A General Approach to Network Configuration Verification

Ryan Beckett

Princeton University

Ratul Mahajan

Microsoft Research & Intentionet

ABSTRACT

We present Minesweeper, a tool to verify that a network satis-
fies a wide range of intended properties such as reachability or
isolation among nodes, waypointing, black holes, bounded path
length, load-balancing, functional equivalence of two routers, and
fault-tolerance. Minesweeper translates network configuration files
into a logical formula that captures the stable states to which the
network forwarding will converge as a result of interactions be-
tween routing protocols such as OSPF, BGP and static routes. It
then combines the formula with constraints that describe the in-
tended property. If the combined formula is satisfiable, there exists
a stable state of the network in which the property does not hold.
Otherwise, no stable state (if any) violates the property. We used
Minesweeper to check four properties of 152 real networks from
a large cloud provider. We found 120 violations, some of which
are potentially serious security vulnerabilities. We also evaluated
Minesweeper on synthetic benchmarks, and found that it can verify
rich properties for networks with hundreds of routers in under five
minutes. This performance is due to a suite of model-slicing and
hoisting optimizations that we developed, which reduce runtime
by over 460x for large networks.

CCS CONCEPTS
« Networks — Network reliability;

KEYWORDS

Network verification; Control plane analysis

ACM Reference format:

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A
General Approach to Network Configuration Verification. In Proceedings of
SIGCOMM 17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098834

1 INTRODUCTION

The control plane of traditional (non-SDN) networks is a complex
distributed system. Network devices use one or more protocols to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-4653-5/17/08...$15.00
https://doi.org/10.1145/3098822.3098834

Aarti Gupta

Princeton University

David Walker

Princeton University

exchange information about topology and paths to various destina-
tions. How they process this information and select paths to use for
traffic depends on their local configuration files. These files tend to
have thousands of lines of low-level directives, which makes it hard
for humans to reason about them and even harder to reason about
the network behavior that emerges through their interactions.

As a result, configuration errors that lead to costly outages are
all-too-common. Indeed, every few months configuration-induced
outages at major networks make the news [1, 5, 29, 32]. Systematic
surveys also show that configuration error is the biggest contributor
to such network outages [20, 26].

To address this problem, researchers have developed many tools
for finding errors in network configurations. We broadly classify
these tools along two dimensions: i) network design coverage—types
of network topologies, routing protocols and other features the tool
supports; and ii) data plane coverage—how many (or how much) of
the possible data planes the tool can analyze. The network control
plane dynamically generates different data planes as its environ-
ment (i.e., up/down status of links and routing announcements
received from external neighbors) changes. Tools with higher data
plane coverage can analyze more such data planes.

Some of the earliest network diagnostic tools such as traceroute
and ping can help find configuration errors by analyzing whether
and how a given packet reaches its destination. These tools are
simple and have high network design coverage—they can analyze
forwarding for any network topology or routing protocol. But they
have poor data plane coverage—for each run, they analyze the
forwarding behavior for only a single packet for the data plane that
is currently installed in the network.

A more recent class of data plane analysis tools such as HSA [18]
and Veriflow [19] have better data plane coverage. They can analyze
reachability for all packets between two machines, rather than just
one packet. However, the data plane coverage of such tools is still
far less than ideal because they analyze only the data plane that
is currently installed in the network. That is, they can only find
errors after the network has produced the erroneous data plane.

Control plane analysis tools such as Batfish [13] can find con-
figuration errors proactively, before deploying potentially buggy
configurations. Batfish takes the network configuration (i.e., its con-
trol plane) and a specific environment (e.g., a link-failure scenario)
as input and analyzes the resulting data plane. This ability allows
operators to go beyond the current data plane and analyze future
data planes that may arise under different environments. Still, each
run of Batfish allows users to explore at most one data plane, and
given the large number of possible environments, it is intractable
to guarantee correctness for all possible data planes.

Most recently, several control plane analysis tools have gone
from testing individual data planes to verification—that is, reasoning

https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3098822.3098834

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Data Plane Control Plane
A Analysis Analysis
0] HSA]
8’ Veriflow Batfish Minesweeper
P .
) o
> q
) Ping ERA
O [Traceroute
c o
(o)
G ARC
o o
o
X
S Bagpipe
% ®
bz
I R B L

Single Single Controllable Multiple All
packet dataplane dataplane dataplanes data planes

Data Plane Coverage

Figure 1: Landscape of network analysis tools.

about many or all data planes that can be generated by the control
plane. However, each such tool trades network design coverage for
higher data plane coverage. For instance, while Bagpipe [34] can
symbolically simulate the message-passing semantics of BGP in
all possible environments, it assumes that the network is a single
autonomous system (AS) connected in an iBGP full mesh, and does
not model any internal routing. Another tool, ARC [14], translates
configurations to a weighted graph where the weighted-shortest
paths capture the network forwarding behavior. A single run of
ARC can efficiently analyze multiple data planes by considering the
consequences of all possible failures but not all possible sets of exter-
nal routing messages. Further, many networks, such as those using
iBGP or using certain features such as BGP local preference can not
be reduced to simple weighted graphs. ERA [11] compactly repre-
sents a concrete set of control plane messages using binary decision
diagrams (BDDs) and propagates this set along a path through the
network by transforming the set as dictated by the network con-
figuration. In this way, ERA can efficiently check reachability in
certain large symbolic environments (e.g., the environment with
all possible eBGP advertisements), but using ERA to verify config-
urations in the face of all environments is an open problem [11].
Further, the path-based approach of ERA cannot faithfully analyze
reachability for certain networks such as those running iBGP.

In summary then, while there has been great progress toward
analyzing network configurations, a fundamental scientific question
is still open:

Is it possible to build a verification tool that achieves
both high network design coverage and high data plane
coverage while remaining scalable enough to enable
verification of many real networks?

We answer this question in the affirmative by developing a con-
figuration verification tool called Minesweeper. Figure 1 situates
Minesweeper and prior tools with respect to network design and
data plane coverage. Minesweeper has both high network design
coverage in that it works for a large collection of network protocols,

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

features and topologies as well as high data plane coverage in that
it can verify a large number of properties for all possible data planes
that might emerge from the control plane.

The main challenge in developing Minesweeper was scaling such
a general tool. We addressed it by combining the following ideas
from networking and verification literature:

Graphs (not paths). Most existing tools reason about individual
network paths. While this approach has proven effective for state-
less data plane analysis (e.g., HSA [18]), it creates substantial prob-
lems for control plane analysis. The distinction is that, in stateless
data planes, packets on one path never interfere with those on a
different path; but in the control plane, two route announcements
can interfere. A routing message along one path may be less pre-
ferred than a message over another path, causing it to be dropped
when the other message is present. For accuracy, interactions along
all paths must be modeled, but there can be an intractably large
number of paths. We avoid this problem by using a graph-based
model, where rich logical constraints on its edges and nodes encode
all possible interactions of route messages.

In addition to its better accuracy, our model can verify a much
richer set of properties, expressed over graphs, rather than over
paths alone. For example, it can reason about equivalence of routers,
load balancing, disjointedness of routing paths, and if multiple paths
to the same destination have equal lengths. Such properties are
difficult or impossible for path-based models to check, and we show
that they are valuable in finding bugs in real configurations.

Combinational search (not message set computation). Exist-
ing tools that analyze multiple environments [11, 34] eagerly com-
pute the sets of routing messages that can reach various points
in the network. However, these full sets are not typically needed
and computing them is expensive. Fortunately, the symbolic model
checking community has encountered this type of problem before.
Rather than iteratively computing sets of messages, one can instead
ask for a satisfying assignment to a logical formula that represents
all possible message interactions. Suppose a variable x,, ; repre-
sents whether a message m reaches a location [in the network and
N encodes the network semantics logically. If there exists a satis-
tying assignment to the formula N A x,,, ;=true, then m can reach
I and all the constraints N imposed by interacting messages are
also satisfied. The advantage of this formula-based approach is that
while model checking with message set computation is PSPACE-
complete [7, 30], the search for a satisfying assignment in the related
bounded model checking problem [6] is NP-complete. The intuition
behind lower complexity is that searching for a satisfying assign-
ment avoids computing many intermediate message sets. In practice
too, modern SAT [23] and SMT (Satisfiability Modulo Theories) [9]
solvers routinely solve large instances of such combinational search
problems in hardware and software verification.

