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The Pilot operating system provides a single-user, 
single-language environment for higher level software 
on a powerful personal computer. Its features include 
virtual memory, a large "fiat" file system, streams, 
network communication facilities, and concurrent 
programming support. Pilot thus provides rather more 
powerful facilities than are normally associated with 
personal computers. The exact facilities provided 
display interesting similarities to and differences from 
corresponding facilities provided in large multi-user 
systems. Pilot is implemented entirely in Mesa, a high- 
level system programming language. The 
modularization of the implementation displays some 
interesting aspects in terms of both the static structure 
and dynamic interactions of the various components. 
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I. Introduction 

As digital hardware becomes less expensive, more 
resources can be devoted to providing a very high grade 
of interactive service to computer users. One important 
expression of this trend is the personal computer. The 
dedication of a substantial computer to each individual 
user suggests an operating system design emphasizing 
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close user/system cooperation, allowing full exploitation 
of a resource-rich environment. Such a system can also 
function as its user's representative in a larger community 
of autonomous personal computers and other informa- 
tion resources, but tends to deemphasize the largely 
ajudicatory role of a monolithic time-sharing system. 

The Pilot operating system is designed for the per- 
sonal computing environment. It provides a basic set of 
services within which higher level programs can more 
easily serve the user and/or communicate with other 
programs on other machines. Pilot omits certain func- 
tions that have been integrated into some other operating 
systems, such as character-string naming and user-com- 
mand interpretation; such facilities are provided by 
higher level software, as needed. On the other hand, 
Pilot provides a more complete set of services than is 
normally associated with the "kernel" or "nucleus" of 
an operating system. Pilot is closely coupled to the Mesa 
programming langauge [16] and runs on a rather pow- 
erful personal computer, which would have been thought 
sufficient to support a substantial time-sharing system of 
a few years ago. The primary user interface is a high 
resolution bit-map display, with a keyboard and a point- 
ing device. Secondary storage is provided by a sizable 
moving-arm disk. A local packet network provides a 
high bandwidth connection to other personal computers 
and to server systems offering such remote services as 
printing and shared file storage. 

Much of the design of Pilot stems from an initial set 
of assumptions and goals rather different from those 
underlying most time-sharing systems. Pilot is a single- 
language, single-user system, with only limited features 
for protection and resource allocation. Pilot's protection 
mechanisms are defensive, rather than absolute [9], since 
in a single-user system, errors are a more serious problem 
than maliciousness. All protection in Pilot ultimately 
depends on the type-checking provided by Mesa, which 
is extremely reliable but by no means impenetrable. We 
have chosen to ignore such problems as "Trojan Horse" 
programs [20], not because they are unimportant, but 
because our environment allows such threats to be coped 
with adequately from outside the system. Similarly, 

Communications February 1980 
of Volume 23 
the ACM Number 2 



Pilot's resource allocation features are not oriented to- 
ward enforcing fair distribution of scarce resources 
among contending parties. In traditional multi-user sys- 
tems, most resources tend to be in short supply, and 
prevention of inequitable distribution is a serious prob- 
lem. In a single-user system like Pilot, shortage of some 
resource must generally be dealt with either through 
more effective utilization or by adding more of the 
resource. 

The close coupling between Pilot and Mesa is based 
on mutual interdependence; Pilot is written in Mesa, and 
Mesa depends on Pilot for much of  its runtime support. 
Since other languages are not supported, many of the 
language-independence arguments that tend to maintain 
distance between an operating system and a program- 
ming language are not relevant. In a sense, all of  Pilot 
can be thought of as a very powerful runtime support 
package for the Mesa language. Naturally, none of these 
considerations eliminates the need for careful structuring 
of the combined Pilot/Mesa system to avoid accidental 
circular dependencies. 

Since the Mesa programming language formalizes 
and emphasizes the distinction between an inteoCace and 
its implementation, it is particularly appropriate to split 
the description of Pilot along these lines. As an environ- 
ment for its client programs, Pilot consists of a set of 
Mesa interfaces, each defming a group of related types, 
operations, and error signals. Section 2 enumerates the 
major interfaces of Pilot and describes their semantics, 
in terms of both the formal interface and the intended 
behavior of the system as a whole. As a Mesa program, 
Pilot consists of a large collection of  modules supporting 
the various interfaces seen by clients. Section 3 describes 
the interior structure of the Pilot implementation and 
mentions a few of the lessons learned in implementing 
an operating system in Mesa. 

2. Pilot Interfaces 

In Mesa, a large software system is constructed from 
two kinds of modules: program modules specify the 
algorithms and the actual data structures comprising the 
implementation of the system, while definitions modules 
formally specify the inteq'aces between program mod- 
ules. Generally, a given interface, defined in a definitions 
module, is exported by one program module (its imple- 
mentor) and imported by one or more other program 
modules (its clients). Both program and definitions mod- 
ules are written in the Mesa source language and are 
compiled to produce binary object modules. The object 
form of a program module contains the actual code to 
be executed; the object form of a definitions module 
contains detailed specifications controlling the binding 
together of program modules. Modular programming in 
Mesa is discussed in more detail by Lauer and Satterth- 
waite [ 13]. 
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Pilot contains two kinds of interfaces: 

(1) Public interfaces defining the services provided by 
Pilot to its clients (i.e., higher level Mesa programs); 

(2) Private interfaces, which form the connective tissue 
binding the implementation together. 

This section describes the major features supported by 
the public interfaces of Pilot, including files, virtual 
memory, streams, network communication, and concur- 
rent programming support. Each interface defines some 
number of named items, which are denoted Inter- 
face.Item. There are four kinds of items in interfaces: 
types, procedures, constants, and error signals. (For ex- 
ample, the interface File defines the type File. Capability, 
the procedure File.Create, the constant file.maxPages 
PerFile, and the error signal File. Unknown.) The discus- 
sion that follows makes no attempt at complete enumer- 
ation of the items in each interface, but focuses instead 
on the overall facility provided, emphasizing the more 
important and unusual features of Pilot. 

