
Operating Systems

Pilot: An Operating System for a Personal
Computer
David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C. Lynch,
Paul R. McJones, Hal G. Murray, and Stephen C. Purcell
Xerox Business Systems

The Pilot operating system provides a single-user,
single-language environment for higher level software
on a powerful personal computer. Its features include
virtual memory, a large "fiat" file system, streams,
network communication facilities, and concurrent
programming support. Pilot thus provides rather more
powerful facilities than are normally associated with
personal computers. The exact facilities provided
display interesting similarities to and differences from
corresponding facilities provided in large multi-user
systems. Pilot is implemented entirely in Mesa, a high-
level system programming language. The
modularization of the implementation displays some
interesting aspects in terms of both the static structure
and dynamic interactions of the various components.

Key Words and Phrases: personal computer,
operating system, high-level language, virtual memory,
file, process, network, modular programming, system
structure

CR Categories: 4.32, 4.35, 4.42, 6.20

I. Introduction

As digital hardware becomes less expensive, more
resources can be devoted to providing a very high grade
of interactive service to computer users. One important
expression of this trend is the personal computer. The
dedication of a substantial computer to each individual
user suggests an operating system design emphasizing

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

A version of this paper was presented at the 7th ACM Symposium
on Operating Systems Principles, Pacific Grove, Calif., Dec. 10-12,
1979.

Authors' address: Xerox Business Systems, 3333 Coyote Hill Rd.,
Palo Alto, CA 94304.
© 1980 ACM 0001-0782/80/0200-0081 $00.75.

81

close user/system cooperation, allowing full exploitation
of a resource-rich environment. Such a system can also
function as its user's representative in a larger community
of autonomous personal computers and other informa-
tion resources, but tends to deemphasize the largely
ajudicatory role of a monolithic time-sharing system.

The Pilot operating system is designed for the per-
sonal computing environment. It provides a basic set of
services within which higher level programs can more
easily serve the user and/or communicate with other
programs on other machines. Pilot omits certain func-
tions that have been integrated into some other operating
systems, such as character-string naming and user-com-
mand interpretation; such facilities are provided by
higher level software, as needed. On the other hand,
Pilot provides a more complete set of services than is
normally associated with the "kernel" or "nucleus" of
an operating system. Pilot is closely coupled to the Mesa
programming langauge [16] and runs on a rather pow-
erful personal computer, which would have been thought
sufficient to support a substantial time-sharing system of
a few years ago. The primary user interface is a high
resolution bit-map display, with a keyboard and a point-
ing device. Secondary storage is provided by a sizable
moving-arm disk. A local packet network provides a
high bandwidth connection to other personal computers
and to server systems offering such remote services as
printing and shared file storage.

Much of the design of Pilot stems from an initial set
of assumptions and goals rather different from those
underlying most time-sharing systems. Pilot is a single-
language, single-user system, with only limited features
for protection and resource allocation. Pilot's protection
mechanisms are defensive, rather than absolute [9], since
in a single-user system, errors are a more serious problem
than maliciousness. All protection in Pilot ultimately
depends on the type-checking provided by Mesa, which
is extremely reliable but by no means impenetrable. We
have chosen to ignore such problems as "Trojan Horse"
programs [20], not because they are unimportant, but
because our environment allows such threats to be coped
with adequately from outside the system. Similarly,

Communications February 1980
of Volume 23
the ACM Number 2

Pilot's resource allocation features are not oriented to-
ward enforcing fair distribution of scarce resources
among contending parties. In traditional multi-user sys-
tems, most resources tend to be in short supply, and
prevention of inequitable distribution is a serious prob-
lem. In a single-user system like Pilot, shortage of some
resource must generally be dealt with either through
more effective utilization or by adding more of the
resource.

The close coupling between Pilot and Mesa is based
on mutual interdependence; Pilot is written in Mesa, and
Mesa depends on Pilot for much of its runtime support.
Since other languages are not supported, many of the
language-independence arguments that tend to maintain
distance between an operating system and a program-
ming language are not relevant. In a sense, all of Pilot
can be thought of as a very powerful runtime support
package for the Mesa language. Naturally, none of these
considerations eliminates the need for careful structuring
of the combined Pilot/Mesa system to avoid accidental
circular dependencies.

Since the Mesa programming language formalizes
and emphasizes the distinction between an inteoCace and
its implementation, it is particularly appropriate to split
the description of Pilot along these lines. As an environ-
ment for its client programs, Pilot consists of a set of
Mesa interfaces, each defming a group of related types,
operations, and error signals. Section 2 enumerates the
major interfaces of Pilot and describes their semantics,
in terms of both the formal interface and the intended
behavior of the system as a whole. As a Mesa program,
Pilot consists of a large collection of modules supporting
the various interfaces seen by clients. Section 3 describes
the interior structure of the Pilot implementation and
mentions a few of the lessons learned in implementing
an operating system in Mesa.

2. Pilot Interfaces

In Mesa, a large software system is constructed from
two kinds of modules: program modules specify the
algorithms and the actual data structures comprising the
implementation of the system, while definitions modules
formally specify the inteq'aces between program mod-
ules. Generally, a given interface, defined in a definitions
module, is exported by one program module (its imple-
mentor) and imported by one or more other program
modules (its clients). Both program and definitions mod-
ules are written in the Mesa source language and are
compiled to produce binary object modules. The object
form of a program module contains the actual code to
be executed; the object form of a definitions module
contains detailed specifications controlling the binding
together of program modules. Modular programming in
Mesa is discussed in more detail by Lauer and Satterth-
waite [13].

82

Pilot contains two kinds of interfaces:

(1) Public interfaces defining the services provided by
Pilot to its clients (i.e., higher level Mesa programs);

(2) Private interfaces, which form the connective tissue
binding the implementation together.

This section describes the major features supported by
the public interfaces of Pilot, including files, virtual
memory, streams, network communication, and concur-
rent programming support. Each interface defines some
number of named items, which are denoted Inter-
face.Item. There are four kinds of items in interfaces:
types, procedures, constants, and error signals. (For ex-
ample, the interface File defines the type File. Capability,
the procedure File.Create, the constant file.maxPages
PerFile, and the error signal File. Unknown.) The discus-
sion that follows makes no attempt at complete enumer-
ation of the items in each interface, but focuses instead
on the overall facility provided, emphasizing the more
important and unusual features of Pilot.

2.1 Files
The Pilot interfaces File and Volume define the basic

facilities for permanent storage of data. Files are the
standard containers for information storage; volumes
represent the media on which files are stored (e.g., mag-
netic disks). Higher level software is expected to super-
impose further structure on files and volumes as neces-
sary (e.g., an executable subsystem on a file, or a detach-
able directory subtree on a removable volume). The
emphasis at the Pilot level is on simple but powerful
primitives for accessing large bodies of information. Pilot
can handle files containing up to about a million pages
of English text, and volumes larger than any currently
available storage device (-10 '3 bits). The total number
of files and volumes that can exist is essentially un-
bounded (264). The space of files provided is "fiat," in
the sense that files have no recognized relationships
among them (e.g., no directory hierarchy). The size of a
file is adjustable in units of pages. As discussed below,
the contents of a file are accessed by mapping one or
more of its pages into a section of virtual memory.

