
MapReduce
Simplified Data Processing on Large Clusters

Presented by: Wentao Yuan, Prashant Rangarajan

MapReduce

● Interface inspired by functional language (e.g. Lisp)
● Map

○ processes a key/value pair to generate a set of intermediate key/value pairs
● Reduce

○ merges all intermediate values associated with the same intermediate key
● Library handles the rest

○ parallelize computation
○ distribute data
○ handle failures
○ Balance load

Example: Word Count

Input

dear bear river

car car river

dear bear car

dear bear river

car car river

dear bear river

Splitting

(dear, 1)
(bear, 1)
(river, 1)

(car, 1)
(car, 1)

(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

(bear, 2)
(car, 3)

(deer, 2)
(river, 2)

Mapping Grouping ResultReducing

(bear, [1, 1])

(car, [1, 1, 1])

(dear, [1, 1])

(river, [1, 1])

(bear, 2)

(car, 3)

(dear, 2)

(river, 2)

Example: Word Count

Input

dear bear river

car car river

dear bear car

dear bear river

car car river

dear bear river

Splitting

(dear, 1)
(bear, 1)
(river, 1)

(car, 1)
(car, 1)

(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

Mapping Grouping ResultReducing

(bear, 2)
(car, 3)

(deer, 2)
(river, 2)

(bear, [1, 1])

(car, [1, 1, 1])

(dear, [1, 1])

(river, [1, 1])

(bear, 2)

(car, 3)

(dear, 2)

(river, 2)

Example: Word Count

Input

dear bear river

car car river

dear bear car

dear bear river

car car river

dear bear river

Splitting

(dear, 1)
(bear, 1)
(river, 1)

(car, 1)
(car, 1)

(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

Mapping Grouping ResultReducing

(bear, 2)
(car, 3)

(deer, 2)
(river, 2)

(bear, [1, 1])

(car, [1, 1, 1])

(dear, [1, 1])

(river, [1, 1])

(bear, 2)

(car, 3)

(dear, 2)

(river, 2)

Example: Word Count

Input

dear bear river

car car river

dear bear car

dear bear river

car car river

dear bear river

Splitting

(dear, 1)
(bear, 1)
(river, 1)

(car, 1)
(car, 1)

(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

Mapping Grouping ResultReducing

(bear, 2)
(car, 3)

(deer, 2)
(river, 2)

(bear, [1, 1])

(car, [1, 1, 1])

(dear, [1, 1])

(river, [1, 1])

(bear, 2)

(car, 3)

(dear, 2)

(river, 2)

Example: Word Count

Input

dear bear river

car car river

dear bear car

dear bear river

car car river

dear bear river

Splitting

(dear, 1)
(bear, 1)
(river, 1)

(car, 1)
(car, 1)

(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

Mapping Grouping ResultReducing

(bear, 2)
(car, 3)

(deer, 2)
(river, 2)

(bear, [1, 1])

(car, [1, 1, 1])

(dear, [1, 1])

(river, [1, 1])

(bear, 2)

(car, 3)

(dear, 2)

(river, 2)

Example: Word Count

Input

dear bear river

car car river

dear bear car

dear bear river

car car river

dear bear river

Splitting

(dear, 1)
(bear, 1)
(river, 1)

(car, 1)
(car, 1)

(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

(bear, [1, 1])

(car, [1, 1, 1])

(dear, [1, 1])

(river, [1, 1])

(bear, 2)

(car, 3)

(dear, 2)

(river, 2)

(bear, 2)
(car, 3)

(deer, 2)
(river, 2)

Mapping Grouping ResultReducing

Example: Word Count

Input

dear bear river

car car river

dear bear car

dear bear river

car car river

dear bear river

Splitting Grouping ResultReducing

(dear, 1)
(bear, 1)
(river, 1)

(car, 1)
(car, 1)

(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

Mapping

Executed in parallel without user’s knowledge

(bear, 2)
(car, 3)

(deer, 2)
(river, 2)

(bear, [1, 1])

(car, [1, 1, 1])

(dear, [1, 1])

(river, [1, 1])

(bear, 2)

(car, 3)

(dear, 2)

(river, 2)

Example: Word Count

Input

dear bear river

car car river

dear bear car

dear bear river

car car river

dear bear river

Splitting

(dear, 1)
(bear, 1)
(river, 1)

(car, 1)
(car, 1)