Stable paths problem. To realize an approach based on graphs and
combinational search, we need to convert the distributed message-
passing of the control plane into an equivalent logical formula.
Here, we turn to the work of Griffin et al. [16], who showed that
network control planes (BGP in particular) solve the stable paths
problem, and these paths can be described by constraints on edges.
Consequently, rather than encoding message exchanges, we can

A General Approach to Network Configuration Verification

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Figure 2: (a) An example network. (b) Its protocol-level decomposition. (c) Routing information flow for BGP at R1.

encode the corresponding set of edge constraints in our formula,
such that satisfiable assignments correspond to stable paths in the
control plane. Our formula captures all possible environments as
symbolic variables, and we add constraints related to properties of
interest to perform verification.

Slicing and hoisting optimizations. Our default encoding of
the network control plane produces large formulas that cannot
be solved quickly for real networks. We have designed a range of
highly effective optimizations that reduce the number of variables
and constraints in our generated formulae enormously. One class
of optimizations is slicing, which analyzes the formula to remove
variables and constraints that cannot affect the final outcome. A
second class of optimizations is hoisting, which lifts repeated com-
putations out of their logical context and precomputes them once.
Intuitively, such optimizations are effective because real networks
have simpler control planes than the theoretical worst case. For
instance, in theory, messages can be arbitrarily modified when sent
to neighbors (implying the need for different variables for messages
to different neighbors), but in practice the same message is sent to
multiple neighbors (allowing shared variables). Similarly, while dif-
ferent routers may have arbitrarily different control plane logic in
theory, in practice many routers share parts of their configurations.

We implement the concepts above in Minesweeper, and apply
it to many real and synthetic networks. Across the 152 small- and
medium-sized networks that we analyzed for four properties, we
found 120 violations. One class of violations poses a serious se-
curity threat: the management interface IP of the routers could
be “hijacked" by external neighbors by sending specific routing
announcements. Our experiments with synthetic networks show
that Minesweeper can verify rich properties such as many-to-one
reachability, bounded path length, and device equivalence in under
5 minutes on networks with 100s of routers. Our optimizations are
key to this performance. They help reduce verification time by a
factor of up to 460x for large networks.

2 MOTIVATION

Our approach represents two significant departures from existing
work on configuration analysis: i) using constraint-based graphs,
instead of source-destination paths; and ii) using combinational
search, instead of eagerly computing message sets. This section
provides intuition behind these choices.

2.1 Paths vs. graphs

Consider the network in Figure 2(a). It has three internal routers,
R1 to R3, that run OSPF. It connects to three external neighbors, N1
to N3, via BGP. The internal routers are connected to subnets, S1 to
S3, whose address prefixes they redistribute into OSPF and BGP. R1
and R2 connect via iBGP, to share the BGP routes they hear from
N[1..3]. They also redistribute BGP destinations into OSPF, so that
R3 can reach those destinations, and OSPF into BGP so that internal
subnets are announced externally. The BGP preferences of R1 and
R2 are as shown: R1 (R2) prefers routes through N2, N1, and N3
(N3, N2, N1) in that order. Recall that in BGP, when multiple routes
are available to the same destination, a router will select and share
the most preferred one according to the local configuration.

Suppose we want to ensure that the subnet S3 uses N1 to reach
any external destination even when all three of N1, N2 and N3
announce a path to that destination. Does this property hold in
our network? The correct answer is positive, but interestingly, the
answer a configuration analysis tool delivers depends on the so-
phistication with which it reasons about the interactions of control
plane messages on different paths.

o If the analysis only considers the path N1-R1-R3, it will conclude
that the property holds. R1 will select the route through N1 since
no other route is available and pass it to R3. Thus, R3 (and S3)
will send traffic through N1. (Data flows in the opposite direction
to routing information.)

If the analysis additionally considers the routing path N2-R2-
R1-R3 (which interferes with the first path at router R1), it will
conclude that the property does not hold. R1 will select the route
through N2 and thus the route through N1 will not reach R3.

If the analysis also considers N3-R2-R1-R3 (which interferes
with the second path at R2 and the first path at R1), it will con-
clude once again that the property holds. R2 will select the route
through N3, and thus R1 will select and propagate to R3 the route
through N1.

In the general case, all possible paths can interfere with one
another, and for correct analysis, all mutual interactions should
be considered. But the number of paths can be enormous: O(V%)
where V and E are the number of nodes and edges (and thus % is
the average node degree). Existing path-based tools circumvent this
problem by restricting the networks they can analyze (e.g., Bagpipe)
or conducting a potentially unsound analysis (e.g., ERA).

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Our model avoids this problem by constructing a compact rep-
resentation for all possible paths—a graph. The complexity of this
structure is O(V + E). Our graph accurately (and symbolically) mod-
els all interactions between different paths and supports a richer
set of properties (described later).

2.2 Message sets vs. combinational search

One possible approach to control plane verification is to simulate
all possible outcomes of the distributed control plane computation
by computing (symbolic) sets of messages for all destinations. Once
all outcomes of the control plane computation have been computed,
one can analyze the complete set of possible final states and judge
if the property of interest holds. Unfortunately, this approach often
leads to a lot of unnecessary work.

In many cases, computing a full solution to the control plane
computation is often unnecessary as the validity of the property
may not depend upon many parts of that solution. In contrast, our
approach encodes both the network and the property in question
as a logical formula. As an SMT solver searches for a satisfying
assignment to the formula, it will take the property into account.
If the property does not require knowledge of some aspects of the
control plane, the search process may ignore that part of the model.
For example, if router R3 had an ACL that drops traffic sent to
R1, then the solver might quickly learn that S3 will not be able to
reach N1 without reasoning about the full control plane behavior.
In §8, we show that many properties can be checked much more
efficiently for this reason.

In addition, approaches that compute message sets represent
and store all possible outcomes of the control plane’s full fixed
point computation and they find all violations of the property. In
contrast, our approach searches for just one outcome of the control
plane computation that violates the given property. The latter can
be done extremely efficiently by modern SMT solvers in many
domains. While our approach will not find all violations at once,
finding just one violation can help pinpoint a bug. When that bug
has been fixed, one can apply the procedure again.

3 THE BASIC NETWORK MODEL

Our goal is to enable network operators to verify the behavior of
their network under any possible environment. To provide this
capability, we model the network with respect to a packet as a func-
tion of its environment. Because the packet and the environment are
symbolic, our model can verify the control and data plane behavior
of the network relevant to any packet under any environment.

More specifically, we generate F, a system of SMT constraints
defined as the conjunction of N, the behavior of the network, given
the current configurations of all routers, and —P, a negated property
of interest to the operator. Satisfying solutions for N correspond to
stable forwarding paths in the network. Thus, any stable solution
(even among multiple ones) that violates the property will be re-
ported as a satisfying solution for F. However, if F is unsatisfiable,
then either all stable paths satisfy the property, or the network has
no stable paths for the destination(s) of interest.

This section describes the techniques we use to generate a basic
network model N using Figure 2 as an example. We explain, in turn,
how to model (1) a data packet, (2) the interactions between routing

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

l Variable [Description [Rep.
Data plane
dstlp Packet destination IP addr [0, 2%2)
srclp Packet source IP addr [0, 23%)
dstPort Packet destination port [0, 2%)
srcPort Packet source port [0, 216)
protocol Packet Protocol [0, 2%)
Control plane
prefix, Prefix for record r [0, 22)
length, Prefix length for r [0,2°)
ad, Administrative distance for r | [0, 25)
Ip, BGP local preference for r [0,2%?)
metric, Protocol metric for r [0, 21%)
med, BGP MED attribute for r [0, 2%2)
rid, Neighbor router ID for r [0,2%?)
bgplnternal, Was r learned via iBGP 1 bit
valid, Is the record r valid 1 bit
Decision
controlfwdy y | x fwds to y (ignores ACLs) 1 bit
datafwdy x fwds to y (includes ACLs) 1 bit
Topology
failedy, y Is the link from x to y failed | [0,1]

Figure 3: Selected symbolic variables from the model

protocols, (3) the control plane information, (4) the import filters in
router configurations, (5) the route selection process, (6) the export
filters in configurations, and (7) the access control lists that apply to
data packets. We end this section with (8) an example encoding of
a property P. Throughout this section, we refer to Figure 3, which
lists the main symbolic variables used in our generated formulae. §4
discusses extensions to the basic network model, and §5 discusses
many additional properties.

