CSE 550 Autumn 2021
Large Scale Storage Systems

Presentor: Zihao Ye, Weixin Deng

Centralized vs Decentralized

Distributed Storage System

)
)
—
g0 g 8
-~ = W
(&) C Q
= N
m
z 2
2 2 o =
> 2 =)
Q s
N *v = —
& m

Distributed Hash Table

P2P(Peer-to-Peer) Lookup service

Interface

Data Key Distributed
Network
o put(key, value) IR rireon —[BFCD3454 -
o get(key)
qun?:i?on —> 52ED879E
Example:
e BitTorrent fasn | —»[46042841

e CDN
e DNS

Image source: wiki

Solution?

e Gnutella (Flooding) |
o Broadcasting request to neighbors. gery: "Baby Go Home.mp3"
Y-

© 2002 HowStutfWorks

teel 6-7 levels
depending on "time to live"

Incurs large amount of Internet v - e - |
traffic. g g L8 AT -

"f've got it!"

8,000 - 10,000 computers

Chord: A Scalable P2P protocol

e Efficient & scalable
e Fault tolerant
e Easy to understand and extend

Many concurrent work on this topic...

> In 2001, four systems—CAN,[6] Chord,m Pastry, and Tapestry—ignited DHTs as a popular
research topic. A project called the Infrastructure for Resilient Internet Systems (Iris) was funded by a
$12 million grant from the United States National Science Foundation in 2002.81 Researchers included
Sylvia Ratnasamy, lon Stoica, Hari Balakrishnan and Scott Shenker.

https://en.wikipedia.org/wiki/Content_addressable_network
https://en.wikipedia.org/wiki/Distributed_hash_table#cite_note-Ratnasamy01-6
https://en.wikipedia.org/wiki/Chord_(peer-to-peer)
https://en.wikipedia.org/wiki/Distributed_hash_table#cite_note-7
https://en.wikipedia.org/wiki/Pastry_(DHT)
https://en.wikipedia.org/wiki/Tapestry_(DHT)
https://en.wikipedia.org/wiki/National_Science_Foundation
https://en.wikipedia.org/wiki/Distributed_hash_table#cite_note-8
https://en.wikipedia.org/wiki/Sylvia_Ratnasamy
https://en.wikipedia.org/wiki/Ion_Stoica
https://en.wikipedia.org/wiki/Hari_Balakrishnan
https://en.wikipedia.org/wiki/Scott_Shenker

N1

Consistent Hashing

Identifier circle K10
K54 7

Modulo 2™ (m-bit identifier) NiE
id(key) = hash(key)

id(node) = hash(ip(node)) N45
successor(k) (first clockwise

node) -

N14

K30

Load Balance of Consistent Hashing

e Variations are high
e Introduce virtual nodes for a more uniform hashing result

500 T T 0.025
1st and 99th percentiles ~o—

450 |

400 B 0.02
® 350 -
°
o
= 300 8 0.015
g 1
"
g 250 &
k3
R 200 1 0.01
£
3
Z 150

100 | 1 0.005

50 | 1

5 l 5 i : W‘W’M R Sy i R i
0 20 40 60 80 100 0 50 100 150 200 250 300 350 400 450 500
Total number of keys (x 10,000) Number of keys per node

(a) (b)

Fig. 8. (a) The mean and 1st and 99th percentiles of the number of keys stored per node in a 104 node network. (b) The probability density function (PDF) of the
number of keys per node. The total number of keys is 5 x 10°.

Finger Table

e n.finger[i] = successor(n+2"1)

N51

N48

N42 s

N32

(a)

Fig. 4. (a) The finger table entries for node 8. (b) The path a query for key 54 starting at node 8, using the algorithm in Figure 5.

Finger table

N8 + 1

N14

N8 + 2

N14

N8 + 4

N14

N8 + 8

N21

N8 +16

N32

N42

N8 +32

N1

lookup(54)
‘N8

N14

N21

N32

(b)

Routing w/ Finger Table

// ask node n to find the successor of id
n.find_successor (id)

N1

if (¢d € (n, successor]) ! Finger table lookup(54)
return successor; 1[N8+1 |N14 N8
else N8 +2 |N14 N56,
n’ = closest_preceding_node(id); S i
return n’.find_successor(id); LLALNLES N51
: 1 N8 +16|N32 N14
N8 +32|N42
// search the local table for the highest predecessor of id — N48
n.closest_preceding_node(id)
for i = m downto 1
if (finger[i] € (n,id)) N21
return finger|[i];
return n;
Fig. 5. Scalable key lookup using the finger table. N32

(a) (b)

Fig. 4. (a) The finger table entries for node 8. (b) The path a query for key 54 starting at node 8, using the algorithm in Figure 5.

Path Length of Chord Routing Protocol

e Path length is linear to log(N) (about 2 log(N))

Path length

12 T 0.25
1st and 99th percentiles +o—

10 |

02|
8l

0.15 |
6 E a

a

0.1 |
4+ i

0.05
2+ 4
0 | . | . 0 . | . . .

1 10 100 1000 10000 100000 0 2 4 6 8 10 12
Number of nodes Path length

(a) (b)

Fig. 10. (a) The path length as a function of network size. (b) The PDF of the path length in the case of a 212 node network.