The File.Create operation creates a new file and
returns a capability for it. Pilot file capabilities are
intended for defensive protection against errors [9]; they
are mechanically similar to capabifities used in other
systems for absolute protection, but are not designed to
withstand determined attack by a malicious programmer.
More significant than the protection aspect of capabilities
is the fact that files and volumes are named by 64-bit
universal identifiers (uids) which are guaranteed unique
in both space and time. This means that distinct files,
created anywhere at any time by any incarnation of
Pilot, will always have distinct uids. This guarantee is
crucial, since removable volumes are expected to be a
standard method of transporting information from one

Communications February 1980
of Volume 23
the ACM Number 2

Pilot system to another. If uid ambiguity were allowed
(e.g., different files on the same machine with the same
uid), Pilot's life would become more difficult, and uids
would be much less useful to clients. To guarantee
uniqueness, Pilot essentially concatenates the machine
serial number with the real time clock to produce each
new uid.

Pilot attaches only a small fixed set of attributes to
each file, with the expectation that a higher level direc-
tory facility will provide an extendible mechanism for
associating with a file more general properties unknown
to Pilot (e.g., length in bytes, date of creation, etc.). Pilot
recognizes only four attributes: size, type, permanence,
and immutability.

The size of a file is adjustable from 0 pages to 223
pages, each containing 512 bytes. When the size of a file
is increased, Pilot attempts to avoid fragmentation of
storage on the physical device so that sequential or
otherwise clustered accesses can exploit physical conti-
guity. On the other hand, random probes into a file are
handled as efficiently as possible, by minimizing file
system mapping overhead.

The type of a file is a 16-bit tag which is essentially
uninterpreted, but is implemented at the Pilot level to
aid in type-dependent recovery of the file system (e.g.,
after a system failure). Such recovery is discussed further
in Section 3.4.

Permanence is an attribute attached to Pilot files that
are intended to hold valuable permanent information.
The intent is that creation of such a file proceed in four
steps:

(1) The file is created using File. Create and has tempo-
rary status.

(2) A capability for the file is stored in some permanent
directory structure.

(3) The file is made permanent using the
File.MakePermanent operation.

(4) The valuable contents are placed in the file.

If a system failure occurs before step 3, the file will be
automatically deleted (by the scavenger; see Section 3.4)
when the system restarts; if a system failure occurs after
step 2, the file is registered in the directory structure and
is thereby accessible. (In particular, a failure between
steps 2 and 3 produces a registered but nonexistent file,
an eventuality which any robust directory system must
be prepared to cope with.) This simple mechanism solves
the "lost object problem" [25] in which inaccessible files
take up space but cannot be deleted. Temporary files are
also useful as scratch storage which will be reclaimed
automatically in case of system failure.

A Pilot file may be made immutable. This means that
it is permanently read-only and may never be modified
again under any circumstances. The intent is that mul-
tiple physical copies of an immutable file, all sharing the
same universal identifier, may be replicated at many
physical sites to improve accessibility without danger of

ambiguity concerning the contents of the file. For ex-
ample, a higher level "linkage editor" program might
wish to link a pair of object-code files by embedding the
uid of one in the other. This would be efficient and
unambiguous, but would fail if the contents were copied
into a new pair of files, since they would have different
uids. Making such files immutable and using a special
operation (File.Replicatelmmutable) allows propagation
of physical copies to other volumes without changing the
uids, thus preserving any direct uid-level bindings.

As with files, Pilot treats volumes in a straightforward
fashion, while at the same time avoiding oversimplifica-
tions that would render its facilities inadequate for de-
manding clients. Several different sizes and types of
storage devices are supported as Pilot volumes. (All are
varieties of moving-arm disk, removable or nonremova-
ble; other nonvolatile random access storage devices
could be supported.) The simplest notion of a volume
would correspond one to one with a physical storage
medium. This is too restrictive, and hence the abstraction
presented at the Volume interface is actually a logical
volume; Pilot is fairly flexible about the correspondence
between logical volumes and physical volumes (e.g., disk
packs, diskettes, etc.). On the one hand, it is possible to
have a large logical volume which spans several physical
volumes. Conversely, it is possible to put several small
logical volumes on the same physical volume. In all
cases, Pilot recognizes the comings and goings of physical
volumes (e.g., mounting a disk pack) and makes acces-
sible to client programs those logical volumes all of
whose pages are on-line.

Two examples which originally motivated the flexi-
bility of the volume machinery were database applica-
tions, in which a very large database could be cast as a
multi-disk-pack volume, and the CoPilot debugger,
which requires its own separate logical volume (see
Section 2.5), but must be usable on a single-disk machine.

2.2 Virtual Memory
The machine architecture on which Pilot runs defines

a simple linear virtual memory of up to 232 16-bit words.
All computations on the machine (including Pilot itself)
run in the same address space, which is unadorned with
any noteworthy features, save a set of three flags attached
to each page: referenced, written, and write-protected.
Pilot structures this homogenous address space into con-
tiguous runs of page called spaces, accessed through the
interface Space. Above the level of Pilot, client software
superimposes still further structure upon the contents of
spaces, casting them as client-defined data structures
within the Mesa language.

While the underlying linear virtual memory is con-
ventional and fairly straightforward, the space machin-
ery superimposed by Pilot is somewhat novel in its
design, and rather more powerful than one would expect
given the simplicity of the Space interface. A space is
capable of playing three fundamental roles:

83 Communicat ions February 1980
of Volume 23
the ACM Number 2

Allocation Entity. To allocate a region of virtual
memory, a client creates a space of appropriate size.

Mapping Entity. To associate information content
and backing store with a region of virtual memory, a
client maps a space to a region of some file.

Swapping Entity. The transfer of pages between pri-
mary memory and backing store is performed in units of
spaces.

Any given space may play any or all of these roles.
Largely because of their multifunctional nature, it is
often useful to nest spaces. A new space is always created
as a subspace of some previously existing space, so that
the set of all spaces forms a tree by containment, the root
of which is a predefined space covering all of virtual
memory.

Spaces function as allocation entities in two senses:
when a space is created, by calling Space.Create, it is
serving as the unit of allocation; if it is later broken into
subspaces, it is serving as an allocation subpool within
which smaller units are allocated and freed [19]. Such
suballocation may be nested to several levels; at some
level (typically fairly quickly) the page granularity of the
space mechanism becomes too coarse, at which point
finer grained allocation must be performed by higher
level software.