(1) Modeling data plane packets. The first section of Figure 3
lists several of the variables used to represent a symbolic data packet.
The packet’s destination IP is modeled by an integer variable dstIP,
which ranges from 0 to 232—1. We model other fields similarly. If
operators wish to ask about a specific destination, such as 10.0.0.0,
they may issue a query that constrains our model to consider only
packets with that destination (e.g., using the formula dstIP = 10.0.0.0
in their property P). If they instead wish to ask about packets with
any destination IP, they may leave the dstIP field unconstrained.
Traditional (non-SDN) networks do not typically modify packet
headers' —they only forward or block them. Consequently, we use
only one, global copy of each of these variables in our formula.

In order to determine what happens to such packets in the net-
work, we must, of course, model the control plane protocols and
how they decide to forward packets.

(2) Modeling protocol interactions. Routers commonly run mul-
tiple protocol instances, each of which operates independently and
selects a best route for a destination prefix based on the information
from its remote peers and redistribution from other, local routing
instances. Figure 2(b) presents a protocol-level view of the internal

!Except for TTL and CRC fields, which we do not currently model.

A General Approach to Network Configuration Verification

routers in our example. Routers R1 and R2 run BGP to exchange
routes with the outside world and OSPF to communicate internally.
CON denotes connected routes, i.e., those known through a directly
connected interface. We model them as if they are another protocol
to avoid special cases.

Figure 2(c) zooms into R1’s BGP instance. Each node is a protocol
instance and each edge represents information flow between two
instances. For example, the nodes R1pspr and Rlpgp represent
protocols OSPF and BGP on router R1. Since OSPF redistributes
into BGP, and vice versa, there are edges back and forth between
R1pspr and R1pgp. The outgoing edge from R1coy indicates that
the connected routes are redistributed into BGP. Since R1 uses
BGP with the external neighbor N1 and R2, there are edges in both
directions between Rlggp and N1 and R2pgp.

(3) Encoding control plane information. To model the control
plane, we need to encode the information in the messages ex-
changed by protocol instances. We do so using records of symbolic
values, which roughly correspond to protocol messages. As with
the data packets, constraints may map these variables to specific
concrete values (e.g., the prefix 10.1.0.0/24) or may leave them fully
or partially unconstrained.

Unlike the single symbolic data packet, there are many control
plane records in our encoding. The edge labels in Figure 2(c) indicate
the presence of a specific record. Consider the edge between R2pgp
and R1pgp. The label e4 represents the message exported by R2’s
BGP process on the link to R1; and the label in4 represents the
message after traversing R1’s BGP import filter on the link from R2.
Naturally, the messages defined by in4 and e4 are closely related.
We encode the relationship using SMT constraints generated from
import filters in R1’s configuration.

Routing messages from the environment are represented as
records from an external neighbor. For example, the record ey is the
export from neighbor N1. When left unconstrained, it represents
the fact that N1 could send any message.

The second section of Figure 3 lists the main fields of symbolic
control plane records. Each record is for a destination prefix of a
particular length. Announcements for that prefix are annotated with
the administrative distance (ad). When multiple protocol instances
offer a route to the same prefix, this measure (which is configured
for each protocol) determines which one is used for forwarding.
These records also contain the local preference (Ip) for BGP, and
the metric. The metric is a protocol-specific measure of the quality
of the route. For instance, it is path length for BGP and path cost for
OSPF. When routes are redistributed from one protocol to another,
the configuration determines the initial metric that the router will
use. The router id (rid) is used to break ties among equally-good
routes. Other protocol-specific attributes such as the BGP multi-exit
discriminator (med), and whether a BGP route was learned via iBGP
(bgpInternal), are included in each such symbolic record. Finally,
every record contains one special boolean field, called valid. If valid
is true, then a message is present and the remaining contents of the
record are meaningful; otherwise, they are not meaningful (e.g., no
message arrives at this location).

Because we are interested in the behavior with respect to a single
symbolic packet, we only want to consider control plane messages
for prefixes that impact this packet. The valid field of a control

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

if e4.valid A failedr; r2 = 0 then
if - (FBM(e4.prefix, 192.168.0.0, 16) A
16 < e4.length < 32)

then
ing.valid = true
inglp = 120

ing.ad = eq.ad
ing.prefix = e4.prefix
ing length = e4.length
ing.bgpInternal = true

else ing.valid = false
else ing.valid = false

Figure 4: Translation of the R1 to R2 BGP import filter

plane record will be true if and only if i) a message is present (e.g.,
advertised from a neighbor and not filtered), and ii) the control
plane destination prefix applies to the data plane destination IP of
the packet of interest. We capture the latter dependence with the
following constraint:

e.valid = FBM(e.prefix, dstIP, e.length)

The function FBM (first bits match) tests for equality of the
first e.length bits of the prefix (e.prefix) and destination IP, thus
capturing the semantics of prefix-based forwarding.?

(4) Encoding import filters. Each router configuration defines
(possibly per neighbor) filters that can either drop or modify proto-
col messages. As an example, consider the following configuration
fragment for router R1.

ip prefix_list L deny 192.168.0.0/16 le 32

ip prefix_list L allow

route-map M 10
match ip address prefix-list L
set local-preference 120

This fragment blocks control plane announcements for any prefix
that matches the first 16 bits of 192.168.0.0, and has prefix length
between 16 and 32. It sets the local preference attribute to 120
for any other prefix. Assuming R1’s BGP process is configured
with this fragment as an import filter, we use it to constrain the
relationship between the symbolic records e4 and ing4 in Figure 2(c).
More specifically, the filter is realized by the formula shown in
Figure 4. The first line in this formula ensures that there can be an
advertisement at ing4 only if R2 exports an advertisement to e4 and
the R1-R2 link is not failed. The second condition implements the
import filter. If the two conditions are met, then information from
R2 will arrive at R1. Hence, we set the valid bit of ing4, constrain
the local preference to 120, and constrains in4’s other fields to be
the same as e4’s. In all other cases, no advertisement arrives at R1,
so its valid bit is set to false.

2The constraint FBM(p;,p2,n) is surprisingly tricky to encode efficiently. A naive
solution that represents p; and p; as bit-vectors of size 32 is slow. See §6 for an
efficient solution.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

if bestpgp.valid A failedp; r2 = 0 then
if - bestpgp.bgpInternal A bestggp.length + 1 < 255
then
outs.valid = true
outs.lp = bestggp.lp
outs.ad = bestggp.ad
outs.prefix = bestggp.prefix
outs.length = bestggp.length + 1

else outs.valid = false
else outs.valid = false

Figure 5: Translation of the R1 to R2 BGP export filter

Such translation of import filters to symbolic constraints can
also capture route redistribution between protocols. Users can set
custom metric and administrative distance values for route redistri-
bution, which would be updated as before.

(5) Encoding route selection. Each protocol instance selects a
best route for each IP prefix among those available.> For example,
the routes available to R1ggp include routes from its neighbors
and thus defined by the status of the symbolic records ing, iny, ins,
and in7. The available routes are ordered by the decision process
in a standard way. For instance, BGP first prefers the route with
the highest administrative distance, and if those are equal, the
highest local preference, then highest metric, etc. We implement
this ordering via a relation r; < r2, which may be read as “rq is at
least as preferred as ry.” The selected route is the one that is both
available (the valid bit is set) and highest in the ordering. Logically,
our encoding introduces a new symbolic record bestpyot for each
protocol instance prot. Each such record is equated with the highest
available route in the order. For instance, for R1pgp, if no input in;
is valid then bestggp is not valid. Otherwise:

\/ bestpgp = inj
i€(2,4,5,7}

/\ bestggp <in; A
i€(2,4,5,7}

This constraint states that best record is less than or equal to all
alternatives and equal to at least one of them.

