
UNIX Time
Sharing
System

Original paper by Dennis M. Ritchie
and Ken Thompson

Discussion led by Edward and Firn

https://dl.acm.org/doi/10.1145/361011.361061

Paper outline
1. Introduction
2. Hardware and Software Environment
3. The File System
4. Implementation of the File System
5. Processes and Images
6. The Shell
7. Traps
8. Perspective
9. Statistics

1. Introduction
● They’ve been iterating on Unix
● Unix is relatively cheap
● The system is self-supporting
● The system is used for both computer systems research and document

preparation

2. Hardware and Software Environment
● Supports many devices (all now defunct)
● OS occupies a third of the core mem of their system
● Written in C

○ easy to understand, modify, and maintain

Credit slide from UC Berkeley EECS 262a: Advanced Topics in Computer Systems

3. The File System
● Ordinary files
● Directories

○ “/” in /alpha/beta
○ linking

● Special files (/dev)
● Mounting
● File access control through “protection bits”
● I/O

○ filep = open(name, flag) (flag: read/write/update)
○ location = seek(filep, base, offset)

4. Implementation of the File System
● I-nodes (good to be aware of what info these store!)

○ Owner
○ Protection bits
○ Address
○ Size
○ Last modification
○ # of links
○ Is this a directory?
○ Is this a special file?
○ large/small?

● Implementation is mostly straightforward
● User sees I/O as synchronous and unbuffered, but it isn’t

5. Processes and Images
● Image – “the current state of a pseudo computer”
● Process – “the execution of an image”
● Program layout (text, data, stack)
● Process primitives

○ processid = fork(label)
○ filep = pipe()
○ execute(file, arg1, arg2, …, argn)
○ processid = wait()
○ exit(status)

6. The Shell
● Interesting metaphor
● command arg1 arg2 … argn
● No concept of a system PATH, but /bin/ is looked up
● Shell syntax, multitasking with background commands, scripting
● Implementation
● The init program
● Using other programs as the Shell

7. Traps
● (error handling control flow)
● Default is to dump the process image to a file named “core” in the current

directory, other behaviors can be specified

8. Perspective
1. Designed for programmers by programmers
2. Hardware constraints led to “elegant” designs
3. The system’s designers were forced to use the system

9. Statistics

Online discussion summary
○ Q1: "it's basically unchanged, but..."
○ (what do each of these require from the OS? If they don’t require anything right now, how could

their presence affect the design of the OS?)
■ advances in memory
■ specialized hardware like FPGAs and TPUs
■ graphical user interfaces/OSs
■ TCP/IP, networking, inter-process communication
■ journaling/fault-tolerant file systems
■ differences in I/O behavior
■ additional file access concepts (groups)
■ soft links
■ containers
■ system-like applications (browsers)

Group Discussion (bit.ly/550-unix-discussion)
● What was the goal of this paper?

● Are you convinced that this is a good system?

○ Why or why not?

● What mistakes or flaws of the system that the authors

make?

○ How would you improve the Unix system?