2.1 Files 
The Pilot interfaces File and Volume define the basic 

facilities for permanent storage of data. Files are the 
standard containers for information storage; volumes 
represent the media on which files are stored (e.g., mag- 
netic disks). Higher level software is expected to super- 
impose further structure on files and volumes as neces- 
sary (e.g., an executable subsystem on a file, or a detach- 
able directory subtree on a removable volume). The 
emphasis at the Pilot level is on simple but powerful 
primitives for accessing large bodies of  information. Pilot 
can handle files containing up to about a million pages 
of English text, and volumes larger than any currently 
available storage device ( -10  '3 bits). The total number 
of files and volumes that can exist is essentially un- 
bounded (264). The space of files provided is "fiat," in 
the sense that files have no recognized relationships 
among them (e.g., no directory hierarchy). The size of a 
file is adjustable in units of pages. As discussed below, 
the contents of a file are accessed by mapping one or 
more of its pages into a section of virtual memory. 

The File.Create operation creates a new file and 
returns a capability for it. Pilot file capabilities are 
intended for defensive protection against errors [9]; they 
are mechanically similar to capabifities used in other 
systems for absolute protection, but are not designed to 
withstand determined attack by a malicious programmer. 
More significant than the protection aspect of capabilities 
is the fact that files and volumes are named by 64-bit 
universal identifiers (uids) which are guaranteed unique 
in both space and time. This means that distinct files, 
created anywhere at any time by any incarnation of 
Pilot, will always have distinct uids. This guarantee is 
crucial, since removable volumes are expected to be a 
standard method of transporting information from one 
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Pilot system to another. If  uid ambiguity were allowed 
(e.g., different files on the same machine with the same 
uid), Pilot's life would become more difficult, and uids 
would be much less useful to clients. To guarantee 
uniqueness, Pilot essentially concatenates the machine 
serial number with the real time clock to produce each 
new uid. 

Pilot attaches only a small fixed set of attributes to 
each file, with the expectation that a higher level direc- 
tory facility will provide an extendible mechanism for 
associating with a file more general properties unknown 
to Pilot (e.g., length in bytes, date of  creation, etc.). Pilot 
recognizes only four attributes: size, type, permanence, 
and immutability. 

The size of a file is adjustable from 0 pages to 223 
pages, each containing 512 bytes. When the size of a file 
is increased, Pilot attempts to avoid fragmentation of 
storage on the physical device so that sequential or 
otherwise clustered accesses can exploit physical conti- 
guity. On the other hand, random probes into a file are 
handled as efficiently as possible, by minimizing file 
system mapping overhead. 

The type of a file is a 16-bit tag which is essentially 
uninterpreted, but is implemented at the Pilot level to 
aid in type-dependent recovery of the file system (e.g., 
after a system failure). Such recovery is discussed further 
in Section 3.4. 

Permanence is an attribute attached to Pilot files that 
are intended to hold valuable permanent information. 
The intent is that creation of such a file proceed in four 
steps: 

(1) The file is created using File. Create and has tempo- 
rary status. 

(2) A capability for the file is stored in some permanent 
directory structure. 

(3) The file is made permanent using the 
File.MakePermanent operation. 

(4) The valuable contents are placed in the file. 

If a system failure occurs before step 3, the file will be 
automatically deleted (by the scavenger; see Section 3.4) 
when the system restarts; if a system failure occurs after 
step 2, the file is registered in the directory structure and 
is thereby accessible. (In particular, a failure between 
steps 2 and 3 produces a registered but nonexistent file, 
an eventuality which any robust directory system must 
be prepared to cope with.) This simple mechanism solves 
the "lost object problem" [25] in which inaccessible files 
take up space but cannot be deleted. Temporary files are 
also useful as scratch storage which will be reclaimed 
automatically in case of system failure. 

A Pilot file may be made immutable. This means that 
it is permanently read-only and may never be modified 
again under any circumstances. The intent is that mul- 
tiple physical copies of an immutable file, all sharing the 
same universal identifier, may be replicated at many 
physical sites to improve accessibility without danger of 

ambiguity concerning the contents of the file. For ex- 
ample, a higher level "linkage editor" program might 
wish to link a pair of object-code files by embedding the 
uid of one in the other. This would be efficient and 
unambiguous, but would fail if the contents were copied 
into a new pair of files, since they would have different 
uids. Making such files immutable and using a special 
operation (File.Replicatelmmutable) allows propagation 
of physical copies to other volumes without changing the 
uids, thus preserving any direct uid-level bindings. 

As with files, Pilot treats volumes in a straightforward 
fashion, while at the same time avoiding oversimplifica- 
tions that would render its facilities inadequate for de- 
manding clients. Several different sizes and types of 
storage devices are supported as Pilot volumes. (All are 
varieties of moving-arm disk, removable or nonremova- 
ble; other nonvolatile random access storage devices 
could be supported.) The simplest notion of a volume 
would correspond one to one with a physical storage 
medium. This is too restrictive, and hence the abstraction 
presented at the Volume interface is actually a logical 
volume; Pilot is fairly flexible about the correspondence 
between logical volumes and physical volumes (e.g., disk 
packs, diskettes, etc.). On the one hand, it is possible to 
have a large logical volume which spans several physical 
volumes. Conversely, it is possible to put several small 
logical volumes on the same physical volume. In all 
cases, Pilot recognizes the comings and goings of physical 
volumes (e.g., mounting a disk pack) and makes acces- 
sible to client programs those logical volumes all of 
whose pages are on-line. 

Two examples which originally motivated the flexi- 
bility of the volume machinery were database applica- 
tions, in which a very large database could be cast as a 
multi-disk-pack volume, and the CoPilot debugger, 
which requires its own separate logical volume (see 
Section 2.5), but must be usable on a single-disk machine. 

2.2 Virtual Memory 
The machine architecture on which Pilot runs defines 

a simple linear virtual memory of up to 232 16-bit words. 
All computations on the machine (including Pilot itself) 
run in the same address space, which is unadorned with 
any noteworthy features, save a set of three flags attached 
to each page: referenced, written, and write-protected. 
Pilot structures this homogenous address space into con- 
tiguous runs of page called spaces, accessed through the 
interface Space. Above the level of Pilot, client software 
superimposes still further structure upon the contents of 
spaces, casting them as client-defined data structures 
within the Mesa language. 