Each router installs only one route in its data plane, which is
then used to forward traffic. Thus, it chooses a best route among
all routing protocols. Once again, this can be modeled with a new
symbolic record bestgyeral, Which is similarly constrained to be the
best among all the bestpyot records.

To represent the final forwarding decision of the router, we
introduce a new boolean variable controlfwdy y for each edge in
the network between routers x and y. The variable indicates that
router x decides to forward traffic for the destination to router
y. Intuitively, router x will decide to forward to router y if the
message received from y is equal to the best choice. For example, to
determine if R1 will forward to R2, we use the following constraint:

controlfwdg Rz = (es4.valid A e4 = bestgyerall)

3 Assume for now that a single best route is selected. We outline the extension for
multipath routing in §4.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

(6) Encoding route export. After selecting a best route, each
protocol will export messages to each of its peers after potentially
processing these messages through peer-specific export filters. Fig-
ure 5 shows the route export constraint for R1pgp’s export to R2pgp
assuming the default export filter. The encoding of route export is
similar to that of an import filter, but with some differences. First,
the export constraint will connect the record for the protocol’s
best route (bestggp) with a record on an outgoing edge of a router
(e.g., outs). Second, the route export constraint accounts for the fact
that iBGP routes should not be re-exported to other iBGP peers by
checking if the best route was learned via iBGP. Third, the path
metric is updated according to the protocol (e.g., adding 1 for BGP).
Finally, the route is only exported if the new path metric does not
overflow the maximum protocol path length (e.g., 255 for BGP).

(7) Encoding data plane constraints. Although routers decide
how to forward packets in the control plane through their decision
process, the actual data plane forwarding behavior can differ due
to the presence of an access control list (ACL), which lets a router
block traffic directly in the data plane. To handle ACLs, we create
additional variables to represent the final data plane forwarding
behavior of the network. For each variable controlfwdx,y, we create
a corresponding datafwdy y variable. The data plane forwarding
will be the same as the control plane forwarding modulo any ACLs.
For example, consider the following ACL:

access-list 1 deny ip 172.10.1.0 0.0.0.255

The mask 0.0.0.255 signifies the wildcard bits for the match. This
ACL will thus block any packets that match destination IP 172.10.1*
in the data plane. This constraint is captured by first translating
the ACL to a formula and then conjoining it with the control plane
decision in the following way:

datafwdgrj r2 = controlfwdg; r2 A = FBM(dstIP, 172.10.1.0, 24)

(8) Encoding properties. While the model above captures the
joint impact of all possible network interactions, to verify properties
of interest we can instrument it with additional variables as needed.
For example, suppose we wish to check that router R3 can reach
N1 regardless of any advertisements received from neighbors N2
and N3. For each router x in the network, we add a variable reachy
representing that x can reach the destination subnet. For R1, which
is directly connected to N1, we add:

canReachr; < datafwdry N1

For every other router, we say it can reach N1 if it can forward to
some neighbor that can reach N1. For router R3:

canReachp; < (datafwdrs g A canReachg)
Re{R1}

Since we are interested in checking that the property holds for
any possible packet, we leave the packet fields (e.g., dstIp) uncon-
strained. Finally, we would assert the negation of the property we
are interested in, namely ~canReachps and ask the solver to prove
unsatisfiability, thereby ensuring that the property holds for all
packets and environments.

A General Approach to Network Configuration Verification

4 GENERALIZING THE MODEL

This section describes how we encode several additional features
of network configurations.

Link-state protocols. In link-state protocols, such as OSPF and
ISIS, routers share information about the cost and state (up or down)
of each link. Each router then builds a global view of the network
and computes the least-cost path to each destination. These least-
cost paths are a special case of stable paths. Each router along the
shortest path will send traffic to a neighbor only if that neighbor
has a path to the destination and no other neighbor offers a lower
cost path. Based on this observation, we model link-state protocols
the same way as path-vector protocols, using configured link costs.

Distance-vector protocols. Like link-state protocols, distance-
vector protocols such as RIP also compute a shortest path tree.
However, unlike link-state protocols, they do so without maintain-
ing a global view of the network, instead passing information about
path length to the destination between neighbors. We can model the
solution to a distance vector protocol the same way as for link-state
protocols but where each link has a weight of 1.

Static routes. Static routes are used to tell a router to always for-
ward to a particular next hop IP address, or out a particular in-
terface. As with connected routes, we model static routes as their
own routing instance that makes forwarding decisions based on
the destination IP address. By modeling static routes this way, we
can treat them similarly to other protocols and easily model route
redistribution where static routes are injected into other protocols.

Aggregation. Aggregation, in which routers announce a less-specific
prefix that covers many, more-specific prefixes, helps reduce the
size of the routing tables. We model aggregation as a modification
to the prefix length attribute. If a prefix is valid for the destination IP
address before aggregation, it remains valid after aggregation, but
with a shorter prefix length. For example, if a /24 prefix is relevant
for the packet’s destination IP then so is its aggregated /16 prefix.

Multipath routing. The encoding in §3 assumed that routers se-
lect a single best path, but multipath routing, where traffic is spread
over multiple equally-good routes to balance load, is common in
modern networks. To encode multipath routing, we relax the best
route comparison so that it does not compare the router ID. This
relaxation no longer requires a total ordering of preferred routes,
and any route as good as the best route will be used.

BGP communities. BGP communities are strings that can be at-
tached to (or removed from) route advertisements. We model com-
munities using a new variable communityy . for each router x and
community ¢ that appears in some router’s configuration. Vendors
allow community values to be added or removed arbitrarily by any
router. We encode the semantics of these transformations simply by
updating the value of community,, . according to the import/export
filters at the router.

iBGP. Modeling iBGP is challenging because it introduces cross-
destination dependencies through recursive lookup. In order to
determine the forwarding behavior for a particular packet p over
a network using iBGP, one first has to determine the forwarding
behavior for each user-defined next-hop destination IP address
configured between iBGP peers. For example, if router A has no

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

IGP route to router B’s iBGP-configured next-hop IP address, then
the peers can not exchange BGP advertisements about packet p.

To model iBGP, we create N additional copies of the network
where N is the number of routers configured to run iBGP. Each
copy of the network encodes the forwarding behavior for a packet
destined to the next-hop IP address associated with one of the
iBGP-configured routers. We add the constraint that router A only
propagates routes to router B over an iBGP connection if A can
reach B in the network copy corresponding to B’s configured next-
hop destination IP address.

The variable (bgpInternal) indicates whether or not a route was
learned from an iBGP peer. Routes learned via iBGP are allowed to
be exported to eBGP peers but not to other iBGP peers. If a router
decides to forward traffic to an iBGP peer, we lookup the actual IGP
forwarding behavior from the copy of the network corresponding
to that neighbor’s next hop destination IP address.

Route reflectors. Route reflectors help scalably disseminate iBGP
information among BGP routers by acting as an intermediary. To
model route reflectors, we use a slightly modified scheme from that
described above for iBGP. Each symbolic record includes a variable
(originatorld) indicating the router that initially sent the advertise-
ment. Routes are then exported according the the route-reflector
semantics (e.g., route reflectors reflect routes with a Non-Client
originatorld to Clients). Client routers then lookup next-hop for-
warding reachability based on the copy of the network correspond-
ing to the value of originatorld. Loops (e.g., those prevented with
the CLUSTER_ID attribute) are handled similarly to BGP (see §6).

