
Transactions and Database
Systems

Nick Walker, Jieliang Yin

Database Management Systems (DBMS)

Core Functions

Protect the data store in the database

Provide correct and highly available access to the data

Core Components

Concurrency Control

Recovery

Lots of jargon in this paper 📄
“Repeating history enables ARIES to employ a variant of the
physiological logging (🙄) technique described earlier: it uses
page-oriented REDO and a form of logical UNDO.”

Transactions 📒
● Unit of work
● Either aborts or commits
● Abstraction that lets databases handle concurrent operations while

maintaining some guarantees
● “ACID”

○ Atomic: all or nothing
○ Consistent: database integrity maintained
○ Isolation: one transaction doesn’t care about other concurrent

transactions (concurrency)
○ Durability: once committed, will survive (fault tolerance)

● ACID ↔ Serializability

SQL Example
/* start a transaction */
BEGIN;

/* deduct 1000 from account 1 */
UPDATE accounts
SET balance = balance - 1000
WHERE id = 1;

/* add 1000 to account 2 */
UPDATE accounts
SET balance = balance + 1000
WHERE id = 2;

/* select the data from accounts */
SELECT id, name, balance
FROM accounts;

/* commit the transaction */
COMMIT;

Concurrency: What’s hard about this? 🚦🔒
Q: Serializing transactions is slow, but how do we interleave execution
correctly?
A: Use locks.

Q: What things can you reasonably lock? Tuples? Tables? Predicates
(queries)?
A: We’ll have a multilevel locking system.

Q: What if transactions get into a deadlock?
A: Let’s get into the deadlock detection business.

Q: So we tried the locks, but then it wasn’t much faster than serial
execution…
A: Only use some locks? 🤷

Fault Tolerance: What’s hard about this? 💣
Q: What kinds of failure do you want to tolerate?
A: Losing memory.

Q: What do we need to do to restore the database after memory loss?
A: We’ll just force all transactions to be written to disk before committing, and persistently
log what it would take to undo in case we need to abort some transactions after memory
loss.

Q: We tried but it was really slow. What else can we do?
A: Have everyone put the changes into a persistent log. If we lose memory, anything that
wasn’t committed just gets aborted, and anything committed can be redone via the log.

Q: Now that the database can be stale on disk, we’re running out of RAM holding
chunks of it around before things get flushed to disk.

A: ...

ACID Transaction pitfalls 🕳
● Works best with short transactions
● Not designed to be run with clients that can disconnect for a long time
● Doesn’t know about the application
● Convenient cudgel for recruiters

○ “What is ACID and how is it achieved?”

Discussion 🗣
1. ACID transactions: good or bad abstraction? Alternatives?
2. ACID transactions bundle a few concerns (Atomicity, Consistency, Isolation

Durability). Is it still valuable to provide these properties together?
3. Today, we use cloud database services. Do they provide ACID? What

challenges does the distributed case bring?
4. What are some other places where we’d like transaction semantics?

https://bit.ly/550-tx

Transactions: a history of research failure
“... it has become apparent over time that the different
characterizations [of relaxed consistency] in that paper
were not specified to an equal degree of detail. As pointed
out in a recent paper by Berenson et al., the SQL-92 standard
suffers from a similar lack of specificity. Berenson et al. have
attempted to clarify the issue but it is too early to determine if
the have been successful.”