While the underlying linear virtual memory is con- 
ventional and fairly straightforward, the space machin- 
ery superimposed by Pilot is somewhat novel in its 
design, and rather more powerful than one would expect 
given the simplicity of the Space interface. A space is 
capable of playing three fundamental roles: 
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Allocation Entity. To allocate a region of virtual 
memory, a client creates a space of appropriate size. 

Mapping Entity. To associate information content 
and backing store with a region of virtual memory, a 
client maps a space to a region of some file. 

Swapping Entity. The transfer of  pages between pri- 
mary memory and backing store is performed in units of 
spaces. 

Any given space may play any or all of these roles. 
Largely because of their multifunctional nature, it is 
often useful to nest spaces. A new space is always created 
as a subspace of some previously existing space, so that 
the set of all spaces forms a tree by containment, the root 
of which is a predefined space covering all of virtual 
memory. 

Spaces function as allocation entities in two senses: 
when a space is created, by calling Space.Create, it is 
serving as the unit of allocation; if it is later broken into 
subspaces, it is serving as an allocation subpool within 
which smaller units are allocated and freed [19]. Such 
suballocation may be nested to several levels; at some 
level (typically fairly quickly) the page granularity of the 
space mechanism becomes too coarse, at which point 
finer grained allocation must be performed by higher 
level software. 

Spaces function as mapping entities when the oper- 
ation Space.Map is applied to them. This operation 
associates the space with a run of pages in a file, thus 
defining the content of each page of the space as the 
content of its associated file page, and propagating the 
write-protection status of the file capability to the space. 
At any given time, a page in virtual memory may be 
accessed only if its content is well-defined, i.e., if exactly 
one of the nested spaces containing it is mapped. If  none 
of the containing spaces is mapped, the fatal error 
AddressFault is signaled. (The situation in which more 
than one containing space is mapped cannot arise, since 
the Space.Map operation checks that none of the ances- 
tors or descendents of a space being mapped are them- 
selves already mapped.) The decision to cast Address- 
Fault and WriteProtectFault (i.e., storing into a write- 
protected space) as fatal errors is based on the judgment 
that any program which has incurred such a fault is 
misusing the virtual memory facilities and should be 
debugged; to this end, Pilot unconditionally activates the 
CoPilot debugger (see Section 2.5). 

Spaces function as swapping entities when a page of 
a mapped space is found to be missing from primary 
memory. The swapping strategy followed is essentially 
to swap in the lowest level (i.e., smallest) space containing 
the page (see Section 3.2). A client program can thus 
optimize its swapping behavior by subdividing its 
mapped spaces into subspaces containing items whose 
access patterns are known to be strongly correlated. In 
the absence of such subdivision, the entire mapped space 
is swapped in. Note that while the client can always opt 
for demand paging (by breaking a space up into one- 
page subspaces), this is not the default, since it tends to 
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promote thrashing. Further optimization is possible us- 
ing the Space.Activate operation. This operation advises 
Pilot that a space will be used soon and should be 
swapped in as soon as possible. The inverse operation, 
Space.Deactivate, advises Pilot that a space is no longer 
needed in primary memory. The Space.Kill operation 
advises Pilot that the current contents of a space are of 
no further interest (i.e., will be completely overwritten 
before next being read) so that useless swapping of the 
data may be suppressed. These forms of optional advice 
are intended to allow tuning of heavy traffic periods by 
eliminating unnecessary transfers, by scheduling the disk 
arm efficiently, and by insuring that during the visit tO 
a given arm position all of the appropriate transfers take 
place. Such advice-taking is a good example of a feature 
which has been deemed undesirable by most designers 
of timesharing systems, but which can be very useful in 
the context of a dedicated personal computer. 

There is an intrinsic close coupling between Pilot's 
file and virtual memory features: virtual memory is the 
only access path to the contents of files, and files are the 
only backing store for virtual memory. An alternative 
would have been to provide a separate backing store for 
virtual memory and require that clients transfer data 
between virtual memory and files using explicit read/  
write operations. There are several reasons for preferring 
the mapping approach, including the following. 

(1) Separating the operations of mapping and swapping 
decouples buffer allocation from disk scheduling, as 
compared with explicit file read/write operations. 

(2) When a space is mapped, the read/write privileges 
of the file capability can propagate automatically to 
the space by setting a simple read/write lock in the 
hardware memory map, allowing illegitimate stores 
to be caught immediately. 

(3) In either approach, there are certain cases that gen- 
erate extra unnecessary disk transfers; extra "advice- 
taking" operations like Space.Kill can eliminate the 
extra disk transfers in the mapping approach; this 
does not seem to apply to the read/write approach. 

(4) It is relatively easy to simulate a read/write interface 
given a mapping interface, and with appropriate use 
of advice, the efficiency can be essentially the same. 
The converse appears to be false. 

The Pilot virtual memory also provides an advice-like 
operation called Space.ForceOut, which is designed as 
an underpinning for client crash-recovery algorithms. (It 
is advice-like in that its effect is invisible in normal 
operation, but becomes visible if the system crashes.) 
ForceOut causes a space's contents to be written to its 
backing file and does not return until the write is com- 
pleted. This means that the contents will survive a sub- 
sequent system crash. Since Pilot's page replacement 
algorithm is also free to write the pages to the file at any 
time (e.g., between ForceOuts), this facility by itself does 
not constitute even a minimal crash recovery mechanism; 
it is intended only as a "toehold" for higher level software 
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to use m providing transactional atomicity in the face of  
system crashes. 

2.3 Streams and I /O Devices 
A Pilot client can access an I /O device in three 

different ways: 

(1) implicitly, via some feature of Pilot (e.g., a Pilot file 
accessed via virtual memory); 

(2) directly, via a low-level device driver interface ex- 
ported from Pilot; 

(3) indirectly, via the Pilot stream facility. 

In keeping with the objectives of  Pilot as an operating 
system for a personal computer, most I /O devices are 
made directly available to clients through low-level pro- 
cedural interfaces. These interfaces generally do little 
more than convert device-specific I /O operations into 
appropriate procedure calls. The emphasis is on provid- 
ing maximum flexibility to client programs; protection is 
not required. The only exception to this policy is for 
devices accessed implicitly by Pilot itself (e.g., disks used 
for files), since chaos would ensue if clients also tried to 
access them directly. 