(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

Mapping Grouping ResultReducing

(bear, 2)
(car, 3)

(deer, 2)
(river, 2)

(bear, [1, 1])

(car, [1, 1, 1])

(dear, [1, 1])

(river, [1, 1])

(bear, 2)

(car, 3)

(dear, 2)

(river, 2)

(dear, 1)
(bear, 1)
(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

Mapper 0
Memory

Mapper 2
Memory

(car, 1)
(car, 1)

(river, 1)

Mapper 1
Memory

Reducer 0

Reducer 1

MapReduce
Master

(dear, 1)
(bear, 1)
(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

Mapper 0
Memory

(dear, 1)
(bear, 1)

(river, 1)

Disk

Mapper 2
Memory

(car, 1)
(car, 1)

(river, 1)

Mapper 1
Memory

Partition
Reducer 0

Reducer 1

MapReduce
Master

(dear, 1)
(bear, 1)
(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

(dear, 1)

(bear, 1)

Mapper 0
Memory

(dear, 1)
(bear, 1)

(river, 1)

Disk

Mapper 2
Memory

(car, 1)
(car, 1)

(river, 1)

Mapper 1
Memory

Partition
Reducer 0

(river, 1)

Reducer 1

MapReduce
Master

(dear, 1)
(bear, 1)
(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

(dear, 1)

(bear, 1)

Mapper 0
Memory

(dear, 1)
(bear, 1)

(river, 1)

Disk

Mapper 2
Memory

(dear, 1)
(bear, 1)

(car, 1)

Disk

(car, 1)
(car, 1)

(river, 1)

Mapper 1
Memory

(car, 1)
(car, 1)

(river, 1)

Disk

Partition

Partition

Partition

Reducer 0

(river, 1)

Reducer 1

MapReduce
Master

(dear, 1)
(bear, 1)
(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

(dear, 1)

(bear, 1)

(dear, 1)

(bear, 1)

Mapper 0
Memory

(dear, 1)
(bear, 1)

(river, 1)

Disk

Mapper 2
Memory

(dear, 1)
(bear, 1)

(car, 1)

Disk

(car, 1)
(car, 1)

(river, 1)

Mapper 1
Memory

(car, 1)
(car, 1)

(river, 1)

Disk

Partition

Partition

Partition

Reducer 0

(river, 1)

(car, 1)

(car, 1)

(river, 1)

(car, 1)

Reducer 1

MapReduce
Master

(dear, 1)
(bear, 1)
(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

(dear, 1)

(bear, 1)

(dear, 1)

(bear, 1)

Mapper 0
Memory

(dear, 1)
(bear, 1)

(river, 1)

Disk

Mapper 2
Memory

(dear, 1)
(bear, 1)

(car, 1)

Disk

(car, 1)
(car, 1)

(river, 1)

Mapper 1
Memory

(car, 1)
(car, 1)

(river, 1)

Disk

Partition

Partition

Partition

Reducer 0

(bear, 1)

(bear, 1)

(dear, 1)

(dear, 1)

Sort

(river, 1)

(car, 1)

(car, 1)

(river, 1)

(car, 1)

Reducer 1

(car, 1)

(car, 1)

(car, 1)

(river, 1)

(river, 1)

Sort

MapReduce
Master

(dear, 1)
(bear, 1)
(river, 1)

(dear, 1)
(car, 1)

(bear, 1)

(dear, 1)

(bear, 1)

(dear, 1)

(bear, 1)

Mapper 0
Memory

(dear, 1)
(bear, 1)

(river, 1)

Disk

Mapper 2
Memory

(dear, 1)
(bear, 1)

(car, 1)

Disk

(car, 1)
(car, 1)

(river, 1)

Mapper 1
Memory

(car, 1)
(car, 1)

(river, 1)

Disk

Partition

Partition

Partition

Reducer 0

(bear, 1)

(bear, 1)

(dear, 1)

(dear, 1)

Sort (bear, 2)

(dear, 2)

Reduce

(river, 1)

(car, 1)

(car, 1)

(river, 1)

(car, 1)

Reducer 1

(car, 1)

(car, 1)

(car, 1)

(river, 1)

(river, 1)

Sort (car, 3)

(river, 2)