Spaces function as mapping entities when the oper-
ation Space.Map is applied to them. This operation
associates the space with a run of pages in a file, thus
defining the content of each page of the space as the
content of its associated file page, and propagating the
write-protection status of the file capability to the space.
At any given time, a page in virtual memory may be
accessed only if its content is well-defined, i.e., if exactly
one of the nested spaces containing it is mapped. If none
of the containing spaces is mapped, the fatal error
AddressFault is signaled. (The situation in which more
than one containing space is mapped cannot arise, since
the Space.Map operation checks that none of the ances-
tors or descendents of a space being mapped are them-
selves already mapped.) The decision to cast Address-
Fault and WriteProtectFault (i.e., storing into a write-
protected space) as fatal errors is based on the judgment
that any program which has incurred such a fault is
misusing the virtual memory facilities and should be
debugged; to this end, Pilot unconditionally activates the
CoPilot debugger (see Section 2.5).

Spaces function as swapping entities when a page of
a mapped space is found to be missing from primary
memory. The swapping strategy followed is essentially
to swap in the lowest level (i.e., smallest) space containing
the page (see Section 3.2). A client program can thus
optimize its swapping behavior by subdividing its
mapped spaces into subspaces containing items whose
access patterns are known to be strongly correlated. In
the absence of such subdivision, the entire mapped space
is swapped in. Note that while the client can always opt
for demand paging (by breaking a space up into one-
page subspaces), this is not the default, since it tends to

84

promote thrashing. Further optimization is possible us-
ing the Space.Activate operation. This operation advises
Pilot that a space will be used soon and should be
swapped in as soon as possible. The inverse operation,
Space.Deactivate, advises Pilot that a space is no longer
needed in primary memory. The Space.Kill operation
advises Pilot that the current contents of a space are of
no further interest (i.e., will be completely overwritten
before next being read) so that useless swapping of the
data may be suppressed. These forms of optional advice
are intended to allow tuning of heavy traffic periods by
eliminating unnecessary transfers, by scheduling the disk
arm efficiently, and by insuring that during the visit tO
a given arm position all of the appropriate transfers take
place. Such advice-taking is a good example of a feature
which has been deemed undesirable by most designers
of timesharing systems, but which can be very useful in
the context of a dedicated personal computer.

There is an intrinsic close coupling between Pilot's
file and virtual memory features: virtual memory is the
only access path to the contents of files, and files are the
only backing store for virtual memory. An alternative
would have been to provide a separate backing store for
virtual memory and require that clients transfer data
between virtual memory and files using explicit read/
write operations. There are several reasons for preferring
the mapping approach, including the following.

(1) Separating the operations of mapping and swapping
decouples buffer allocation from disk scheduling, as
compared with explicit file read/write operations.

(2) When a space is mapped, the read/write privileges
of the file capability can propagate automatically to
the space by setting a simple read/write lock in the
hardware memory map, allowing illegitimate stores
to be caught immediately.

(3) In either approach, there are certain cases that gen-
erate extra unnecessary disk transfers; extra "advice-
taking" operations like Space.Kill can eliminate the
extra disk transfers in the mapping approach; this
does not seem to apply to the read/write approach.

(4) It is relatively easy to simulate a read/write interface
given a mapping interface, and with appropriate use
of advice, the efficiency can be essentially the same.
The converse appears to be false.

The Pilot virtual memory also provides an advice-like
operation called Space.ForceOut, which is designed as
an underpinning for client crash-recovery algorithms. (It
is advice-like in that its effect is invisible in normal
operation, but becomes visible if the system crashes.)
ForceOut causes a space's contents to be written to its
backing file and does not return until the write is com-
pleted. This means that the contents will survive a sub-
sequent system crash. Since Pilot's page replacement
algorithm is also free to write the pages to the file at any
time (e.g., between ForceOuts), this facility by itself does
not constitute even a minimal crash recovery mechanism;
it is intended only as a "toehold" for higher level software

Communications February 1980
of Volume 23
the ACM Number 2

to use m providing transactional atomicity in the face of
system crashes.

2.3 Streams and I /O Devices
A Pilot client can access an I /O device in three

different ways:

(1) implicitly, via some feature of Pilot (e.g., a Pilot file
accessed via virtual memory);

(2) directly, via a low-level device driver interface ex-
ported from Pilot;

(3) indirectly, via the Pilot stream facility.

In keeping with the objectives of Pilot as an operating
system for a personal computer, most I /O devices are
made directly available to clients through low-level pro-
cedural interfaces. These interfaces generally do little
more than convert device-specific I /O operations into
appropriate procedure calls. The emphasis is on provid-
ing maximum flexibility to client programs; protection is
not required. The only exception to this policy is for
devices accessed implicitly by Pilot itself (e.g., disks used
for files), since chaos would ensue if clients also tried to
access them directly.

For most applications, direct device access via the
device driver interface is rather inconvenient, since all
the details of the device are exposed to view. Further-
more, many applications tend to reference devices in a
basically sequential fashion, with only occasional, and
usually very stylized, control or repositioning operations.
For these reasons, the Pilot stream facility is provided,
comprising the following components:

(1) The stream interface, which defines device independ-
ent operations for full-duplex sequential access to a
source/sink of data. This is very similar in spirit to
the stream facilities of other operating systems, such
as os6 [23] and UNIX [18].

(2) A standard for stream components, which connect
streams to various devices and /or implement "on-
the-fly" transformations of the data flowing through
them.

(3) A means for cascading a number of primitive stream
components to provide a compound stream.

There are two kinds of stream components defined
by Pilot: the transducer and the filter. A transducer is a
module which imports a device driver interface and
exports an instance of the Pilot Stream interface. The
transducer is thus the implementation of the basic se-
quential access facility for that device. Pilot provides
standard transducers for a variety of supported devices.
A filter is a module which imports one instance of the
Pilot standard Stream interface and exports another. Its
purpose is to transform a stream of data "on the fly"
(e.g., to do code or format conversion). Naturally, clients
can augment the standard set of stream components
provided with Pilot by writing filters and transducers of
their own. The Stream interface provides for dynamic
binding of stream components at runtime, so that a

Fig. 1. A pipeline of cascaded stream components,

Client ~ .. ~ Transducer Device

transducer and a set of filters can be cascaded to provide
a pipeline, as shown in Figure 1.

The transducer occupies the lowest position in the
pipeline (i.e., nearest the device) while the client program
accesses the highest position. Each filter accesses the next
lower filter (or transducer) via the Stream interface, just
as if it were a client program, so that no component need
be aware of its position in the pipeline, or of the nature
of the device at the end. This facility resembles the UNIX
pipe and filter facility, except that it is implemented
at the module level within the Pilot virtual memory,
rather than as a separate system task with its own address
space.

