d(h(d) = \hat{d} \land I(d))$; and
2. $\hat{R}_{\text{min}}(\hat{d}_1, \hat{d}_2)$ iff $\exists d_1 \exists d_2(h(d_1) = \hat{d}_1 \land h(d_2) = \hat{d}_2 \land R(d_1, d_2))$.
Approximate Models

- Instead, the approximate model loses information and is more practical.
- Existential quantifiers are pushed inside the formula
- Now, only need to find local witnesses for each transition.
Example: Approximate Models

- **Program**
 - 0: $x = x > 0$ and $x < 0$? 1 : 0
 - 1: `print b`

- **Minimal Model**
 - $R'(x', x'2)$ iff exists $x1, x2$ such that
 - $h(x1) = x'1$
 - $h(x2) = x'2$
 - $(x1 > 0$ and $x1 < 0)$ implies $x2 = 1$
 - $(\text{not } ((x1 > 0$ and $x1 < 0)))$ implies $x2 = 0$

- **Approximate Model**
 - $R'(x', x'2)$ iff
 - $(\text{exists } x1: h(x1) = x'1$ and $x1 > 0)$ and
 - $(\text{exists } x1: h(x1) = x'1$ and $x1 < 0)$ and
 - $(\text{exists } x2: h(x2) = x'2$ and $x2 = 1))$ OR
 - ...

Common abstractions described in the paper

- Congruence modulo an integer
- Representation by Logarithm
- Single-Bit and Product Abstractions
- Symbolic abstractions
Predicate abstractions

- Idea: only track predicates we are interested in on program states
- Abstraction function: \(h(s) = (\phi_1(s), \ldots, \phi_n(s)) \)
- Each state in the transition relation maps to a vector of predicate values
- Use Hoare logic to reason the transition of abstract states (i.e., weakest preconditions).
- Often times, the tracked predicate may be too coarse to prove the desired properties
 - Idea: Refine tracked predicates with new, spurious counterexamples, rerun model checking again
 - Counterexample-Guided Abstraction Refinement (CEGAR)
Case study: TLA+ at Amazon Web Services

➔ TLA+ & PlusCal
- TLA+: A high-level specification language
- PlusCal: Imperative language that compiles to TLA+
- Checked with TLC model checker

➔ Motivation
- Complexity of the AWS services become high
- Interaction between different part of the system (e.g, load balancing, consistency, concurrency control, etc.) require modifications on the algorithms themselves
- Verification techniques (unit test, fault-injection testing, etc.) are not sufficient: hard to catch “rare” cases in concurrent programs

➔ Have helped identify bugs in S3, DynamoDB, etc.
- Was able to find a bug that will only be triggered after ~30 steps
Other correctness tools

- Formal Verification (Interactive Verification / Automatic Verification)
- Static Analysis
- Symbolic Execution / Concolic Testing
Interactive Verification

- Use formal logic to reason about programs.
- Requires developers to write machine-checkable proof.
 - Some famous proof checkers (assistants): Coq, Isabelle, Lean, Agda, Arend, etc.
- Mechanically checked by theorem provers.
- High confidence!
Case study: seL4 [SOSP ‘09]

- First formally verified Operating System Kernel
- Prototyped in Haskell and C; Formalized and proved in Isabelle/HOL
- 10k lines of code (in Haskell / C / assembly), ~160k lines of mechanized proof, takes 25–30 person years
- Compiled using CompCert, a formally verified C compiler
Case study: Verdi [PLDI ‘15]

- Formally verified distributed KV store based on Raft.
- Formalize network as operational semantics and build semantics for fault models (e.g., drop, failure).
- Proved in Coq and extracted in OCaml.
- 1k lines of implementation, 5k lines for proving serializability, 30k lines for proving state machine safety.
- Once verified, 10% performance overhead.
Engineering Overhead - Proof Engineering

- seL4
 - Implementation: 10k lines of code (in Haskell / C / assembly)
 - Proves: ~160k lines of mechanized proof, takes 25–30 person years

- Verdi
 - Implementation: 1k lines of Coq
 - Proves: 5k lines for proving serializability, 30k lines for proving state machine safety in Coq

Implementation <<< Proof engineering
Survey of Proof Engineering: QED at Large by Talia Ringer et al.
Automated Verification

- Use automated decision procedure like SMT solvers to prove the correctness of programs.
- Needs handling of infinitary paths.
 - Finitize programs
 - User-annotated loop invariant
- “Push-button” verification.
Case study: Hyperkernel [SOSP ‘17]

- Verified OS kernels using the Z3 SMT solver.
- Verification is done at the LLVM level to avoid complicated bugs.
- “Verification [of the implementation] finishes within about 15 minutes on an 8-core machine.”
- Kernel Implementation: ~7600 LoC in C and Assembly
- Specifications: ~1000 LoC in Python
- Verifier: ~2800 LoC in C++ and Python
Case study: Dafny & F🌟 (F-star)

- Dafny and F* are languages for **auto-active verification**
 - Auto-active = Automatic + Interactive
- Dafny: Imperative, Java-like; Hoare triple inference
 - Weakest precondition
 - Need to manually provide loop invariants
- SMT solving could be very slow in practice
- Dafny is used in Amazon AWS for verifying security-critical libraries (e.g. encryption services)
- F*: Functional, Refinement Type; the aim is similar
Static Analysis

- Directly done on source code / bytecode
- Examples: Abstract Interpretation (AI), Extended Static Checking (ESC)
- Pros: mostly automated
- Cons: limited capabilities; more false positives (AI overestimates errors like abstract model checking)
Case study: INFER (Facebook, aka Meta)

- Infer: a static analysis tool for C#, Java, Obj-C to catch potential bugs (for memory safety)
- Can check errors like dereferencing null pointers, resource leak, deadlock, etc
- Uses Separation Logic, which analyzes programs with pointers (references).
- Fairly efficient: seconds to minutes
- Used for lots of industrial applications
 - Integrated in CI and code review pipeline of Spotify, Facebook, etc.
- See more at Volume 6 of Software Foundations
Symbolic Execution / Concolic Testing

- Symbolic Execution: instead of running the program with an actual input, treat inputs as symbolic values and encode the state of the program at a specific point into machine-checkable witnesses (e.g. SMT formulae)
- Concolic Testing: Concolic = Concrete + Symbolic
 - Keep a record of symbolic path conditions while running concretely
 - To improve test coverage, it will generate new concrete inputs to test the program by, for instance, negating the expression on a condition check in an If statement.
Case study: Klee

- **a Symbolic Execution Engine** (https://klee.github.io/)
- Runs on LLVM
- Supports Concolic testing
- Influential in both academia and industry
 - KleeNet: detect bugs in wireless sensors
 - ConcFuzzer at Baidu X-Lab (KLEE Workshop, 2018)
 - Embedded Software Testing at Fujitsu (KLEE Workshop, 2018)
Discussion

https://tinyurl.com/550mc

Questions:

1. In which scenario(s) does the following approaches work better
 a. Model Checking
 b. Interactive theorem proving
 c. Static Analysis (INFER, extended static checking)
 d. Automated / Auto-active verification (Dafny, F🌟)
 e. Symbolic Execution / Concolic Testing

2. What are the challenges blocking industrial companies from adopting these correctness tools

3. Will you use any (or none) of them if you are a founder of a tech startup and why?