- The paper, in 1992

Isolation in Practice 🧱
Turned out to be far more complicated than people thought:

“The current state of database software offers uncomfortable and unnecessary
choices between availability and transactional semantics”

- Another paper, in 2013
https://arxiv.org/pdf/1302.0309.pdf

Isolation in Practice 😧
“Despite the ubiquity of weak isolation, I haven’t found a
database architect, researcher, or user who’s been able to
offer an explanation of when, and, probably more importantly,
why isolation models such as Read Committed are sufficient
for correct execution. ... I don’t think we have any real
understanding of how so many applications are seemingly
(!?) okay running under them.”
http://www.bailis.org/blog/understanding-weak-isolation-is-a-serious-problem/

Why might weak isolation work? 😬
1. For low-traffic and low-contention applications, it’s

possible that anomalies don’t arise.
2. When anomalies do arise, it’s possible that the read-write

anomalies don’t translate into application data corruption
3. It’s possible data is actually (occasionally) corrupted, and

apps just don’t care
http://www.bailis.org/blog/understanding-weak-isolation-is-a-serious-problem/

How relevant is ACID today? 🤔
● Flashback to last decade: NoSQL is hot
● “Come back to SQL, we have ACID”, they said
● People started to look carefully at “ACID compliance”

Most common DBMSs not
serializable by default 😳

http://www.bailis.org/blog/when-is-acid-acid-rarely/

CAP theorem 🪦😭
Distributed data stores can only provide two of the following three guarantees

● Consistency: Every read receives the most recent write or an error.
● Availability: Every request receives a (non-error) response, without the

guarantee that it contains the most recent write.
● Partition tolerance: The system continues to operate despite an arbitrary

number of messages being dropped (or delayed) by the network between
nodes.

Eventual consistency (BASE 😉)

Distributed data stores can only provide two of the following three guarantees

● Basically available: reading and writing operations are available as much as
possible but may not be consistent

● Soft-state: without consistency guarantees, after some amount of time, we
only have some probability of knowing the state

● Eventually consistent: If we execute some writes and then the system
functions long enough, we can know the state of the data; any further reads of
that data item will return the same value

http://pbs.cs.berkeley.edu/#demo

“Facebook’s graph store TAO, like many other distributed data stores, traditionally
prioritizes availability, efficiency, and scalability over strong consistency or isolation
guarantees to serve its large, read-dominant workloads. As product developers
build diverse applications on top of this system, they increasingly seek
transactional semantics...”

 PVLDB 2021. doi:10.14778/3476311.3476379

https://www.micahlerner.com/assets/papers/ramp-tao.pdf

Transactional Memory 🧙
● Transaction semantics for batches of operations on shared memory
● Could be implemented in hardware or software
● Hasn’t seemed to pan out

Developer Perspective 😞
“It didn't live up to that since the max transaction size is really easy to overflow
... and general code has a nasty habit of writing metrics even in read cases ...
which means constant transaction conflicts, which means slower code than just
using a lock. Cliff Click then makes the argument that the right move in the vast
majority of cases ... is to rewrite the algorithm so that threads (or at least
cores) communicate via messages and share nothing rather than trying to
use transactional memory”

Monocasa, HN, 2021 - https://news.ycombinator.com/item?id=27667027

Database VS Blockchain

Database Blockchain

Distribution Centralized Decentralized

Manipulation Mutable Immutable

Structure Table Time series

Access divided and unequal Unified and equal

Property No Yes

Performance High Low

Database + Blockchain

Decentralization
No single point of control. No single point of
failure. Decentralized control via a federation of
voting nodes makes for a P2P network.

Immutability
More than just tamper-resistant. Once stored,
data can’t be changed or deleted.

Byzantine Fault Tolerant (BFT)
Up to one third of the nodes in the network can
be experiencing arbitrary faults and the rest of
the network will still come to consensus on the
next block.

Query
Write and run any MongoDB query to search
the contents of all stored transactions, assets,
metadata and blocks. Powered by MongoDB
itself.

Low Latency
A global network takes about a second to
come to consensus on a new block. In other
words, transaction finality happens fast.

Rich Permissioning
Set permissions at transaction level to ensure
a clear separation of duties and enforce
selective access.

BigchainDB: The database without single control, own and failure

Questions

1. What are other differences between blockchain and database?
2. Is it possible to merge blockchain with database?
3. Is there a winner? Blockchain or database, or the combination?