2.4 Communications

Mesa supports a shared-memory style of interprocess
communication for tightly coupled processes [11]. Inter-
action between loosely coupled processes (e.g., suitable to
reside on different machines) is provided by the Pilot
communications facility. This facility allows client pro-
cesses in different machines to communicate with each
other via a hierarchically structured family of packet
communication protocols. Communication software is
an integral part of Pilot, rather than an optional addition,
because Pilot is intended to be a suitable foundation for
network-based distributed systems.

The protocols are designed to provide communica-
tion across multiple interconnected networks. An inter-
connection of networks is referred to as an internet. A
Pilot internet typically consists of local, high bandwidth
Ethernet broadcast networks [15], and public and private
long-distance data networks like SBS, TELENET, TYMNET,
DDS, and ACS. Constituent networks are interconnected
by internetwork routers (often referred to as gateways in
the literature) which store and forward packets to their
destination using distributed routing algorithms [2, 4].
The constituent networks of an internet are used only as
a transmission medium. The source, destination, and
interuetwork router computers are all Pilot machines.
Pilot provides software drivers for a variety of networks;
a given machine may connect directly to one or several
networks of the same or different kinds.

Pilot clients identify one another by means of network
addresses when they wish to communicate and need not
know anything about the internet toplogy or each other's
locations or even the structure of a network address. In
particular, it is not necessary that the two communicators
be on different computers. If they are on the same
computer, Pilot will optimize the transmission of data
between them and will avoid use of the physical network
resources. This implies that an isolated computer (i.e.,

85 Communications February 1980
of Volume 23
the ACM Number 2

one which is not connected to any network) may still
contain the communications facilities of Pilot. Pilot
clients on the same computer should communicate with
one another using Pilot's communications facilities, as
opposed to the tightly coupled mechanisms of Mesa, if
the communicators are loosely coupled subsystems that
could some day be reconfigured to execute on different
machines on the network. For example, printing and file
storage server programs written to communicate in the
loosely coupled mode could share the same machine if
the combined load were light, yet be easily moved to
separate machines if increased load justified the extra
cost.

A network address is a resource assigned to clients
by Pilot and identifies a specific socket on a specific
machine. A socket is simply a site from which packets
are transmitted and at which packets are received; it is
rather like a post office box, in the sense that there is no
assumed relationship among the packets being sent and
received via a given socket. The identity of a socket is
unique only at a given point in time; it may be reused,
since there is no long-term static association between the
socket and any other resources. Protection against dan-
gling references (e.g., delivery of packets intended for a
previous instance of a given socket) is guaranteed by
higher level protocols.

A network address is, in reality, a triple consisting of
a 16-bit network number, a 32-bit processor ID, and a
16-bit socket number, represented by a system-wide
Mesa data type System.NetworkAddress. The internal
structure of a network address is not used by clients, but
by the communications facilities of Pilot and the inter-
network routers to deliver a packet to its destination.
The administrative procedures for the assignment of
network numbers and processor IDs to networks and
computers, respectively, are outside the scope of this
paper, as are the mechanisms by which clients find out
each others' network addresses.

The family of packet protocols by which Pilot pro-
vides communication is based on our experiences with
the Pup Protocols [2]. The Arpa Internetwork Protocol
family [8] resemble our protocols in spirit. The protocols
fall naturally into three levels:

Level 0: Every packet must be encapsuiated for
transmission over a particular communication medium,
according to the network-specific rules for that commu-
nication medium. This has been termed level 0 in our
protocol hierarchy, since its definition is of no concern
to the typical Pilot client.

Level 1: Level 1 defines the format of the internet-
work packet, which specifies among other things the
source and destination network addresses, a checksum
field, the length of the entire packet, a transport control
field that is used by internetwork routers, and a packet
type field that indicates the kind of packet defined at
level 2.

Level 2: A number of level 2 packet formats exist,
such as error packet, connection-oriented sequenced

packet, routing table update packet, and so on. Various
level 2 protocols are defined according to the kinds of
level 2 packets they use, and the rules governing their
interaction.

The Socket interface provides level l access to the
communication facilities, including the ability to create
a socket at a (local) network address, and to transmit and
receive internetwork packets. In the terms of Section 2.3,
sockets can be thought of as virtual devices, accessed
directly via the Socket (virtual driver) interface. The
protocol defining the format of the internetwork packet
provides end-to-end communication at the packet level.
The internet is required only to be able to transport
independently addressed packets from source to desti-
nation network addresses. As a consequence, packets
transmitted over a socket may be expected to arrive at
their destination only with high probability and not nec-
essarily in the order they were transmitted. It is the
responsibility of the communicating end processes to
agree upon higher level protocols that provide the ap-
propriate level of reliable communication. The Socket
interface, therefore, provides service similar to that pro-
vided by networks that offer datagram services [17] and
is most useful for connectionless protocols.

The interface NetworkStream defines the principal
means by which Pilot clients can communicate reliably
between any two network addreses. It provides access to
the implementation of the sequenced packet protocol--a
level 2 protocol. This protocol provides sequenced, du-
plicate-suppressed, error-free, flow-controlled packet
communication over arbitrarily interconnected commu-
nication networks and is similar in philosophy to the
Pup Byte Stream Protocol [2] or the Arpa Transmission
Control Protocol [3, 24]. This protocol is implemented as
a transducer, which converts the device-like Socket in-
terface into a Pilot stream. Thus all data transmission
via a network stream is invoked by means of the opera-
tions defined in the standard Stream interface.

Network streams provide reliable communication, in
the sense that the data is reliably sent from the source
transducer's packet buffer to the destination transducer's
packet buffer. No guarantees can be made as to whether
the data was successfully received by the destination
client or that the data was appropriately processed. This
final degree of reliability must lie with the clients of
network streams, since they alone know the higher level
protocol governing the data transfer. Pilot provides com-
munication with varying degrees of reliability, since the
communicating clients will, in general, have differing
needs for it. This is in keeping with the design goals of
Pilot, much like the provision of defensive rather than
absolute protection.

A network stream can be set up between two com-
municators in many ways. The most typical case, in a
network-based distributed system, involves a server (a
supplier of a service) at one end and a client of the service
at the other. Creation of such a network stream is
inherently asymmetric. At one end is the server which

86 Communications February 1980
of Volume 23
the ACM Number 2

advertises a network address to which clients can connect
to obtain its services. Clients do this by calling
NetworkStream.Create, specifying the address of the
server as parameter. It is important that concurrent
requests from clients not conflict over the server's net-
work address; to avoid this, some additional machinery
is provided at the server end of the connection. When a
server is operational, one of its processes listens for
requests on its advertised network address. This is done
by calling NetworkStream.Listen, which automatically
creates a new network stream each time a request arrives
at the specified network address. The newly created
network stream connects the client to another unique
network address on the server machine, leaving the
server's advertised network address free for the reception
of additional requests.