For most applications, direct device access via the 
device driver interface is rather inconvenient, since all 
the details of  the device are exposed to view. Further- 
more, many applications tend to reference devices in a 
basically sequential fashion, with only occasional, and 
usually very stylized, control or repositioning operations. 
For these reasons, the Pilot stream facility is provided, 
comprising the following components: 

(1) The stream interface, which defines device independ- 
ent operations for full-duplex sequential access to a 
source/sink of  data. This is very similar in spirit to 
the stream facilities of  other operating systems, such 
as os6 [23] and UNIX [18]. 

(2) A standard for stream components, which connect 
streams to various devices and /or  implement "on- 
the-fly" transformations of  the data flowing through 
them. 

(3) A means for cascading a number of  primitive stream 
components to provide a compound stream. 

There are two kinds of  stream components defined 
by Pilot: the transducer and the filter. A transducer is a 
module which imports a device driver interface and 
exports an instance of the Pilot Stream interface. The 
transducer is thus the implementation of  the basic se- 
quential access facility for that device. Pilot provides 
standard transducers for a variety of  supported devices. 
A filter is a module which imports one instance of the 
Pilot standard Stream interface and exports another. Its 
purpose is to transform a stream of  data "on the fly" 
(e.g., to do code or format conversion). Naturally, clients 
can augment the standard set of stream components 
provided with Pilot by writing filters and transducers of  
their own. The Stream interface provides for dynamic 
binding of  stream components at runtime, so that a 

Fig. 1. A pipeline of  cascaded stream components, 

Client ~ .. ~ Transducer Device 

transducer and a set of  filters can be cascaded to provide 
a pipeline, as shown in Figure 1. 

The transducer occupies the lowest position in the 
pipeline (i.e., nearest the device) while the client program 
accesses the highest position. Each filter accesses the next 
lower filter (or transducer) via the Stream interface, just 
as if it were a client program, so that no component need 
be aware of  its position in the pipeline, or of  the nature 
of the device at the end. This facility resembles the UNIX 
pipe and filter facility, except that it is implemented 
at the module level within the Pilot virtual memory, 
rather than as a separate system task with its own address 
space. 

2.4 Communications 

Mesa supports a shared-memory style of  interprocess 
communication for tightly coupled processes [11]. Inter- 
action between loosely coupled processes (e.g., suitable to 
reside on different machines) is provided by the Pilot 
communications facility. This facility allows client pro- 
cesses in different machines to communicate with each 
other via a hierarchically structured family of packet 
communication protocols. Communication software is 
an integral part of  Pilot, rather than an optional addition, 
because Pilot is intended to be a suitable foundation for 
network-based distributed systems. 

The protocols are designed to provide communica- 
tion across multiple interconnected networks. An inter- 
connection of networks is referred to as an internet. A 
Pilot internet typically consists of  local, high bandwidth 
Ethernet broadcast networks [ 15], and public and private 
long-distance data networks like SBS, TELENET, TYMNET, 
DDS, and ACS. Constituent networks are interconnected 
by internetwork routers (often referred to as gateways in 
the literature) which store and forward packets to their 
destination using distributed routing algorithms [2, 4]. 
The constituent networks of  an internet are used only as 
a transmission medium. The source, destination, and 
interuetwork router computers are all Pilot machines. 
Pilot provides software drivers for a variety of  networks; 
a given machine may connect directly to one or several 
networks of  the same or different kinds. 

Pilot clients identify one another by means of  network 
addresses when they wish to communicate and need not 
know anything about the internet toplogy or each other's 
locations or even the structure of  a network address. In 
particular, it is not necessary that the two communicators 
be on different computers. If they are on the same 
computer, Pilot will optimize the transmission of  data 
between them and will avoid use of  the physical network 
resources. This implies that an isolated computer (i.e., 
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one which is not connected to any network) may still 
contain the communications facilities of Pilot. Pilot 
clients on the same computer should communicate with 
one another using Pilot's communications facilities, as 
opposed to the tightly coupled mechanisms of Mesa, if 
the communicators are loosely coupled subsystems that 
could some day be reconfigured to execute on different 
machines on the network. For example, printing and file 
storage server programs written to communicate in the 
loosely coupled mode could share the same machine if 
the combined load were light, yet be easily moved to 
separate machines if increased load justified the extra 
cost. 

A network address is a resource assigned to clients 
by Pilot and identifies a specific socket on a specific 
machine. A socket is simply a site from which packets 
are transmitted and at which packets are received; it is 
rather like a post office box, in the sense that there is no 
assumed relationship among the packets being sent and 
received via a given socket. The identity of a socket is 
unique only at a given point in time; it may be reused, 
since there is no long-term static association between the 
socket and any other resources. Protection against dan- 
gling references (e.g., delivery of packets intended for a 
previous instance of a given socket) is guaranteed by 
higher level protocols. 

A network address is, in reality, a triple consisting of 
a 16-bit network number, a 32-bit processor ID, and a 
16-bit socket number, represented by a system-wide 
Mesa data type System.NetworkAddress. The internal 
structure of a network address is not used by clients, but 
by the communications facilities of Pilot and the inter- 
network routers to deliver a packet to its destination. 
The administrative procedures for the assignment of 
network numbers and processor IDs to networks and 
computers, respectively, are outside the scope of this 
paper, as are the mechanisms by which clients find out 
each others' network addresses. 

The family of packet protocols by which Pilot pro- 
vides communication is based on our experiences with 
the Pup Protocols [2]. The Arpa Internetwork Protocol 
family [8] resemble our protocols in spirit. The protocols 
fall naturally into three levels: 

Level 0: Every packet must be encapsuiated for 
transmission over a particular communication medium, 
according to the network-specific rules for that commu- 
nication medium. This has been termed level 0 in our 
protocol hierarchy, since its definition is of no concern 
to the typical Pilot client. 

Level 1: Level 1 defines the format of the internet- 
work packet, which specifies among other things the 
source and destination network addresses, a checksum 
field, the length of the entire packet, a transport control 
field that is used by internetwork routers, and a packet 
type field that indicates the kind of packet defined at 
level 2. 

Level 2: A number of level 2 packet formats exist, 
such as error packet, connection-oriented sequenced 

packet, routing table update packet, and so on. Various 
level 2 protocols are defined according to the kinds of 
level 2 packets they use, and the rules governing their 
interaction. 