Multi-exit discriminator (MED). The MED attribute of BGP
routes allows an AS to indicate preferences for paths for incom-
ing traffic (i.e., “cold potato” routing). There are multiple ways in
which MEDs may be used by a router depending on the configu-
ration options and router vendor. In one usage, the MED values
are compared independent of the next-hop AS. We model this case
by ensuring that MEDs are compared when computing the best
route (e.g., bestggp.med < inj.med). In another usage, the MED
values are compared only for routes with the same next hop AS.
To model this case, we first add a variable to each symbolic control
plane record that “remembers" what neighboring AS the route was
learned from. The import function from an external neighbor will
set the value of the next hop AS. The best route constraints then
only compare the MED when the AS is the same. For example, we
generate the constraint:

(bestggp.asn # inj.asn) V (bestggp.med < inj.med)

In yet another usage, the age of a route determines the route com-
parison order, which means that routes with worse MED values may
be chosen over those with better values even when the routes have
the same next hop AS. Rather than model the age of each route, we
overapproximate this behavior by selecting any best route without
comparing MEDs.

MEDs are also non-transitive, i.e., the AS that receives them does
not export them to other ASes. We model non-transitivity similarly
to iBGP. We add a variable indicating whether a MED was learned
from an external peer, or set within the current AS. Routes with
MEDs learned from a peer are not exported to other ASes.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Design Decisions and Limitations. Our verification approach is
general and flexible, but it does have limitations. The most critical
design choice involves the fact that our system describes the stable
solutions to which the control plane will converge; it does not
simulate the execution of the control plane as a message-passing
system. This choice improves performance, but it also means we
give up the possibility of verifying properties about transient states
of the network, prior to convergence. Other verification tools such
as ERA [11] and ARC [14] share this limitation.

A second important design decision is that we only consider
elements of the control plane that influence the forwarding deci-
sions pertaining to a single symbolic packet at a time. As a result,
it is more expensive to model a few features that introduce depen-
dencies among destinations. For example, it is possible for static
routes to specify a next hop IP address that does not belong to a
directly-connected interface, thereby requiring the model to under-
stand how to route to that next hop. In this case, we must create
a separate copy of every control plane variable to determine the
forwarding for a second packet corresponding to the next hop ad-
dress. Likewise, modeling iBGP requires one additional copy of
every control plane variable for every router configured with iBGP.
This additional complexity appears inherent since such features
introduce cross-destination dependencies. We are not aware of any
other verification tool that models them at all.

5 PROPERTIES

As noted earlier, our model allows us to express a range of properties
using SMT constraints. We now show how to encode some common
properties of interest.

Reachability and isolation. We focus on answering reachability
queries for a fixed destination port and set of source routers. To an-
swer such a query, each router x is instrumented with an additional
variable canReachy representing the fact that the router can reach
the destination port. We then add constraints as in §3. Isolation is
checked by asserting that a collection of routers are not reachable.

One benefit of the graph-based encoding is that queries can
involve many routers at once and the solver will analyze their
joint impact. For example, to check if two routers r; and ry can
both either reach or not reach the destination, one would assert
canReach,, <= canReach,,. Similarly, the user can check if all
routers from a set S can reach the destination in a single query by
checking: A ses canReachg.

In contrast, in existing data plane and control plane verification
tools, to answer questions about reachability between all pairs of n
devices, one is often required to run n® separate queries, which can
be very expensive [27].

Waypointing. Suppose we want to verify that traffic will traverse
a chain of devices my, . .., mg. Rather than adding one variable for
each router as with reachability, instead we add k variables for each
router to indicate how much of the service chain has been matched.
If a router forwards to neighbor m; and its (j — 1)th variable is true,
then the jth variable must be true for that router. Routers where
the kth variable is true will send traffic through the service chain.

Bounded or equal path length. In many settings, it is desirable to
guarantee that traffic follows paths of certain length. For example,

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

total
< / totalg, R3
OUt1 ° °® e Out3)

? ‘ 4 Bad ACL / out;
@ 0 0 O
\@/ (@) S @fj ®)

Figure 6: Example networks for encoding (a) multipath con-
sistency, and (b) load balancing.

é O (2
AN

totaIR;\‘

for a data center with a folded-Clos topology, an operator may wish
to ensure that traffic never traverses a path longer than four hops.
A violation of such an invariant likely indicates a configuration
bug. Similarly, the operator may want to ensure that all top-of-rack
routers in a pod use equal length paths to the destination.

Similar to reachability, path length is easily instrumented in
the model by adding a new integer variable for each router in
the network. Each router has path length n to the destination if it
forwards to some neighbor with path length n — 1.

Disjoint paths. It is possible to ensure that two different routers
use edge-disjoint paths to a destination. Given two routers, we add
two bits to each edge indicating whether either router ever forwards
through that edge. A constraint then states that both bits are never
set for any edge. A similar approach can be used to guarantee that
paths do not share nodes or other shared-risk elements (e.g., fiber
conduits), by introducing a variable for each risk factor.

Forwarding loops. Forwarding loops in the network can arise
from configuration errors when using features like route redistri-
bution and static routes. To detect forwarding loops for a particular
router r, we add a single control bit to say whether each other
router will eventually send traffic through r. If r sends traffic to any
neighbor with this bit true, then there will be a forwarding loop.
As an optimization, we analyze configurations to identify routers
where a forwarding loop is possible (e.g., due to the presence of
static routes). We then add control bits only for these routers.

Black holes. Black holes occur when traffic is dropped because it
arrives at a router that does not have a corresponding forwarding
entry. This behavior may be intentional (e.g., in the case of ACLs)
or unintentional. We can find black holes by checking if any router
has a neighbor that forwards to it, yet the router itself does not
forward to any neighbor.

Multipath consistency. Batfish [13] introduced a property called
multipath consistency, which ensures that traffic along all paths
from a source is treated the same. A violation of multipath consis-
tency occurs when traffic is dropped along one path but not the
other. Consider the example in Figure 6(a). Router R1 is configured
to use multipath routing, yet an ACL on router R3 prevents traffic
from using the link to R5. We encode multipath consistency as

A General Approach to Network Configuration Verification

follows.

canReachgry = ARe(r2,R3)
(controlfwdpy,p =
datafwdpy,r A canReachp)

canReachpz =

The first constraint says that if R1 can reach the destination
S at all, then forwarding to R2 (R3) in the control plane implies
that R2 (R3) should also be able to reach the destination, and this
also aligns with forwarding in the data plane to R2 (R3). In the
example presented in Figure 6(a) this constraint will fail since R3
cannot reach the destination, due to the bad ACL to R5. Suppose
now that R3 can also use multipath routing, and can therefore reach
the destination via R4 (shown as the dotted edge). Now the first
constraint at R1 will succeed, but the second constraint for R3 will
fail, because R3 can forward through R4 but not through R5.

Neighbor or path preferences. Operators often want to enforce
preferences among external neighbors based on commercial rela-
tionships. For example it is common to prefer routes learned from
customers over peers over providers. Given a router R with three
edges to neighbors n1, n2, and n3 with import records el, e2, and
e3, we can verify that n1 is preferred over n2 over n3 in the follow-
ing way. For each neighbor, we add a constraint that, if a message
survives the import filter, and all other more preferred neighbor
advertisements do not, then the presence of the message implies
that we will choose that neighbor in the selection process:

el.valid = controlfwdp N1
—el.valid A e2.valid = controlfwdp N
—el.valid A —e2.valid A e3.valid = controlfwdg N3

This type of reasoning can be lifted to entire paths. For example
suppose we want to verify that the network prefers to use path; =
X1,...,Xm Over pathy = y1, ..., y,. What we want to check is that
if the less preferred path is used, then the more preferred path was
not available:

n—1 m—1
/\ controlfwdy, y,., = \/ —e;.valid
i=1 i=1

That is, whenever traffic flows along path; it is because path; is
not available due the advertisement being rejected along one of
the edges. A straightforward generalization of the above can help
enforce preferences over classes of neighbors, instead of individual
neighbors.