The switchover from one network address to another
is transparent to the client, and is part of the definition
of the sequenced packet protocol. At the server end, the
Stream.Handle for the newly created stream is typically
passed to an agent, a subsidiary process or subsystem
which gives its full attention to performing the service
for that particular client. These two then communicate
by means of the new network stream set up between
them for the duration of the service. Of course, the
NetworkStream interface also provides mechanisms for
creating connections between arbitrary network ad-
dresses, where the relationship between the processes is
more general than that of server and client.

The mechanisms for establishing and deleting a con-
nection between any two communicators and for guard-
ing against old duplicate packets are a departure from
the mechanisms used by the Pup Byte Stream Protocol
[2] or the Transmission Control Protocol [22], although
our protocol embodies similar principles. A network
stream is terminated by calling NetworkStream.Delete.
This call initiates no network traffic and simply deletes
all the data structures associated with the network
stream. It is the responsibility of the communicating
processes to have decided a priori that they wish to
terminate the stream. This is in keeping with the decision
that the reliable processing of the transmitted data ulti-
mately rests with the clients of network streams.

The manner in which server addresses are advertised
by servers and discovered by clients is not defined by
Pilot; this facility must be provided by the architecture
of a particular distributed system built on Pilot. Gener-
ally, the binding of names of resources to their addresses
is accomplished by means of a network-based database
referred to as a clearinghouse. The manner in which the
binding is structured and the way in which clearing-
houses are located and accessed are outside the scope of
this paper.

The communication facilities of Pilot provide clients
various interfaces, which provide varying degrees of
service at the internetworking level. In keeping with the
overall design of Pilot, the communication facility at-
tempts to provide a standard set of features which cap-

ture the most common needs, while still allowing clients
to custom tailor their own solutions to their communi-
cations requirements if that proves necessary.

2.5 Mesa Language Support
The Mesa language provides a number of features

which require a nontrivial amount of runtime support
[16]. These are primarily involved with the control struc-
ture of the language [10, l l] which allow not only
recursive procedure calls, but also coroutines, concurrent
processes, and signals (a specialized form of dynamically
bound procedure call used primarily for exception han-
dling). The runtime support facilities are invoked in
three ways:

(1) explicitly, via normal Mesa interfaces exported by
Pilot (e.g., the Process interface);

(2) implicitly, via compiler-generated calls on built-in
procedures;

(3) via traps, when machine-level op-codes encounter
exceptional conditions.

Pilot's involvement in client procedure calls is limited
to trap handling when the supply of activation record
storage is exhausted. To support the full generality of the
Mesa control structures, activation records are allocated
from a heap, even when a strict LIFO usage pattern is in
force. This heap is replenished and maintained by Pilot.

Coroutine calls also proceed without intervention by
Pilot, except during initialization when a trap handler is
provided to aid in the original setup of the coroutine
linkage.

Pilot's involvement with concurrent processes is
somewhat more substantial. Mesa casts process creation
as a variant of a procedure call, but unlike a normal
procedure call, such a FORK statement always invokes
Pilot to create the new process. Similarly, termination of
a process also involves substantial participation by Pilot.
Mesa also provides monitors and condition variables for
synchronized interprocess communication via shared
memory; these facilities are supported directly by the
machine and thus require less direct involvement of
Pilot.

The Mesa control structure facilities, including con-
current processes, are light weight enough to be used in
the fine-scale structuring of normal Mesa programs. A
typical Pilot client program consists of some number of
processes, any of which may at any time invoke Pilot
facilities through the various public interfaces. It is Pilot's
responsibility to maintain the semantic integrity of its
interfaces in the face of such client-level concurrency
(see Section 3.3). Naturally, any higher level consistency
constraints invented by the client must be guaranteed by
client-level synchronization, using monitors and condi-
tion variables as provided in the Mesa language.

Another important Mesa-support facility which is
provided as an integral part of Pilot is a "world-swap"
facility to allow a graceful exit to CoPilot, the Pilot/Mesa
interactive debugger. The world-swap facility saves the

87/ Communications February 1980
of Volume 23
the ACM Number 2

contents of memory and the total machine state and then
starts CoPilot from a boot-file, just as if the machine's
bootstrap-load button had been pressed. The original
state is saved on a second boot-file so that execution can
be resumed by doing a second world-swap. The state is
saved with sufficient care that it is virtually always
possible to resume execution without any detectable
perturbation of the program being debugged. The world-
swap approach to debugging yields strong isolation be-
tween the debugger and the program under test. Not
only the contents of main memory, but the version of
Pilot, the accessible volume(s), and even the microcode
can be different in the two worlds. This is especially
useful when debugging a new version of Pilot, since
CoPilot can run on the old, stable version until the new
version becomes trustworthy. Needless to say, this ap-
proach is not directly applicable to conventional multi-
user time-sharing systems.

Fig. 2. Major components of Pilot.

Pilot Client(s)

Network Streams

Sockets

Router

Network Drivers

Mesa Support (High-level)

Mesa Support (Low-level)

Virtual Memory Manager

I File Manager

Swapper

Filer

Machine

3. Implementation

The implementation of Pilot consists of a large num-
ber of Mesa modules which collectively provide the client
environment as decribed above. The modules are
grouped into larger components, each of which is respon-
sible for implementing some coherent subset of the over-
all Pilot functionality. The relationships among the ma-
jor components are illustrated in Figure 2.

Of particular interest is the interlocking structure of
the four components of the storage system which together
implement files and virtual memory. This is an example
of what we call the manager/kernel pattern, in which a
given facility is implemented in two stages: a low-level
kernel provides a basic core of function, which is ex-
tended by the higher level manager. Layers interposed
between the kernel and the manager can make use of
the kernel and can in turn be used by the manager. The
same basic technique has been used before in other
systems to good effect, as discussed by Habermann et al.
[6], who refer to it as "functional hierarchy." It is also
quite similar to the familiar "policy/mechanism" pattern
[1, 25]. The main difference is that we place no emphasis
on the possibility of using the same kernel with a variety
of managers (or without any manager at all). In Pilot,
the manager/kernel pattern is intended only as a fruitful
decomposition tool for the design of integrated mecha-
nisms.

3.1 Layering of the Storage System Implementation
The kernel/manager pattern can be motivated by

noting that since the purpose of Pilot is to provide a
more hospitable environment than the bare machine, it
would clearly be more pleasant for the code implement-
ing Pilot if it could use the facilities of Pilot in getting its
job done. In particular, both components of the storage
system (the file and virtual memory implementations)
maintain internal databases which are too large to fit in

primary memory, but only parts of which are needed at
any one time. A client-level program would simply place
such a database in a file and access it via virtual memory,
but if Pilot itself did so, the resulting circular depend-
encies would tie the system in knots, making it unreliable
and difficult to understand. One alternative would be
the invention of a special separate mechanism for low-
level disk access and main memory buffering, used only
by the storage system to access its internal databases.
This would eliminate the danger of circular dependency
but would introduce more machinery, making the system
bulkier and harder to understand in a different sense. A
more attractive alternative is the extraction of a stream-
lined kernel of the storage system functionality with the
following properties:

(1) It can be implemented by a small body of code which
resides permanently in primary memory.