The Socket interface provides level l access to the 
communication facilities, including the ability to create 
a socket at a (local) network address, and to transmit and 
receive internetwork packets. In the terms of Section 2.3, 
sockets can be thought of as virtual devices, accessed 
directly via the Socket (virtual driver) interface. The 
protocol defining the format of the internetwork packet 
provides end-to-end communication at the packet level. 
The internet is required only to be able to transport 
independently addressed packets from source to desti- 
nation network addresses. As a consequence, packets 
transmitted over a socket may be expected to arrive at 
their destination only with high probability and not nec- 
essarily in the order they were transmitted. It is the 
responsibility of the communicating end processes to 
agree upon higher level protocols that provide the ap- 
propriate level of reliable communication. The Socket 
interface, therefore, provides service similar to that pro- 
vided by networks that offer datagram services [17] and 
is most useful for connectionless protocols. 

The interface NetworkStream defines the principal 
means by which Pilot clients can communicate reliably 
between any two network addreses. It provides access to 
the implementation of the sequenced packet protocol--a 
level 2 protocol. This protocol provides sequenced, du- 
plicate-suppressed, error-free, flow-controlled packet 
communication over arbitrarily interconnected commu- 
nication networks and is similar in philosophy to the 
Pup Byte Stream Protocol [2] or the Arpa Transmission 
Control Protocol [3, 24]. This protocol is implemented as 
a transducer, which converts the device-like Socket in- 
terface into a Pilot stream. Thus all data transmission 
via a network stream is invoked by means of the opera- 
tions defined in the standard Stream interface. 

Network streams provide reliable communication, in 
the sense that the data is reliably sent from the source 
transducer's packet buffer to the destination transducer's 
packet buffer. No guarantees can be made as to whether 
the data was successfully received by the destination 
client or that the data was appropriately processed. This 
final degree of reliability must lie with the clients of 
network streams, since they alone know the higher level 
protocol governing the data transfer. Pilot provides com- 
munication with varying degrees of reliability, since the 
communicating clients will, in general, have differing 
needs for it. This is in keeping with the design goals of 
Pilot, much like the provision of defensive rather than 
absolute protection. 

A network stream can be set up between two com- 
municators in many ways. The most typical case, in a 
network-based distributed system, involves a server (a 
supplier of a service) at one end and a client of the service 
at the other. Creation of such a network stream is 
inherently asymmetric. At one end is the server which 
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advertises a network address to which clients can connect 
to obtain its services. Clients do this by calling 
NetworkStream.Create, specifying the address of the 
server as parameter. It is important that concurrent 
requests from clients not conflict over the server's net- 
work address; to avoid this, some additional machinery 
is provided at the server end of the connection. When a 
server is operational, one of its processes listens for 
requests on its advertised network address. This is done 
by calling NetworkStream.Listen, which automatically 
creates a new network stream each time a request arrives 
at the specified network address. The newly created 
network stream connects the client to another unique 
network address on the server machine, leaving the 
server's advertised network address free for the reception 
of additional requests. 

The switchover from one network address to another 
is transparent to the client, and is part of the definition 
of the sequenced packet protocol. At the server end, the 
Stream.Handle for the newly created stream is typically 
passed to an agent, a subsidiary process or subsystem 
which gives its full attention to performing the service 
for that particular client. These two then communicate 
by means of the new network stream set up between 
them for the duration of the service. Of course, the 
NetworkStream interface also provides mechanisms for 
creating connections between arbitrary network ad- 
dresses, where the relationship between the processes is 
more general than that of server and client. 

The mechanisms for establishing and deleting a con- 
nection between any two communicators and for guard- 
ing against old duplicate packets are a departure from 
the mechanisms used by the Pup Byte Stream Protocol 
[2] or the Transmission Control Protocol [22], although 
our protocol embodies similar principles. A network 
stream is terminated by calling NetworkStream.Delete. 
This call initiates no network traffic and simply deletes 
all the data structures associated with the network 
stream. It is the responsibility of the communicating 
processes to have decided a priori that they wish to 
terminate the stream. This is in keeping with the decision 
that the reliable processing of the transmitted data ulti- 
mately rests with the clients of network streams. 

The manner in which server addresses are advertised 
by servers and discovered by clients is not defined by 
Pilot; this facility must be provided by the architecture 
of a particular distributed system built on Pilot. Gener- 
ally, the binding of names of resources to their addresses 
is accomplished by means of a network-based database 
referred to as a clearinghouse. The manner in which the 
binding is structured and the way in which clearing- 
houses are located and accessed are outside the scope of 
this paper. 

The communication facilities of  Pilot provide clients 
various interfaces, which provide varying degrees of 
service at the internetworking level. In keeping with the 
overall design of Pilot, the communication facility at- 
tempts to provide a standard set of features which cap- 

ture the most common needs, while still allowing clients 
to custom tailor their own solutions to their communi- 
cations requirements if that proves necessary. 

2.5 Mesa Language Support 
The Mesa language provides a number of features 

which require a nontrivial amount of runtime support 
[16]. These are primarily involved with the control struc- 
ture of the language [10, l l]  which allow not only 
recursive procedure calls, but also coroutines, concurrent 
processes, and signals (a specialized form of dynamically 
bound procedure call used primarily for exception han- 
dling). The runtime support facilities are invoked in 
three ways: 

(1) explicitly, via normal Mesa interfaces exported by 
Pilot (e.g., the Process interface); 

(2) implicitly, via compiler-generated calls on built-in 
procedures; 

(3) via traps, when machine-level op-codes encounter 
exceptional conditions. 

Pilot's involvement in client procedure calls is limited 
to trap handling when the supply of activation record 
storage is exhausted. To support the full generality of the 
Mesa control structures, activation records are allocated 
from a heap, even when a strict LIFO usage pattern is in 
force. This heap is replenished and maintained by Pilot. 

Coroutine calls also proceed without intervention by 
Pilot, except during initialization when a trap handler is 
provided to aid in the original setup of the coroutine 
linkage. 

Pilot's involvement with concurrent processes is 
somewhat more substantial. Mesa casts process creation 
as a variant of a procedure call, but unlike a normal 
procedure call, such a FORK statement always invokes 
Pilot to create the new process. Similarly, termination of 
a process also involves substantial participation by Pilot. 
Mesa also provides monitors and condition variables for 
synchronized interprocess communication via shared 
memory; these facilities are supported directly by the 
machine and thus require less direct involvement of 
Pilot. 