Load balancing. Consider the example network in Figure 6b. Sup-
pose router R1 is configured to use ECMP to send traffic to R2 and
R4. We can roughly model the effect of load distribution with the
following steps. First, for each router R in the network we intro-
duce a symbolic real number called totalr representing the portion
of traffic going through R. For each source router of interest (e.g.,
R1 and R3), we set the load to some initial value based on traffic
measurements (e.g., 1.0 in this example):

totalg; = 1.0 A totalgz = 1.0

For each outgoing interface in the network, we add a variable out;
representing the fraction of the load sent out that interface, which

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

depends on the forwarding behavior.

outy = if datafwdg; g4 then x else 0.0
outy = if datafwdgy gy then x else 0.0
totalg; = out; + outp

Each interface’s load is equal to the (same) value defined by a single
new variable x if traffic is forwarded out the interface, otherwise it
is 0. This new variable x ensures the loads are all equal.* The total
at non-source routers is simply the sum of their incoming totals:

totalgy = outy + outs

Now we can ask questions about the load on each node/edge. For
example, we can check that the difference between the loads on R2
and R4 is always within some threshold k:

—k < totalg, — totalgy < k

Aggregation and leaking prefixes. We can ensure that prefixes
are aggregated properly (e.g., a /32 is not leaked to an external
network) by checking: whenever the network advertises record e
to an external neighbor, then e.length = [where [is prefix length
after aggregation.

Local equivalence. In many networks (e.g., data centers), several
devices will perform a similar “role" (e.g., aggregation router) and
have similar configurations. Checks for equivalence can help de-
tect inconsistencies. For example, we might want to know that a
particular community value is always attached to advertisements
sent to external neighbors.

Because we fully model each router’s interactions with all of its
neighbors, we can check if two routers are behaviorally equivalent
for some notion of equivalence. In particular, we ask if given equal
environments (i.e., peer advertisements), the routers will make the
same forwarding decisions and export the same new advertisements.
For example, if two routers R1 and R2 both have the same two peers
P1 and P2 with import records in; and iny, and output records out;
and outy, then we check the following:

(out; = outy) A
(datafwde,pl = datadeRz’Pl) A
(datafwdpy, py = datafwdgy, p2)

iny = iny -

Full equivalence. It is also possible to check full equivalence be-
tween two sets of router configurations. This is done in a similar
way as the local equivalence check, by first making two separate
copies of the network encoding, and then relating the environments.
As before, we check that all the final data plane forwarding deci-
sions and all exports to neighboring networks must be the same as
a result.

Fault tolerance. Configurations that work correctly in the absence
of failures may no longer work correctly after one or more links
fail. For each property above, we can verify that it holds for up to k
failures by adding the following constraint on the number of links
that are failed:
failedy, 4 < k
(x,y) €edges

4This could be easily extended to weighted ECMP by scaling x by a constant according
to the fraction of traffic split.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Because link failures are part of the network model, the solver
will learn facts about the impact of failures on the rest of the net-
work control plane. This behavior means that properties involving
failures can often be checked more efficiently than iterating over
failure cases using a failure-free model (i.e., verifying a property
multiple times independently, once for each failure case).

Fault-invariance testing. We can use the same strategy as full
equivalence checking to instead check if the same property holds
in a single network regardless of failures. For example, even if we
do not know whether two routers should be able to reach one
another (a possible problem when analyzing networks without
specifications), we can check that the two routers are reachable if
and only if they are reachable after any single failure. Such a test
can find instances where network behavior differs after failures. To
check fault-invariance with respect to a property P, we create two
copies of the network. For the first copy, we require that there are
no failures. For the second copy, we allow there to be any k failures.
We then check that P holds in the first copy of the network exactly
when it holds in the second copy.

6 OPTIMIZATIONS

While conceptually simple, the naive encoding of the control plane
described in §3 does not scale to large networks. We present two
types of optimizations that dramatically improve the performance
of the control-plane encoding.

6.1 Hoisting

Hosting lifts repeated computations outside their logical context
and precomputes them once. Two main optimizations of this class
that we use are:

Prefix elimination. Our naive encoding does not scale well in
large part because of the constraints of the form FBM(p1, p2, n),
which checks that two symbolic variables have the first n bits in
common. The natural way to represent p1 and p2 for this check
is to use 32-bit bitvectors and check for equality using a bit mask.
However, bitvectors are expensive and solvers typically convert
them to SAT. In our model, this would introduce up to 128 new
variables for every topology edge in the network (4 records per edge)
thereby introducing an enormous number of additional variables.
To avoid this complexity, we observe that the prefix received
from a neighbor does not actually need to be represented explicitly.
In particular, because we know (symbolically) the destination IP
address of the packet and the prefix length, there is a unique valid,
corresponding prefix for the destination IP. For example, if the
destination IP is 172.18.0.4 and the prefix length is /24, and the route
is valid for the destination, then the prefix must be 172.18.0.0/ 245,
However, we must still be able to check if a prefix is matched
by a router’s import or export filter. Somewhat unintuitively, we
can safely replace any filter on the destination prefix with a test
on the destination IP address directly, thereby avoiding the need to
explicitly model prefixes. Consider the following prefix filter:
ip prefix_list L allow 192.168.0.0/16 ge 24 le 32

Its semantics is that it succeeds only if the first 16 bits of 192.168.0.0
match the prefix, and the prefix length is greater than or equal to 24

5 Alternatives such as 172.18.0.1/24 are treated identically.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

and less than or equal to 32. In general, for a prefix filter of the form
P/A ge B le C tobe well formed, vendors require that A < B < C.
A simple translation of this for SMT record e is:

FBM(e.prefix, 192.168.0.0, 16) A (24 < elength < 32)

Suppose now, we replace the test on the prefix contained in the
control plane advertisement with a test directly on the destination
IP address of a packet of interest:

FBM(dstIP, 192.168.0.0, 16) A (24 < elength < 32)

There are two cases to consider. First, if e.length is not between
24 and 32, then both tests fail, so they are equivalent. Suppose
instead, e length is in this range. Recall that, because we are con-
sidering a slice of the network with respect to the destination IP
address, for the advertisement corresponding to e to be valid, it
must be the case that the prefix contains the destination IP. That is:
FBM(e.prefix, dstIP, e.length). However, because we know the prefix
length falls in the range between 24 and 32, it must be greater than
16. Since the first bits up to the prefix length are common between
the destination IP and the prefix, the first 16 bits must also be the
same. Therefore the above substitution is equivalent.

Further, because the test FBM is now purely in terms of constants
in the configuration (not the symbolic prefix length variable), we
can represent the destination variable as an integer and implement
the test using the efficient theory of integer difference logic (IDL).
Thus, we would test that:

(192.168.0.0 < dstIP < 192.168.0.0 + 232716) A
(16 < eg.length < 32)

Loop detection. In protocols that support policy-based routing
(e.g., BGP), path length alone does not suffice to prevent loops. For
this reason, BGP tracks the ASNs (autonomous system numbers)
of networks along the advertised path and routers reject paths
with their own ASN. We can model this by maintaining, for each
BGP router, a control bit saying whether or not the advertised
path already went through that router. However, doing so can be
expensive since the number of control bit variables grows with
the square of the number of routers. Instead, we observe that any
BGP router that uses only default local preferences (i.e., only makes
decisions based on path length) will never select a route where it is
already part of the AS path. This is because the path containing the
loop is strictly longer than the path without the loop. For example,
if AS 1 uses shortest path routing only, then the AS path 1213
can never arise in our model since AS 1 would prefer the path 1
3 instead. Similarly, BGP local preferences for external neighbors
and for iBGP peers will not create loops. This optimization makes
it possible to forgo modeling loops in most cases.

6.2 Network Slicing

Slicing removes bits from the encoding that are unnecessary for
the final solution. We use the following slicing optimizations:

e Remove symbolic variables that never influence the decision
process. For example, if BGP routers never set a local preference,
then the local preference attribute will never affect the decision
and can be removed.

o Keep a single copy of import and export variables for an edge
when there is no import filter on the edge. The two variable sets
will simply be copies of each other.

