UNIX Time
Sharing
System

Original paper by Dennis M. Ritchie
and Ken Thompson

https://dl.acm.org/doi/10.1145/361011.361061

Paper outline

Introduction

Hardware and Software Environment
The File System

Implementation of the File System
Processes and Images

The Shell

Traps

Perspective

Statistics

O O Nk WN =

1. Introduction

They've been iterating on Unix
Unix is relatively cheap
The system is self-supporting

The system is used for both computer systems research and document
preparation

¢. Hardware and Software Environment

e Supports many devices (all now defunct)
e OS occupies a third of the core mem of their system
e WritteninC

o easy to understand, modify, and maintain

UNIX System Structure

User Mode

Kernel Mode

Hardware

Kernel

Applications (the users)

shells and commands
compilers and interpreters
system libraries

Standard Libs

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block I/O page replacement
character |/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Credit slide from UC Berkeley EECS 262a: Advanced Topics in Computer Systems

3. The File System

e Ordinary files

e Directories
o “/"in/alpha/beta

o linking
Special files (/dev)
Mounting
File access control through “protection bits”

/0

o filep = open(name, flag) (flag: read/write/update)
o location = seek(filep, base, offset)

4. Implementation of the File System

e |-nodes (good to be aware of what info these store!)
o Owner

Protection bits

Address

Size

Last modification

of links

Is this a directory?

Is this a special file?

o large/small?

e Implementation is mostly straightforward
e User sees |/O as synchronous and unbuffered, but it isn't

O 0O O O O O o©°

3. Processes and Images

Image - “the current state of a pseudo computer”
Process - “the execution of an image”
Program layout (text, data, stack)

Process primitives
o processid = fork(label)
filep = pipe()
execute(file, arg1, arg2, ..., argn)
processid = wait()
exit(status)

o O O O

b. The Shell

Interesting metaphor

command arg1 arg2 ... argn

No concept of a system PATH, but /bin/ is looked up

Shell syntax, multitasking with background commands, scripting
Implementation

The init program

Using other programs as the Shell

/. Traps

e (error handling control flow)
e Defaultis to dump the process image to a file named “core” in the current
directory, other behaviors can be specified

0. Perspective

1. Designed for programmers by programmers
2. Hardware constraints led to “elegant” designs
3. The system'’s designers were forced to use the system

0. Statistics

9.1 Overall 9.3 Command CPU Usage (cut off at 1%)
: 15.7% C compiler 1.7% Fortran compiler
72 user ’pOPUIa.Uon 15.29% users’ programs 1.6% remove file
14 maximum simultaneous users 11.7% editor 1.6% tape archive
300 directories 5.8% Shell (used as a com- 1.6% file system consistency
4400 files mand, including com- check
4000 mand times) 1.4%, library maintainer
3 512-byte secondary storage blocks used 5.3% chess 1.3% concatenate/print files
3.3% list directory 1.3% paginate and print file
.2 Per da 24-hour day, 7-dayv week basis 3.1% document formatter 1.1% print disk usage
9 ,y (i ¥ 55 y) 1.6% backup dumper 1.0% copy file
There is a “background” process that runs at the 1.8% assembler

lowest possible priority; it is used to soak up any idle

cPU time. It has been used to produce a million-digit 9.4 Command Accesses (cut off at 1%)

approximation to the constant e — 2, and is now 153% editor 1.6% debugger

generating composi[e pseudoprimes (base 2). 9.6% list directory 1.6% Shell (used as a command)
6.3% remove file 1.5% print disk availability

1800 commands 6.3% C compiler 1.49, list processes executing

. 6.0% concatenate/print file 1.49%, assembler

4.3 CPU hours (aside from background) 6.0% users’ programs 1.4%, print arguments

70 connect hours 3.3% list people logged on 1.2% copy file

30 different users system 1.1% paginate and print file

75 logins 3.2% rename/move file 1.19%, print current date/time
3.1% file status 1.19, file system consistency
1.8% library maintainer check

1.8% document formatter ~ 1.0% tape archive
1.6% execute another com-
mand conditionally

There is about one crash every other day

Online discussion summary

o Q1:"it's basically unchanged, but..."
o (what do each of these require from the OS? If they don’t require anything right now, how could
their presence affect the design of the OS?)
m advances in memory
specialized hardware like FPGAs and TPUs
graphical user interfaces/OSs
TCP/IP, networking, inter-process communication
journaling/fault-tolerant file systems
differences in 1/0 behavior
additional file access concepts (groups)
soft links
containers
system-like applications (browsers)

Group Discussion {hit.ly/330-unix-discussion)

e What was the goal of this paper?

e Are you convinced that this is a good system?
o Why or why not?
e What mistakes or flaws of the system that the authors

make?

o How would you improve the Unix system?