The Mesa control structure facilities, including con- 
current processes, are light weight enough to be used in 
the fine-scale structuring of normal Mesa programs. A 
typical Pilot client program consists of some number of 
processes, any of which may at any time invoke Pilot 
facilities through the various public interfaces. It is Pilot's 
responsibility to maintain the semantic integrity of its 
interfaces in the face of such client-level concurrency 
(see Section 3.3). Naturally, any higher level consistency 
constraints invented by the client must be guaranteed by 
client-level synchronization, using monitors and condi- 
tion variables as provided in the Mesa language. 

Another important Mesa-support facility which is 
provided as an integral part of Pilot is a "world-swap" 
facility to allow a graceful exit to CoPilot, the Pilot/Mesa 
interactive debugger. The world-swap facility saves the 
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contents of memory and the total machine state and then 
starts CoPilot from a boot-file, just as if the machine's 
bootstrap-load button had been pressed. The original 
state is saved on a second boot-file so that execution can 
be resumed by doing a second world-swap. The state is 
saved with sufficient care that it is virtually always 
possible to resume execution without any detectable 
perturbation of the program being debugged. The world- 
swap approach to debugging yields strong isolation be- 
tween the debugger and the program under test. Not 
only the contents of  main memory, but the version of 
Pilot, the accessible volume(s), and even the microcode 
can be different in the two worlds. This is especially 
useful when debugging a new version of  Pilot, since 
CoPilot can run on the old, stable version until the new 
version becomes trustworthy. Needless to say, this ap- 
proach is not directly applicable to conventional multi- 
user time-sharing systems. 

Fig. 2. Major components of Pilot. 

Pilot Client(s) 
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3. Implementation 

The implementation of  Pilot consists of  a large num- 
ber of Mesa modules which collectively provide the client 
environment as decribed above. The modules are 
grouped into larger components, each of  which is respon- 
sible for implementing some coherent subset of  the over- 
all Pilot functionality. The relationships among the ma- 
jor  components are illustrated in Figure 2. 

Of particular interest is the interlocking structure of  
the four components of  the storage system which together 
implement files and virtual memory. This is an example 
of  what we call the manager/kernel pattern, in which a 
given facility is implemented in two stages: a low-level 
kernel provides a basic core of function, which is ex- 
tended by the higher level manager. Layers interposed 
between the kernel and the manager can make use of  
the kernel and can in turn be used by the manager. The 
same basic technique has been used before in other 
systems to good effect, as discussed by Habermann et al. 
[6], who refer to it as "functional hierarchy." It is also 
quite similar to the familiar "policy/mechanism" pattern 
[1, 25]. The main difference is that we place no emphasis 
on the possibility of  using the same kernel with a variety 
of managers (or without any manager at all). In Pilot, 
the manager/kernel pattern is intended only as a fruitful 
decomposition tool for the design of  integrated mecha- 
nisms. 

3.1 Layering of the Storage System Implementation 
The kernel/manager pattern can be motivated by 

noting that since the purpose of Pilot is to provide a 
more hospitable environment than the bare machine, it 
would clearly be more pleasant for the code implement- 
ing Pilot if it could use the facilities of  Pilot in getting its 
job done. In particular, both components of  the storage 
system (the file and virtual memory implementations) 
maintain internal databases which are too large to fit in 

primary memory, but only parts of  which are needed at 
any one time. A client-level program would simply place 
such a database in a file and access it via virtual memory, 
but if Pilot itself did so, the resulting circular depend- 
encies would tie the system in knots, making it unreliable 
and difficult to understand. One alternative would be 
the invention of  a special separate mechanism for low- 
level disk access and main memory buffering, used only 
by the storage system to access its internal databases. 
This would eliminate the danger of  circular dependency 
but would introduce more machinery, making the system 
bulkier and harder to understand in a different sense. A 
more attractive alternative is the extraction of a stream- 
lined kernel of the storage system functionality with the 
following properties: 

(1) It can be implemented by a small body of  code which 
resides permanently in primary memory. 

(2) It provides a powerful enough storage facility to 
significantly ease the implementation of  the remain- 
der of  the full-fledged storage system. 

(3) It can handle the majority of  the "fast cases" of  
client-level use of the storage system. 

Figure 2 shows the implementation of  such a kernel 
storage facility by the swapper and the filer. These two 
subcomponents are the kernels of  the virtual memory 
and file components, respectively, and provide a reason- 
ably powerful environment for the nonresident subcom- 
ponents, the virtual memory manager, and the file man- 
ager, whose code and data are both swappable. The 
kernel environment provides somewhat restricted virtual 
memory access to a small number of  special files and to 
preexisting normal files of  fixed size. 

The managers implement the more powerful opera- 
tions, such as file creation and deletion, and the more 
complex virtual memory operations, such as those that 
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traverse subtrees of the hierarchy of nested spaces. The 
most frequent operations, however, are handled by the 
kernels essentially on their own. For example, a page 
fault is handled by code in the swapper, which calls the 
filer to read the appropriate page(s) into memory, adjusts 
the hardware memory map, and restarts the faulting 
process. 

The resident data structures of the kernels serve as 
caches on the swappable databases maintained by the 
managers. Whenever a kernel finds that it cannot per- 
form an operation using only the data in its cache, it 
conceptually "passes the buck" to its manager, retaining 
no state information about the failed operation. In this 
way, a circular dependency is avoided, since such failed 
operations become the total responsibility of the man- 
ager. The typical response of a manager in such a 
situation is to consult its swappable database, call the 
resident subcomponent to update its cache, and then 
retry the failed operation. 

The intended dynamics of the storage system imple- 
mentation described above are based on the expectation 
that Pilot will experience three quite different kinds of 
load. 

(1) For short periods of time, client programs will have 
their essentially static working sets in primary mem- 
ory and the storage system will not be needed. 

(2) Most of the time, the client working set will be 
changing slowly, but the description of it will fit in 
the swapper/filer caches, so that swapping can take 
place with little or no extra disk activity to access the 
storage system databases. 

(3) Periodically, the client working set will change dras- 
tically, requiring extensive reloading of the caches as 
well as heavy swapping. 

