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MapReduce

● Interface inspired by functional language (e.g. Lisp)
● Map

○ processes a key/value pair to generate a set of intermediate key/value pairs
● Reduce

○ merges all intermediate values associated with the same intermediate key
● Library handles the rest

○ parallelize computation
○ distribute data
○ handle failures
○ Balance load



Example: Word Count

Input
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car car river

dear bear car
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Mapping Grouping ResultReducing
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(river, 2)
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MapReduce 
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Handling Failures

● Master pings workers regularly, no response → failure
● If a mapper fails

○ All map tasks (completed or in progress) are rescheduled
○ Output of completed map tasks are written to local disk, access is lost if 

mapper fails
● If a reducer fails

○ Only in progress reduce tasks are rescheduled
○ Output of completed reduce tasks are written to global file system (has 

replication), access is not lost if reducer fails



What MapReduce is Good for

● Operations that access data sequentially
● Offline batch jobs
● Examples

○ Distributed Grep
○ Count of URL Access Frequency
○ Reverse Web-Link Graph
○ Inverted Index



What MapReduce is NOT Good for

● Operations that requires random data access
● Interactive, real-time applications
● Examples

○ Graphs (e.g. social network)
○ Monitoring consoles (e.g. Bloomberg)



Parallel Databases

● Gamma
○ horizontally partitioned relations →  parallel scanning
○ Hashing-based parallel join/aggregate operations
○ Dataflow scheduling

● C-Store
○ Read-optimized database stored in column-oriented projections
○ Optimized for ad-hoc reads

● Both system evaluated on single multi-processor machines
○ How well do they tolerate node failure, network failure/congestion in data centers?



MapReduce: A Step Backwards?

Critique of MapReduce from a DBMS perspective (DeWitt and Stonebraker):

● Doesn’t use schemas, no separation of the schema from the application 
program

● Poor implementation - Lack of indices, skew
● Not a very novel concept
● Lack of modern features of a DBMS like views
● Incompatible with DBMS tools eg database design tools



Discussion

- What are the most powerful aspects of the MapReduce framework that have 
made it so popular today? What is the biggest disadvantage of the 
MapReduce model?

- Are there any optimizations you can make to reduce resources (energy, 
memory, compute, communication etc) used by MapReduce. Does your 
proposal introduce another complexity?

- What parts of the DeWitt and Stonebreaker’s response critiquing MapReduce 
do you agree/disagree with?

- Do you see MapReduce being replaced by Parallel Databases in the future, 
or are they here to stay?

- Discussion doc: https://tinyurl.com/cz8pbw5e 

https://tinyurl.com/cz8pbw5e


● Can deal with Heterogeneous 
systems well

● Semi-structured data
● Easy to deploy and set up
● Free, open source projects
● Great for complex analysis
● Useful for ETL tasks

● Great for pipelining
● Scheduling
● Parsing more efficient
● Compression
● Higher level language

MapReduce Parallel DatabaseVS



Parallel Databases and MR - can they coexist?

Parallel DBMSs excel at efficient querying of large data sets 

MRstyle systems excel at complex analytics and ETL tasks. 

The two technologies can be complementary



Higher Level Interfaces built on MR

Pig: (by Yahoo!)

● Pig Latin: Find a balance between low level procedural programming of MR 
and higher level programming of SQL - 

● For experienced programmers - perform ad-hoc analysis of extremely large 
data sets

Hive: (by Facebook)

● HiveQL language:  SQL-like declarative language on top of Hadoop
● Tables, partitions, buckets, some primitive column types



Resilient Distributed Datasets
A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Zaharia et al, UC Berkeley



Resilient Distributed Datasets (RDDs)

Main applications:

● Iterative Algorithms
● Interactive Data Mining

Leverage distributed memory effectively, efficient fault tolerance.

MapReduce:

Has to write to external storage system e.g distributed file system

Other specific frameworks eg Pregel, HaLoop - only work for specific computation 
patterns



RDD Abstraction

RDD - 

● Read only/Immutable, spread across cluster
● Can control persistence and partitioning
● Caching dataset in memory
● Not materialized all the time, coarse grained operations

Two types of operations:

● Transformations - deterministic operations that define a new RDD, lazy evaluation
● Actions - return a value to the program or write data to external storage





Fault Tolerance - Lineage

 Console Log Mining



RDDs vs DSM

● Works well for 
applications which batch 
transform data

● Not so great for more 
fine grained 
applications.

● More memory intensive



Spark 

Programming interface for RDDs based on Scala



● Supports general task graphs
● Pipelines functions where 

possible 
● Cache-aware data reuse & 

locality 
● Partitioning-aware to avoid 

shuffles



Evaluation
Speed Up: Spark outperforms 
Hadoop by up to 20× in iterative 
machine learning and graph 
applications

Fault Recovery: Iteration times for 
k-means in presence of a failure



 User Applications Built with Spark

● In-Memory Analytics
● Traffic Modeling
● Twitter Spam Classification

Highly expressive - can do operations of different frameworks:

MapReduce, SQL, Pregel etc.