(2) It provides a powerful enough storage facility to
significantly ease the implementation of the remain-
der of the full-fledged storage system.

(3) It can handle the majority of the "fast cases" of
client-level use of the storage system.

Figure 2 shows the implementation of such a kernel
storage facility by the swapper and the filer. These two
subcomponents are the kernels of the virtual memory
and file components, respectively, and provide a reason-
ably powerful environment for the nonresident subcom-
ponents, the virtual memory manager, and the file man-
ager, whose code and data are both swappable. The
kernel environment provides somewhat restricted virtual
memory access to a small number of special files and to
preexisting normal files of fixed size.

The managers implement the more powerful opera-
tions, such as file creation and deletion, and the more
complex virtual memory operations, such as those that

88 Communications February 1980
of Volume 23
the ACM Number 2

traverse subtrees of the hierarchy of nested spaces. The
most frequent operations, however, are handled by the
kernels essentially on their own. For example, a page
fault is handled by code in the swapper, which calls the
filer to read the appropriate page(s) into memory, adjusts
the hardware memory map, and restarts the faulting
process.

The resident data structures of the kernels serve as
caches on the swappable databases maintained by the
managers. Whenever a kernel finds that it cannot per-
form an operation using only the data in its cache, it
conceptually "passes the buck" to its manager, retaining
no state information about the failed operation. In this
way, a circular dependency is avoided, since such failed
operations become the total responsibility of the man-
ager. The typical response of a manager in such a
situation is to consult its swappable database, call the
resident subcomponent to update its cache, and then
retry the failed operation.

The intended dynamics of the storage system imple-
mentation described above are based on the expectation
that Pilot will experience three quite different kinds of
load.

(1) For short periods of time, client programs will have
their essentially static working sets in primary mem-
ory and the storage system will not be needed.

(2) Most of the time, the client working set will be
changing slowly, but the description of it will fit in
the swapper/filer caches, so that swapping can take
place with little or no extra disk activity to access the
storage system databases.

(3) Periodically, the client working set will change dras-
tically, requiring extensive reloading of the caches as
well as heavy swapping.

It is intended that the Pilot storage system be able to
respond reasonably to all three situations: In case (1), it
should assume a low profile by allowing its swappable
components (e.g., the managers) to swap out. In case (2),
it should be as efficient as possible, using its caches to
avoid causing spurious disk activity. In case (3), it should
do the best it can, with the understanding that while
continuous operation in this mode is probably not viable,
short periods of heavy traffic can and must be optimized,
largely via the advice-taking operations discussed in
Section 2.2.

3.2 Cached Databases of the Virtual Memory
Implementation

The virtual memory manager implements the client
visible operations on spaces and is thus primarily con-
cerned with checking validity and maintaining the da-
tabase constituting the fundamental representation be-
hind the Space interface. This database, called the hier-
archy, represents the tree of nested spaces defined in
Section 2.2. For each space, it contains a record whose
fields hold attributes such as size, base page number, and
mapping information.

The swapper, or virtual memory kernel, manages
primary memory and supervises the swapping of data
between mapped memory and files. For this purpose it
needs access to information in the hierarchy. Since the
hierarchy is swappable and thus off limits to the swapper,
the swapper maintains a resident space cache which is
loaded from the hierarchy in the manner described in
Section 3.1.

There are several other data structures maintained
by the swapper. One is a bit-table describing the alloca-
tion status of each page of primary memory. Most of the
bookkeeping performed by the swapper, however, is on
the basis of the swap unit, or smallest set of pages
transferred between primary memory and file backing
storage. A swap unit generally corresponds to a " leaf '
space; however, if a space is only partially covered with
subspaces, each maximal run of pages not containing
any subspaces is also a swap unit. The swapper keeps a
swap unit cache containing information about swap units
such as extent (first page and length), containing mapped
space, and state (mapped or not, swapped in or out,
replacement algorithm data).

The swap unit cache is addressed by page rather than
by space; for example, it is used by the page fault handler
to find the swap unit in which a page fault occurred. The
content of an entry in this cache is logically derived from
a sequence of entries in the hierarchy, but direct imple-
mentation of this would require several file accesses to
construct a single cache entry. To avoid this, we have
chosen to maintain another database: the projection. This
is a second swappable database maintained by the virtual
memory manager, containing descriptions of all existing
swap units, and is used to update the swap unit cache.
The existence of the projection speeds up page faults
which cannot be handled from the swap unit cache; it
slows down space creation/deletion since then the pro-
jection must be updated. We expect this to be a useful
optimization based on our assumptions about the relative
frequencies and CPU times of these events; detailed
measurements of a fully loaded system will be needed to
evaluate the actual effectiveness of the projection.

An important detail regarding the relationship be-
tween the manager and kernel components has been
ignored up to this point. That detail is avoiding "recur-
sive" cache faults; when a manager is attempting to
supply a missing cache entry, it will often incur a page
fault of its own; the handling of that page fault must not
incur a second cache fault or the fault episode will never
terminate. Basically the answer is to make certain key
records in the cache ineligible for replacement. This
pertains to the space and swap unit caches and to the
caches maintained by the filer as well.

3.3 Process Implementation
The implementation of processes and monitors in

Pilot/Mesa is summarized here; more detail can be found
in [11].

89 Communications February 1980
of Volume 23
the ACM Number 2

The task of implementing the concurrency facilities
is split roughly equally among Pilot, the Mesa compiler,
and the underlying machine. The basic primitives are
defined as language constructs (e.g., entering a MONITOR,
WAITing on a CONDITION variable, FORKing a new
PROCESS) and are implemented either by machine
op-codes (for heavily used constructs, e.g., WAIT) or by
calls on Pilot (for less heavily used constructs, e.g., FORK).
The constructs supported by the machine and the low-
level Mesa support component provide procedure calls
and synchronization among existing processes, allowing
the remainder of Pilot to be implemented as a collection
of monitors, which carefully synchronize the multiple
processes executing concurrently inside them. These
processes comprise a variable number of client processes
(e.g., which have called into Pilot through some public
interface) plus a fixed number of dedicated system pro-
cesses (about a dozen) which are created specially at
system initialization time. The machinery for creating
and deleting processes is a monitor within the high-level
Mesa support component; this places it above the virtual
memory implementation; this means that it is swappable,
but also means that the rest of Pilot (with the exception
of network streams) cannot make use of dynamic process
creation. The process implementation is thus another
example of the manager/kernel pattern, in which the
manager is implemented at a very high level and the
kernel is pushed down to a very low level (in this case,
largely into the underlying machine). To the Pilot client,
the split implementation appears as a unified mechanism
comprising the Mesa language features and the opera-
tions defined by the Pilot Process interface.