A General Approach to Network Configuration Verification

D
o

o
)

201

Total Time (ms)

1K Lines of Configuration

ms)

Total Time (

0 1k I Lines of Colnfiguration 23K

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

400

300

200

Total Time (ms)

100

1K Lines of Configuration

300

200

100

Total Time (ms)

L L ully
1K Lines of Configuration 23K

o

Figure 7: Verification time for management interface reachability (upper left), local equivalence (upper right), blackholes
(lower left), and fault-invariance (lower right) for real configurations sorted by total lines of configuration.

o Keep a single, merged copy of the export record for a protocol
when there is no peer-specific export policy.
® Do not model directly connected routes for a router whose inter-
face addresses can never overlap with the destination IP range of
interest to the query.
e Merge the data plane and control plane forwarding variables
along edges that do not have ACLs.
e Merge per-protocol and overall best records when there is only a
single protocol running on a router.

Together, these optimizations are effective at removing a lot of
redundant information that the SMT solver might otherwise have
to discover for itself.

7 IMPLEMENTATION

Minesweeper uses Batfish [13] to parse vendor-specific config-
urations. It then translates Batfish’s representation into a sym-
bolic model. To check model (un)satisfiability, we use the Z3 SMT
solver [8]. Our encoding exploits Z3’s support for integer difference
logic, and its preprocessor. Our implementation supports all of the
features and properties described in the paper. We have validated its
correctness empirically by comparing its output to that of the Bat-
fish simulator on a large collection of networks. As Batfish does not
currently support IPv6, Minesweeper does not either. Minesweeper
is available as open source software [3].

8 EVALUATION

We evaluate Minesweeper by using it to verify a selection of the
properties described in §5 on both real and synthetic network con-
figurations. In particular, we are interested in measuring (1) the
ability of Minesweeper to find bugs in real configurations, which
are otherwise hard to find; (2) its scalability for answering various
queries on large networks; and (3) the impact of the optimizations
described in §6 on performance. All experiments are run on an 8
core, 2.4 GHz Intel i7 processor running Mac OSX 10.12.

8.1 Finding Errors in Real Configurations

We demonstrate Minesweeper’s ability to find bugs in real config-
urations by applying it on a collection of configurations for 152
real networks. We obtained these from a large cloud provider, and
they represent different networks within their infrastructure. The
networks range in size from 2 to 25 routers with 1-23K lines of
configuration each. The networks use a combination of OSPF, eBGP,
iBGP, static routes, ACLs, and route redistribution for layer-3 rout-
ing and are part of a data set described in detail in prior work [15].
These networks have been operational for years, and thus we ex-
pect that all easy-to-find bugs have already been ironed out. This
data set was also analyzed by ARC [14].

Properties checked. Since we do not have the operator-intended
specifications, we focus on four properties expected to hold in such
networks:

e Management interface reachability: All nodes in the network
should be able to reach each management interface, irrespective of
the environment. Management interfaces are used to log into the
devices, manage their firmware and configuration, and collect sys-
tem logs. Uninterrupted access to it is important for the network’s
security and manageability.

e Local equivalence: Routers serving the same role (e.g., as “top-
of-rack") should be similar in how they treat packets. We identify
routers in the same role by leveraging the networks’ naming con-
vention and check that all pairs of routers in the network in a given
role are equivalent.

® No blackholes: When traffic is dropped due to ACLs, such drop-
ping should always occur at the edge of the network.

e Fault-invariance: All pairs of routers in the network should be
reachable from one another if and only if they are reachable after a
single failure. A violation of this property would indicate that the
network is highly vulnerable to failures.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

10°
[No Blackholes —

— 10°4 EEE Multipath Consistency]
g [Local Consistency o
:’ 104{ EEE Single-ToR Reachability
E [All-Tor Reachability
= 103 [Single-Tor Bounded Length
5 3 All-Tor Bounded Length
B 102) = Equal Length Pod
2
=
= 10 H

10% I_I

5(2) 45 (6)

125 (10)

245 (14) 405 (18)

Number of Routers (Pods)

Figure 8: Verification time for synthetic configurations for different properties and network sizes.

Violations. We found 67 violations of management interface reach-
ability. In each case, the violation occurs because of a "hijack," i.e.,
external neighbors sending particular announcements. For example,
an external BGP advertisement for the same /32 interface prefix
with path length < 1 would result in a more preferred route for
the destination that would ultimately divert traffic away from the
correct interface.

The checks for local equivalence revealed 29 violations. Upon
further investigation, we found that each violation was caused by
one or more exceptions in ACLs where almost all routers in a given
role would have identical ACLs except for a single router with an
extra or a missing entry. Such differences are possibly caused by
copy-and-paste mistakes.

The blackholes check found 24 violations. Most violations were
not serious issues with routing, but instead revealed optimization
opportunities. Traffic being dropped deep in the network could
have been dropped near the source.

We found no violations of fault-invariance.

8.2 Verification Performance

We evaluate the performance of Minesweeper to verify different
properties on real and synthetic configurations.

Real configurations. We benchmarked the verification time for
the networks and properties described above. Figure 7 (upper left)
shows this time for management-interface reachability for each
network that is configured with at least one management inter-
face. The networks are sorted by total lines of configuration, with
more complex networks appearing farther right. We see that the
checks take anywhere from 2 to 60 ms for every network tested.
Figure 7 (upper right) shows the verification time for local equiv-
alence among routers in each unique role, for all networks with
at least two routers in any particular role. Verification time ranges
anywhere from roughly 5 to 400 ms. This check is more expensive
than management-interface reachability, in part, because it requires
more queries. Finally, the lower row of Figure 7 shows the time
for verification of the absence of blackholes and fault-invariance
queries. Both queries take under a second for most networks. The
worst case is under 1.5 seconds. While the networks we studied
are small, the sub-second verification times we observe are encour-
aging. They point to the ability of Minesweeper to verify many real

configurations in an acceptable amount of time. Next, we stress test
our tool by running it on larger, albeit synthetic networks.

Synthetic configurations. To test the scalability of our tool on
larger networks, we use a collection of synthesized, but functional,
configurations for data center networks of increasing size. In terms
of their structure and policy, these networks are similar to those
described in Propane [4]. Each data center uses a folded-Clos topol-
ogy and runs BGP both inside the network as well as to connect
to an external backbone network. Each top-of-rack router in the
data center is configured to advertise a /24 prefix corresponding
to the shared subnet for its hosts. All routers are configured to
enable multipath routing to evenly distribute load across all of its
available peers. Spine routers in the data center connect to external
neighbors in the adjacent backbone network and are configured
to use route filters on all externally connected interfaces to block
certain advertisements.

For each network, we use Minesweeper to check a large collec-
tion of the properties described in §5. First, we fix a destination ToR
and use queries to check both single-source and all-source reacha-
bility from other ToRs. Similarly, we also check that both some and
all other ToRs will always use a path to the destination ToR that is
bounded by four hops, to ensure that traffic never uses a “valley"
path that goes down, up, and then down again. To demonstrate a
query that asks about more than a single path, we verify that all
ToRs in a separate pod from the destination will always use paths
that have equal length. This ensures a certain form of symmetry
in routing. In addition to path-based properties, we also verify the
multipath-consistency property that every router in the network
will never have different forwarding behavior along different paths.
We also check that every spine router in the network is equivalent
using the local-consistency property. To ensure that all n spine
routers are equivalent, we check for local equivalence among pairs
using n — 1 separate queries. If all routers are equivalent, then tran-
sitively they are equivalent as well. Finally, we verify the absence
of black holes in the data center.

Figure 8 shows the time to check each property for data cen-
ters of different size. Multipath consistency and the no-blackholes
properties are the fastest to check, taking under a second to verify
in all cases. This speed is in most part due to the minimal use of
ACLs in the configurations. The solver quickly determines that the
properties cannot be violated because the control and data planes

A General Approach to Network Configuration Verification

stay in sync. The next fastest property to verify is local equivalence
among spine routers. This check takes under 2 minutes for the
largest network. In this case, each pairwise equivalence check takes
roughly 145 milliseconds. The most expensive properties pertain to
reachability and path-length. For the largest network it takes under
5 minutes to verify such properties. Interestingly, queries checking
all-source vs single-source take approximately the same amount of
time. Instead of checking the property by issuing multiple queries,
as is the case in many prior, path-based tools [11, 34], all-source
reachability is a single query in our graph-based formulation.