It is intended that the Pilot storage system be able to 
respond reasonably to all three situations: In case (1), it 
should assume a low profile by allowing its swappable 
components (e.g., the managers) to swap out. In case (2), 
it should be as efficient as possible, using its caches to 
avoid causing spurious disk activity. In case (3), it should 
do the best it can, with the understanding that while 
continuous operation in this mode is probably not viable, 
short periods of heavy traffic can and must be optimized, 
largely via the advice-taking operations discussed in 
Section 2.2. 

3.2 Cached Databases of the Virtual Memory 
Implementation 

The virtual memory manager implements the client 
visible operations on spaces and is thus primarily con- 
cerned with checking validity and maintaining the da- 
tabase constituting the fundamental representation be- 
hind the Space interface. This database, called the hier- 
archy, represents the tree of nested spaces defined in 
Section 2.2. For each space, it contains a record whose 
fields hold attributes such as size, base page number, and 
mapping information. 

The swapper, or virtual memory kernel, manages 
primary memory and supervises the swapping of data 
between mapped memory and files. For this purpose it 
needs access to information in the hierarchy. Since the 
hierarchy is swappable and thus off limits to the swapper, 
the swapper maintains a resident space cache which is 
loaded from the hierarchy in the manner described in 
Section 3.1. 

There are several other data structures maintained 
by the swapper. One is a bit-table describing the alloca- 
tion status of each page of primary memory. Most of the 
bookkeeping performed by the swapper, however, is on 
the basis of the swap unit, or smallest set of pages 
transferred between primary memory and file backing 
storage. A swap unit generally corresponds to a " leaf '  
space; however, if a space is only partially covered with 
subspaces, each maximal run of pages not containing 
any subspaces is also a swap unit. The swapper keeps a 
swap unit cache containing information about swap units 
such as extent (first page and length), containing mapped 
space, and state (mapped or not, swapped in or out, 
replacement algorithm data). 

The swap unit cache is addressed by page rather than 
by space; for example, it is used by the page fault handler 
to find the swap unit in which a page fault occurred. The 
content of an entry in this cache is logically derived from 
a sequence of entries in the hierarchy, but direct imple- 
mentation of this would require several file accesses to 
construct a single cache entry. To avoid this, we have 
chosen to maintain another database: the projection. This 
is a second swappable database maintained by the virtual 
memory manager, containing descriptions of all existing 
swap units, and is used to update the swap unit cache. 
The existence of the projection speeds up page faults 
which cannot be handled from the swap unit cache; it 
slows down space creation/deletion since then the pro- 
jection must be updated. We expect this to be a useful 
optimization based on our assumptions about the relative 
frequencies and CPU times of these events; detailed 
measurements of a fully loaded system will be needed to 
evaluate the actual effectiveness of  the projection. 

An important detail regarding the relationship be- 
tween the manager and kernel components has been 
ignored up to this point. That detail is avoiding "recur- 
sive" cache faults; when a manager is attempting to 
supply a missing cache entry, it will often incur a page 
fault of its own; the handling of that page fault must not 
incur a second cache fault or the fault episode will never 
terminate. Basically the answer is to make certain key 
records in the cache ineligible for replacement. This 
pertains to the space and swap unit caches and to the 
caches maintained by the filer as well. 

3.3 Process Implementation 
The implementation of processes and monitors in 

Pilot/Mesa is summarized here; more detail can be found 
in [11]. 
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The task of implementing the concurrency facilities 
is split roughly equally among Pilot, the Mesa compiler, 
and the underlying machine. The basic primitives are 
defined as language constructs (e.g., entering a MONITOR, 
WAITing on a CONDITION variable, FORKing a new 
PROCESS) and are implemented either by machine 
op-codes (for heavily used constructs, e.g., WAIT) or by 
calls on Pilot (for less heavily used constructs, e.g., FORK). 
The constructs supported by the machine and the low- 
level Mesa support component provide procedure calls 
and synchronization among existing processes, allowing 
the remainder of Pilot to be implemented as a collection 
of monitors, which carefully synchronize the multiple 
processes executing concurrently inside them. These 
processes comprise a variable number of client processes 
(e.g., which have called into Pilot through some public 
interface) plus a fixed number of dedicated system pro- 
cesses (about a dozen) which are created specially at 
system initialization time. The machinery for creating 
and deleting processes is a monitor within the high-level 
Mesa support component; this places it above the virtual 
memory implementation; this means that it is swappable, 
but also means that the rest of Pilot (with the exception 
of network streams) cannot make use of dynamic process 
creation. The process implementation is thus another 
example of the manager/kernel pattern, in which the 
manager is implemented at a very high level and the 
kernel is pushed down to a very low level (in this case, 
largely into the underlying machine). To the Pilot client, 
the split implementation appears as a unified mechanism 
comprising the Mesa language features and the opera- 
tions defined by the Pilot Process interface. 

3.4 File System Robustness 
One of the most important properties of the Pilot file 

system is robustness. This is achieved primarily through 
the use of reconstructable maps. Many previous systems 
have demonstrated the value of afile scavenger, a utility 
program which can repair a damaged file system, often 
on a more or less adhoc basis [5, 12, 14, 21]. In Pilot, the 
scavenger is given first-class citizenship, in the sense that 
the file structures were all designed from the beginning 
with the scavenger in mind. Each file page is self-iden- 
tifying by virtue of its label, written as a separate physical 
record adjacent to the one holding the actual contents of 
the page. (Again, this is not a new idea, but is the crucial 
foundation on which the file system's robustness is 
based.) Conceptually, one can think of a file page access 
proceeding by scanning all known volumes, checking the 
label of each page encountered until the desired one is 
found. In practice, this scan is performed only once by 
the scavenger, which leaves behind maps on each volume 
describing what it found there; Pilot then uses the maps 
and incrementally updates them as file pages are created 
and deleted. The logical redundancy of the maps does 
not, of course, imply lack of importance, since the system 
would be not be viable without them; the point is that 
since they contain only redundant information, they can 

be completely reconstructed should they be lost. In par- 
ticular, this means that damage to any page on the disk 
can compromise only data on that page. 