3.4 File System Robustness
One of the most important properties of the Pilot file

system is robustness. This is achieved primarily through
the use of reconstructable maps. Many previous systems
have demonstrated the value of afile scavenger, a utility
program which can repair a damaged file system, often
on a more or less adhoc basis [5, 12, 14, 21]. In Pilot, the
scavenger is given first-class citizenship, in the sense that
the file structures were all designed from the beginning
with the scavenger in mind. Each file page is self-iden-
tifying by virtue of its label, written as a separate physical
record adjacent to the one holding the actual contents of
the page. (Again, this is not a new idea, but is the crucial
foundation on which the file system's robustness is
based.) Conceptually, one can think of a file page access
proceeding by scanning all known volumes, checking the
label of each page encountered until the desired one is
found. In practice, this scan is performed only once by
the scavenger, which leaves behind maps on each volume
describing what it found there; Pilot then uses the maps
and incrementally updates them as file pages are created
and deleted. The logical redundancy of the maps does
not, of course, imply lack of importance, since the system
would be not be viable without them; the point is that
since they contain only redundant information, they can

be completely reconstructed should they be lost. In par-
ticular, this means that damage to any page on the disk
can compromise only data on that page.

The primary map structure is the volume file map, a
B-tree keyed on (file-uid, page-number) which returns
the device address of the page. All file storage devices
check the label of the page and abort the I /O operation
in case of a mismatch; this does not occur in normal
operation and generally indicates the need to scavenge
the volume. The volume file map uses extensive com-
pression of uids and run-encoding of page numbers to
maximize the out-degree of the internal nodes of the B-
tree and thus minimize its depth.

Equally important but much simpler is the volume
allocation map, a table which describes the allocation
status of each page on the disk. Each free page is a self-
identifying member of a hypothetical file of free pages,
allowing reconstruction of the volume allocation map.

The robustness provided by the scavenger can only
guarantee the integrity of files as defined by Pilot. If a
database defined by client software becomes inconsistent
due to a system crash, a software bug, or some other
unfortunate event, it is little comfort to know that the
underlying file has been declared healthy by the scav-
enger. An "escape-hatch" is therefore provided to allow
client software to be invoked when a file is scavenged.
This is the main use of the file-type attribute mentioned
in Section 2.1. After the Pilot scavenger has restored the
low-level integrity of the file system, Pilot is restarted;
before resuming normal processing, Pilot first invokes all
client-level scavenging routines (if any) to reestablish
any higher level consistency constraints that may have
been violated. File types are used to determine which
files should be processed by which client-level scaven-
gers.

An interesting example of the first-class status of the
scavenger is its routine use in transporting volumes
between versions of Pilot. The freedom to redesign the
complex map structures stored on volumes represents a
crucial opportunity for continuing file system perform-
ance improvement, but this means that one version of
Pilot may fred the maps left by another version totally
inscrutable. Since such incompatibility is just a particular
form of "damage," however, the scavenger can be in-
voked to reconstruct the maps in the proper format, after
which the corresponding version of Pilot will recognize
the volume as its own.

3.5 Communication Implementation
The software that implements the packet communi-

cation protocols consists of a set of network-specific
drivers, modules that implement sockets, network stream
transducers, and at the heart of it all, a router. The router
is a software switch. It routes packets among sockets,
sockets and networks, and networks themselves. A router
is present on every Pilot machine. On personal machines,
the router handles only incoming, outgoing, and intra-

90 Communications February 1980
of Volume 23
the ACM Number 2

machine packet traffic. On internetwork router ma-
chines, the router acts as a service to other machines by
transporting internetwork packets across network
boundaries. The router's data structures include a list of
all active sockets and networks on the local computer.
The router is designed so that network drivers may easily
be added to or removed from new configurations of
Pilot; this can even be done dynamically during execu-
tion. Sockets come and go as clients create and delete
them. Each router maintains a routing table indicating,
for a given remote network, the best internetwork router
to use as the next "hop" toward the final destination.
Thus, the two kinds of machines are essentially special
cases of the same program. An internetwork router is
simply a router that spends most o f its time forwarding
packets between networks and exchanging routing tables
with other internetwork routers. On personal machines
the router updates its routing t ab leby querying internet-
work routers or by overhearing their exchanges over
broadcast networks.

Pilot has taken the approach of connecting a network
much like any other input /output device, so that the
packet communication protocol software becomes part
o f the operating system and operates in the same personal
computer. In particular, Pilot does not employ a dedi-
cated front-end communications processor connected to
the Pilot machine via a secondary interface.

Network-oriented communication differs from con-
ventional input /output in that packets arrive at a com-
puter unsolicited, implying that the intended recipient is
unknown until the packet is examined. As a conse-
quence, each incoming packet must be buffered initially
in router-supplied storage for examination. The router,
therefore, maintains a buffer pool shared by all the
network drivers. I f a packet is undamaged and its desti-
nation socket exists, then the packet is copied into a
buffer associated with the socket and provided by the
socket's client.

The architecture of the communication software per-
mits the computer supporting Pilot to behave as a user's
personal computer, a supplier of information, or as a
dedicated internetwork router.

4. Conclusion

The context of a large personal computer has moti-
vated us to reevaluate many design decisions which
characterize systems designed for more familiar situa-
tions (e.g., large shared machines or small personal com-
puters). This has resulted in a somewhat novel system
which, for example, provides sophisticated features but
only minimal protection, accepts advice from client pro-
grams, and even boot-loads the machine periodically in
the normal course of execution.

Aside from its novel aspects, however, Pilot's real
significance is its careful integration, in a single relatively
compact system, of a number of good ideas which have
previously tended to appear individually, often in sys-
tems which were demonstration vehicles not intended to
support serious client programs. The combination of
streams, packet communications, a hierarchical virtual
memory mapped to a large file space, concurrent pro-
gramming support, and a modular high-level language,
provides an environment with relatively few artificial
limitations on the size and complexity of the client
programs which can be supported.

Acknowledgmen t s . The primary design and imple-
mentation of Pilot were done by the authors. Some of
the earliest ideas were contributed by D. Gifford, R.
Metcalfe, W. Shultz, and D. Stottlemyre. More recent
contributions have been made by C. Fay, R. Gobbel, F.
Howard, C. Jose, and D. Knutsen. Since the inception
of the project, we have had continuous fruitful interac-
tion with all the members of the Mesa language group;
in particular, R. Johnsson, J. Sandman, and J. Wick
have provided much of the software that stands on the
border between Pilot and Mesa. We are also indebted to
P. Jarvis and V. Schwartz, who designed and imple-
mented some of the low-level input /output drivers. The
success of the close integration of Mesa and Pilot with
the machine architecture is largely due to the talent and
energy of the people who designed and built the hard-
ware and microcode for our personal computer.