Similar Idea from Power of 2

e Cut search space half each time

e Examples
o Skip list
o Segment tree
o Binary search
o Lowest common ancestor

Discussion #1

1. Nodes can distribute all around the world, and communication
between different pairs of nodes has different latency. The path
finding algorithm mentioned before might not be optimal, can you
improve the efficiency of the neighbor selection/forwarding
selection in Chord?

https://tinyurl.com/cse550chord

https://tinyurl.com/cse550chord

Node Joins

e How to find correct successor(k)
o Successor pointers
o Finger tables

@ () © (d)

// create a new Chord ring.
n.create()
predecessor = nil,;
successor = n;

// join a Chord ring containing node n’.
n.join(n’)

predecessor = nil,;

successor = n/’.find_successor(n);

Node Joins

How to find correct successor(k)
o Successor pointers
o Finger tables

// create a new Chord ring.
n.create()
predecessor = nil,;
successor = n;

// join a Chord ring containing node n’.
n.join(n’)

predecessor = nil,;

successor = n/’.find_successor(n);

) N21

926
N32 N32 N32
K24 K24

@ () © (d)

// called periodically. verifies n’s immediate
// successor, and tells the successor about n.
n.stabilize()
x = successor.predecessor;
if (x € (n, successor))
successor = x;
successor.notify(n);

// n' thinks it might be our predecessor.
n.notify(n’)
if (predecessor is nil or n’ € (predecessor,n))
predecessor = n/;

// called periodically. checks whether predecessor has failed.
n.check_predecessor()
if (predecessor has failed)
predecessor = nil;

Node Joins

e How to find correct successor(k)

o Successor pointers
o Finger tables

@ () © (d)

// called periodically. refreshes finger table entries.
// next stores the index of the next finger to fix.
n.fix fingers()
next = next + 1;
if (next > m)
next = |log(successor — n)| + 1; // first non-trivial finger.
finger[next] = find_successor(n + 27¢*t=1);

Concurrent Operations and Failures

What if there are concurrent joins or leaves?

Stabilization doesn’t always work.

Fault Tolerance

0.25 T T

95% cltonﬂdence interval ot

=
o e
=
§ 015 %
B -
E ////
4 .
=
@
=1 e
S 01
-
o P
=
[T
0.05 %

0 1 1 1 1

0 0.05 0.1 0.15 0.2
Failed Nodes (Fraction of Total)

Fault Tolerance

N1 N1

lookup(54)
N8

N56

N51

N51

N14

N48 N48

N42®= N21

»
N32

(a) (b)
How to promote fault tolerance?

e Maintain a successor list of size r
e The probability that all successors fail is small

Replication and Authentication

Application using Chord handle the replication and authentication
themselves.

e Authentication: storing data x at key MD5(x)

e Replication
o save X at k nodes succeeding the key.

o storing x under two distinct Chord keys derived from the data’s application-level
identifier, e.g. hash(x, 1), hash(x, 2)

CAN: another DHT proposal

CAN uses a hypercube graph-like structure to route between nodes.

110 111

10 11

00 01

Q, O, (0

1’s coordinate neighbor set = {2,3,4,7}
7’s coordinate neighbor set = {1,2,4,5}

Kademlia

Organize id’s as a tree-like structure.

11...11 Space of 160—bit numbers
-O0-0—0

Q
Q

Kademlia
XOR (bitwise exclusive or) metric:

d(z,y) =z Dy
Ve,y : d(z,y) = d(y, z)

Symmetric:

Triangle Property:
d(z,y)+d(y, z) > d(z, 2)

Security?

Sybil attack

e Inject multiple fake identities into the system so to pollute users’
routing table.

e Use these fake identities to perform further attacks.

e Horizontal/Vertical attack, and mixture of them.

Real-World Sybil Attacks in BitTorrent Mainline DHT

https://nymity.ch/sybilhunting/pdf/Wang2012a.pdf

Security

Horizontal attack

e Pollute maximum number of routing table.

Peer 11

Peer 95 A (Peer 29)

Peer 33

‘Announce Peer
Peer 78 [] (29.59) [] Peer 36

Peer 71

B (Peer 57)

(a) Normal operations

Peer 33

Peer 78 [] ; [] Peer 36

Peer 71

Peer 65
Peer 57

(b) Horizontal attack

Wait for target t1.D
Security for i< 11to k do

Vertical attack end

Create sybil with 1D <« tID + 1

e Insert as many sybils as possible in one specific routing table.

Peer 11
Peer 95

‘Announce Peer
(29,59)

B (Peer 57)

(a) Normal operations

Peer 11

Peer 95

[] Peer 36

Peer 43

Peer 57

(c) Vertical attack

Potential threats

System wide

e Control most of the routing and introduce delay/lookup fail.
Content wide

e Pollute target content.

Privacy

e Attacker may know what content a user is requesting.

Security

Honeypot detector

1. Periodically find the k closest neighbor some random id’s in the
system.
a. To identify horizontal attack.

2. Periodically search for non-existent infohashes in the system.

Discussion #2

2. What issues arise if a large percentage of the network is in flux? How
can we mitigate the mentioned issues?

3. How to strengthen the DHT protocol to defend against sybil attacks?

https://tinyurl.com/cse550chord

https://tinyurl.com/cse550chord

Other Applications of DHT

Parameter Server for Distributed Machine Learning

server server arou a server
mana\ger group node

O i)
worker grou

resource
manager

task
scheduler

a worker
node

Scaling Distributed Machine Learning with the Parameter Server (OSDI 2014)

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

Reference and Further reading

e MIT 6.824 notes
o http://nil.csail.mit.edu/6.824/2017/notes/I-dht.txt

e (CMU’'s lecture notes
o https://www.cs.cmu.edu/~dga/15-744/S07/lectures/16-dht.pdf

e Looking Up Data in P2P system
e The Impact of DHT Routing Geometry on Resilience and Proximity

http://nil.csail.mit.edu/6.824/2017/notes/l-dht.txt
https://www.cs.cmu.edu/~dga/15-744/S07/lectures/16-dht.pdf
http://www.cs.cmu.edu/~dga/15-744/S07/papers//p43-balakrishnan.pdf
https://people.mpi-sws.org/~gummadi/papers/p1101-gummadi.pdf