Reduce

MapReduce
Master

Handling Failures

● Master pings workers regularly, no response → failure
● If a mapper fails

○ All map tasks (completed or in progress) are rescheduled
○ Output of completed map tasks are written to local disk, access is lost if

mapper fails
● If a reducer fails

○ Only in progress reduce tasks are rescheduled
○ Output of completed reduce tasks are written to global file system (has

replication), access is not lost if reducer fails

What MapReduce is Good for

● Operations that access data sequentially
● Offline batch jobs
● Examples

○ Distributed Grep
○ Count of URL Access Frequency
○ Reverse Web-Link Graph
○ Inverted Index

What MapReduce is NOT Good for

● Operations that requires random data access
● Interactive, real-time applications
● Examples

○ Graphs (e.g. social network)
○ Monitoring consoles (e.g. Bloomberg)

Parallel Databases

● Gamma
○ horizontally partitioned relations → parallel scanning
○ Hashing-based parallel join/aggregate operations
○ Dataflow scheduling

● C-Store
○ Read-optimized database stored in column-oriented projections
○ Optimized for ad-hoc reads

● Both system evaluated on single multi-processor machines
○ How well do they tolerate node failure, network failure/congestion in data centers?

MapReduce: A Step Backwards?

Critique of MapReduce from a DBMS perspective (DeWitt and Stonebraker):

● Doesn’t use schemas, no separation of the schema from the application
program

● Poor implementation - Lack of indices, skew
● Not a very novel concept
● Lack of modern features of a DBMS like views
● Incompatible with DBMS tools eg database design tools

Discussion

- What are the most powerful aspects of the MapReduce framework that have
made it so popular today? What is the biggest disadvantage of the
MapReduce model?

- Are there any optimizations you can make to reduce resources (energy,
memory, compute, communication etc) used by MapReduce. Does your
proposal introduce another complexity?

- What parts of the DeWitt and Stonebreaker’s response critiquing MapReduce
do you agree/disagree with?

- Do you see MapReduce being replaced by Parallel Databases in the future,
or are they here to stay?

- Discussion doc: https://tinyurl.com/cz8pbw5e

https://tinyurl.com/cz8pbw5e

● Can deal with Heterogeneous
systems well

● Semi-structured data
● Easy to deploy and set up
● Free, open source projects
● Great for complex analysis
● Useful for ETL tasks

● Great for pipelining
● Scheduling
● Parsing more efficient
● Compression
● Higher level language

MapReduce Parallel DatabaseVS

Parallel Databases and MR - can they coexist?

Parallel DBMSs excel at efficient querying of large data sets

MRstyle systems excel at complex analytics and ETL tasks.

The two technologies can be complementary

Higher Level Interfaces built on MR

Pig: (by Yahoo!)

● Pig Latin: Find a balance between low level procedural programming of MR
and higher level programming of SQL -

● For experienced programmers - perform ad-hoc analysis of extremely large
data sets

Hive: (by Facebook)

● HiveQL language: SQL-like declarative language on top of Hadoop
● Tables, partitions, buckets, some primitive column types

Resilient Distributed Datasets
A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Zaharia et al, UC Berkeley

Resilient Distributed Datasets (RDDs)

Main applications:

● Iterative Algorithms
● Interactive Data Mining

Leverage distributed memory effectively, efficient fault tolerance.

MapReduce:

Has to write to external storage system e.g distributed file system

Other specific frameworks eg Pregel, HaLoop - only work for specific computation
patterns

RDD Abstraction

RDD -

● Read only/Immutable, spread across cluster
● Can control persistence and partitioning
● Caching dataset in memory
● Not materialized all the time, coarse grained operations

Two types of operations:

● Transformations - deterministic operations that define a new RDD, lazy evaluation
● Actions - return a value to the program or write data to external storage

Fault Tolerance - Lineage

 Console Log Mining

RDDs vs DSM

● Works well for
applications which batch
transform data

● Not so great for more
fine grained
applications.

● More memory intensive

Spark

Programming interface for RDDs based on Scala

● Supports general task graphs
● Pipelines functions where

possible
● Cache-aware data reuse &

locality
● Partitioning-aware to avoid

shuffles

Evaluation
Speed Up: Spark outperforms
Hadoop by up to 20× in iterative
machine learning and graph
applications

Fault Recovery: Iteration times for
k-means in presence of a failure

 User Applications Built with Spark

● In-Memory Analytics
● Traffic Modeling
● Twitter Spam Classification

Highly expressive - can do operations of different frameworks:

MapReduce, SQL, Pregel etc.