Received June 1979; accepted September 1979; revised November 1979

3.6 The Implementation Experience
The initial construction of Pilot was accomplished by

a fairly small group of people (averaging about 6 to 8) in
a fairly short period of time (about 18 months). We feel
that this is largely due to the use of Mesa. Pilot consists
of approximately 24,000 lines of Mesa, broken into about
160 modules (programs and interfaces), yielding an av-
erage module size of roughly 150 lines. The use of small
modules and minimal intermodule connectivity, com-
bined with the strongly typed interface facilities of Mesa,
aided in the creation of an implementation which
avoided many common kinds of errors and which is
relatively rugged in the face of modification. These issues
are discussed in more detail in [7] and [13].

References
1. Brinch-Hansen, P. The nucleus of a multiprogramming system.
Comm. ACM 13, 4 (April 1970), 238-241.
2. Boggs, D.R., Shoch, J.F., Taft, E., and Metcalfe, R.M. Pup: An
internetwork architecture. To appear in 1EEE Trans. Commun.
(Special Issue on Computer Network Architecture and Protocols).
3. Cerf, V.G., and Kahn, R.E. A protocol for packet network
interconnection. IEEE Trans. Commun. COM-22, 5 (May 1974), 637-
641.
4. Cerf, V.G., and Kirstein, P.T. Issues in packet-network
interconnection. Proc. IEEE 66, 11 (Nov. 1978), 1386-1408.
5. Farber, D.J., and Heinrich, F.R. The structure of a distributed
computer system: The distributed file system. In Proc. 1st Int. Conf.
Computer Communication, 1972, pp. 364-370.
6. Habermann, A.N., Flon, L., and Cooprider, L. Modularization
and hierarchy in a family of operating systems. Comm. A CM 19, 5
(May 1976), 266-272.
7. Horsley, T.R., and Lynch, W.C. Pilot: A software engineering

91 Communications February 1980
of Volume 23
the ACM Number 2

case history. In Proc. 4th Int. Conf. Software Engineering, Munich,
Germany, Sept. 1979, pp. 94-99.
8. lnternet Datagram Protocol, Version 4. Prepared by USC/
Information Sciences Institute, for the Defense Advanced Research
Projects Agency, Information Processing Techniques Office, Feb.
1979.
9. Lampson, B.W. Redundancy and robustness in memory
protection. Proc. IFIP 1974, North Holland, Amsterdam, pp. 128-
132.
10. Lampson, B.W., Mitchell, J.G., and Satterthwaite, E.H. On the
transfer of control between contexts. In Lecture Notes in Computer
Science 19, Springer-Verlag, New York, 1974, pp. 181-203.
!1. Lampson, B.W., and Redell, D.D. Experience with processes and
monitors in Mesa. Comm. A C M 23, 2 (Feb. 1980), 105-117.
12. Lampson, B.W., and Sproull, R.F. An open operating system for
a single user machine. Presented at the ACM 7th Symp. Operating
System Principles (Operating Syst. Rev. 13, 5), Dec. 1979, pp. 98-105.
13. Lauer, H.C., and Satterthwaite, E.H. The impact of Mesa on
system design. In Proc. 4th Int. Conf. Software Engineering, Munich,
Germany, Sept. 1979, pp. 174-182.
14. Lockemann, P.C., and Knutsen, W.D. Recovery of disk contents
after system failure. Comm. A C M 11, 8 (Aug. 1968), 542.
15. Metcalfe, R.M., and Boggs, D.R. Ethernet: Distributed packet
switching for local computer networks. Comm. A C M 19, 7 (July
1976), pp. 395-404.
16. Mitchell, J.G., Maybury, W., and Sweet, R. Mesa Language
Manual. Tech. Rep., Xerox Palo Alto Res. Cir., 1979.
17. Pouzin, L. Virtual circuits vs. datagrams--technical and political
problems. Proc. 1976 NCC, AFIPS Press, Arlington, Va., pp. 483-
494.
18. Ritchie, D.M., and Thompson, K. The UNIX time-sharing
system. Comm. A C M 17, 7 (July 1974), 365-375.
19. Ross, D.T. The AED free storage package. Comm. A C M 10, 8
(Aug. 1967), 481-492.
20. Rotenberg, Leo J. Making computers keep secrets. Tech. Rep.
MAC-TR-115, MIT Lab. for Computer Science.
21. Stern, J.A. Backup and recovery of on-line information in a
computer utility. Tech. Rep. MAC-TR-116 (thesis), M1T Lab. for
Computer Science, 1974.
22. Sunshine, C.A., and Dalal, Y.K. Connection management in
transport protocol. Comput. Networks 2, 6 (Dec. 1978), 454-473.
23. Stoy, J.E., and Strachey, C. OS6--An experimental operating
system for a small computer. Comput. J. 15, 2 and 3 (May, Aug.
1972).
24. Transmission Control Protocol, TCP, Version 4. Prepared by
USC/Information Sciences Institute, for the Defense Advanced
Research Projects Agency, Information Processing Techniques Office,
Feb. 1979.
25. Wulf, W., et. al. HYDRA: The kernel o fa multiprocessor
operating system. Comm. A C M 17, 6 (June 1974), 337-345.

Operating
Systems

R. Stockton Gaines
Editor

Medusa: An
Expe.riment in .
Distributed Operating
System Structure
John K. Ousterhout, Donald A. Scelza, and
Pradeep S. Sindhu
Carnegie-Mellon University

The design of Medusa, a distributed operating
system for the Cm* multimicroprocessor, is discussed.
The Cm* architecture combines distribution and
sharing in a way that strongly impacts the organization
of operating systems. Medusa is an attempt to
capitalize on the architectural features to produce a
system that is modular, robust, and efficient. To provide
modularity and to make effective use of the distributed
hardware, the operating system is partitioned into
several disjoint utilities that communicate with each
other via messages. To take advantage of the
parallelism present in Cm* and to provide robustness,
all programs, including the utilities, are task forces
containing many concurrent, cooperating activities.

Key Words and Phrases: operating systems,
distributed systems, message systems, task forces,
deadlock, exception reporting

CR Categories: 4.32, 4.35

92

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This research was supported by the Department of Defense Ad-
vanced Research Projects Agency, ARPA Order 3597, monitored by
the Air Force Avionics Laboratory under Contract F33615-78-C-1551.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Re-
search Projects Agency or the U.S. Government.

Authors' present addresses: J.K. Ousterhout and P.S. Sindhu,
Department of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA 15213; D.A. Scelza, PRIME Computer, Inc., Old Connect-
icut Path, Framingham, MA 01701.
© 1980 ACM 0001-0782/80/0200-0092 $00.75.

Communications February 1980
of Volume 23
the ACM Number 2