The primary map structure is the volume file map, a 
B-tree keyed on (file-uid, page-number) which returns 
the device address of the page. All file storage devices 
check the label of the page and abort the I /O operation 
in case of a mismatch; this does not occur in normal 
operation and generally indicates the need to scavenge 
the volume. The volume file map uses extensive com- 
pression of uids and run-encoding of page numbers to 
maximize the out-degree of the internal nodes of the B- 
tree and thus minimize its depth. 

Equally important but much simpler is the volume 
allocation map, a table which describes the allocation 
status of each page on the disk. Each free page is a self- 
identifying member of a hypothetical file of free pages, 
allowing reconstruction of the volume allocation map. 

The robustness provided by the scavenger can only 
guarantee the integrity of files as defined by Pilot. If  a 
database defined by client software becomes inconsistent 
due to a system crash, a software bug, or some other 
unfortunate event, it is little comfort to know that the 
underlying file has been declared healthy by the scav- 
enger. An "escape-hatch" is therefore provided to allow 
client software to be invoked when a file is scavenged. 
This is the main use of the file-type attribute mentioned 
in Section 2.1. After the Pilot scavenger has restored the 
low-level integrity of the file system, Pilot is restarted; 
before resuming normal processing, Pilot first invokes all 
client-level scavenging routines (if any) to reestablish 
any higher level consistency constraints that may have 
been violated. File types are used to determine which 
files should be processed by which client-level scaven- 
gers. 

An interesting example of  the first-class status of the 
scavenger is its routine use in transporting volumes 
between versions of Pilot. The freedom to redesign the 
complex map structures stored on volumes represents a 
crucial opportunity for continuing file system perform- 
ance improvement, but this means that one version of 
Pilot may fred the maps left by another version totally 
inscrutable. Since such incompatibility is just a particular 
form of "damage," however, the scavenger can be in- 
voked to reconstruct the maps in the proper format, after 
which the corresponding version of  Pilot will recognize 
the volume as its own. 

3.5 Communication Implementation 
The software that implements the packet communi- 

cation protocols consists of  a set of  network-specific 
drivers, modules that implement sockets, network stream 
transducers, and at the heart of  it all, a router. The router 
is a software switch. It routes packets among sockets, 
sockets and networks, and networks themselves. A router 
is present on every Pilot machine. On personal machines, 
the router handles only incoming, outgoing, and intra- 
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machine packet traffic. On internetwork router ma-  
chines, the router acts as a service to other machines by 
transporting internetwork packets across network 
boundaries. The router's data structures include a list of  
all active sockets and networks on the local computer. 
The router is designed so that network drivers may easily 
be added to or removed from new configurations of  
Pilot; this can even be done dynamically during execu- 
tion. Sockets come and go as clients create and delete 
them. Each router maintains a routing table indicating, 
for a given remote network, the best internetwork router 
to use as the next "hop"  toward the final destination. 
Thus, the two kinds of  machines are essentially special 
cases of  the same program. An internetwork router is 
simply a router that spends most o f  its time forwarding 
packets between networks and exchanging routing tables 
with other internetwork routers. On personal machines 
the router updates its routing t ab leby  querying internet- 
work routers or by overhearing their exchanges over 
broadcast networks. 

Pilot has taken the approach of connecting a network 
much like any other input /output  device, so that the 
packet communication protocol software becomes part 
o f  the operating system and operates in the same personal 
computer. In particular, Pilot does not  employ a dedi- 
cated front-end communications processor connected to 
the Pilot machine via a secondary interface. 

Network-oriented communication differs from con- 
ventional input /output  in that packets arrive at a com- 
puter unsolicited, implying that the intended recipient is 
unknown until the packet is examined. As a conse- 
quence, each incoming packet must be buffered initially 
in router-supplied storage for examination. The router, 
therefore, maintains a buffer pool shared by all the 
network drivers. I f  a packet is undamaged and its desti- 
nation socket exists, then the packet is copied into a 
buffer associated with the socket and provided by the 
socket's client. 

The architecture of  the communication software per- 
mits the computer supporting Pilot to behave as a user's 
personal computer, a supplier of  information, or as a 
dedicated internetwork router. 

4. Conclusion 

The context of  a large personal computer  has moti- 
vated us to reevaluate many  design decisions which 
characterize systems designed for more familiar situa- 
tions (e.g., large shared machines or small personal com- 
puters). This has resulted in a somewhat novel system 
which, for example, provides sophisticated features but 
only minimal protection, accepts advice from client pro- 
grams, and even boot-loads the machine periodically in 
the normal course of  execution. 

Aside from its novel aspects, however, Pilot's real 
significance is its careful integration, in a single relatively 
compact system, of  a number  of  good ideas which have 
previously tended to appear  individually, often in sys- 
tems which were demonstration vehicles not intended to 
support serious client programs. The combination of  
streams, packet communications, a hierarchical virtual 
memory mapped to a large file space, concurrent pro- 
gramming support, and a modular  high-level language, 
provides an environment with relatively few artificial 
limitations on the size and complexity of  the client 
programs which can be supported. 
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3.6 The Implementation Experience 
The initial construction of  Pilot was accomplished by 

a fairly small group of people (averaging about 6 to 8) in 
a fairly short period of  time (about 18 months). We feel 
that this is largely due to the use of  Mesa. Pilot consists 
of  approximately 24,000 lines of  Mesa, broken into about 
160 modules (programs and interfaces), yielding an av- 
erage module size of  roughly 150 lines. The use of  small 
modules and minimal intermodule connectivity, com- 
bined with the strongly typed interface facilities of  Mesa, 
aided in the creation of an implementation which 
avoided many common kinds of  errors and which is 
relatively rugged in the face of  modification. These issues 
are discussed in more detail in [7] and [13]. 
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The design of Medusa, a distributed operating 
system for the Cm* multimicroprocessor, is discussed. 
The Cm* architecture combines distribution and 
sharing in a way that strongly impacts the organization 
of operating systems. Medusa is an attempt to 
capitalize on the architectural features to produce a 
system that is modular, robust, and efficient. To provide 
modularity and to make effective use of the distributed 
hardware, the operating system is partitioned into 
several disjoint utilities that communicate with each 
other via messages. To take advantage of the 
parallelism present in Cm* and to provide robustness, 
all programs, including the utilities, are task forces 
containing many concurrent, cooperating activities. 
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