8.3 Optimization Effectiveness

We evaluated the effectiveness of the optimizations described in §6
by using a benchmark that involved verification of single-source
reachability queries. The prefix-hoisting optimization that replaces
symbolic variables representing an advertised prefix with instances
of the global destination IP variable has a large impact on perfor-
mance, speeding up verification by over 200x on average. This is
due to the fact that bitvectors are expensive for SMT solvers. Solvers
typically deal with bitvectors by “bit blasting" them into SAT. How-
ever, this introduces 32 additional variables into the model for every
edge in the graph. The next two optimizations: merging common
import and export records of variables and specializing variables by
protocol, are both forms of slicing optimizations. Together, these
optimizations improve the performance of the solver roughly 2.3x
on average over prefix hoisting alone.

9 RELATED WORK

Our work builds on prior work on network configuration analysis,
which we divide into three classes:

(1) Analysis without network models. Tools such as rcc [12], IP
Assure [25], and Minerals [2], focus on finding common mistakes
and inconsistencies in configurations of different protocols. While
this approach can find a range of configuration errors, because
it does not build a model of the network, it can have both false
positives and false negatives and cannot answer questions about
specific network behaviors.

(2) Analysis of individual environments. Configuration testing
tools such as Batfish [13] and C-BGP [28] take as input the net-
work’s configuration and a concrete environment, simulate the
resulting network behavior, and produce the data plane. The result-
ing network behavior for the data plane can then be analyzed for
properties of interest.

The primary disadvantage of testing is that it can feasibly analyze
only a small number of environments, while many configuration
errors occur only in specific environments. However, unlike our
approach, testing can support a more detailed analysis of individual
environments (e.g., it can count the exact size of routing tables).

(3) Analysis of many environments. Our approach belongs to
this class which can simultaneously analyze multiple environments
by building a symbolic network model. Prior work in this class
includes FSR [33], ARC [14], ERA [11], and Bagpipe [34]. We borrow
heavily from these works. FSR encodes BGP preferences using
SMT constraints, our multi-protocol, logical view of the network
(Figure 2) is similar to ARC, and our protocol-independent symbolic

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

records (Figure 3) are similar to ERA. But our work goes beyond
prior efforts in its scope and generality. We support the entire
control plane functionality and a much wider range of properties.

Data plane analysis. Tools for data plane analysis like Anteater [22],
HSA [18], Veriflow [19], NoD [21], SymNet [31] and Delta-net [17],
have a simpler task than configuration analysis—they do not have
to model the control-plane dynamics that produce many possible
data planes. In fact, the configuration testing tool Batfish, first sim-
ulates the control plane on a concrete environment to produce a
single data plane, and then uses existing data plane analysis tools
to verify properties for this data plane. Hence, data plane can be
thought of as a special case (or subcomponent) of configuration
testing, though the specifics differ greatly.

Methodologically, the data plane analysis tool most similar to
our work was developed by Zhang and Malik [35]. They encode
the data plane as a SAT formula and use combinational search, like
Minesweeper, to find errors.

Configuration synthesis.

Network configuration synthesis [4, 24, 25] is complementary to
verification. Synthesis tools produce configurations from high-level
specifications; verification tools analyze configurations (produced
manually or by synthesis tools).

Our SMT-based control plane model has some similarity with
a contemporary synthesis project [10], but there are significant
differences as well. That effort uses a symbolic representation of
network protocols based on stratified Datalog, such that the fixed
point of the Datalog program represents the forwarding state of the
network. The synthesis problem, of finding configuration inputs
that satisfy specified properties, is effectively reduced to satisfia-
bility checking of an SMT formula that is generated by using a
specialized solver for stratified Datalog. In contrast, we do not re-
strict ourselves to stratified Datalog and use first order theories
supported by SMT solvers to symbolically model the stable states
of the network. Our network model might also be useful for finding
configuration inputs that satisfy network-wide properties, but we
leave an exploration of this topic to future work.

10 CONCLUSIONS

We present a general-purpose, symbolic model of the network con-
trol and data planes that encodes the stable states of a network as
a satisfying assignment to an SMT formula. Using this model, we
show how to verify a wide variety of properties including reacha-
bility, fault-tolerance, router equivalence, and load balancing, for
all possible packets and all possible data planes that might emerge
from the given control plane. We have implemented our approach
in a tool called Minesweeper to verify properties of real network
configurations. We use Minesweeper on a collection of real and syn-
thetic configurations, showing that it is effective at finding issues
in real configurations and can scale to large networks.

Acknowledgements. We thank the SSIGCOMM reviewers and our
shepherd Laurent Vanbever, whose extensive feedback helped im-
prove this paper. This work was supported in part by NSF Grants
1703493 and 1525936, and a gift from Cisco. Any opinions, findings,
and conclusions expressed herein are those of the authors and do
not necessarily reflect those of the NSF or Cisco.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

REFERENCES

(1]

(2]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

[18]

M. Anderson. Time warner cable says outages largely resolved. http://www.
seattletimes.com/business/time-warner-cable-says-outages-largely-resolved,
2014.

L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy misconfigu-
rations in access-control systems. ACM Trans. Information and System Security,
14(1), 2011.

R. Beckett. Minesweeper source code. https://batfish.github.io/minesweeper,
2017.

R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Don’t mind the gap:
Bridging network-wide objectives and device-level configurations. In SIGCOMM,
2016.

News and press | BGPMon. http://www.bgpmon.net/news-and-events/.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In TACAS, 1999.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Programming
Languages and Systems, 8(2), 1986.

L. De Moura and N. Bjerner. Z3: An efficient SMT solver. In TACAS, 2008.

L. De Moura and N. Bjerner. Satisfiability modulo theories: Introduction and
applications. Commun. ACM, 54(9), 2011.

A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev. Network-wide configu-
ration synthesis. In CAV, 2017.

S.K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and G. Varghese.
Efficient network reachability analysis using a succinct control plane representa-
tion. In OSDI, 2016.

N. Feamster and H. Balakrishnan. Detecting BGP configuration faults with static
analysis. In NSDI, 2005.

A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and
T. Millstein. A general approach to network configuration analysis. In NSDI,
2015.

A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast control
plane analysis using an abstract representation. In SIGCOMM, 2016.

A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and R. Mahajan. Management
plane analytics. In Internet Measurement Conference (IMC), 2015.

T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem and
interdomain routing. IEEE/ACM Trans. Networking, 10(2), 2002.

A. Horn, A. Kheradmand, and M. Prasad. Delta-net: Real-time network verifica-
tion using atoms. In NSDI, 2017.

P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static
checking for networks. In NSDI, 2012.

[19
[20
[21
[22
[23

[24

[26

[27
[28

[29

[33

[34

[35

]

]

]
]

]

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: Verifying
network-wide invariants in real time. In NSDI, 2013.

D. Kline. Network downtime results in job, revenue loss. http://www.avaya.com/
en/about-avaya/newsroom/news-releases/2014/pr-140305/, 2014.

N. P. Lopes, N. Bjgrner, P. Godefroid, K. Jayaraman, and G. Varghese. Checking
beliefs in dynamic networks. In NSDI, 2015.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King. Debug-
ging the data plane with anteater. In SIGCOMM, 2011.

S. Malik and L. Zhang. Boolean satisfiability from theoretical hardness to practical
success. Commun. ACM, 52(8), 2009.

S.Narain, G. Levin, S. Malik, and V. Kaul. Declarative infrastructure configuration
synthesis and debugging. Journal of Network Systems Management, 16(3), 2008.
S. Narain, R. Talpade, and G. Levin. Guide to Reliable Internet Services and
Applications, chapter Network Configuration Validation. Springer, 2010.

J. Networks. As the value of enterprise networks escalates, so does the need
for configuration management. https://www-935.ibm.com/services/au/gts/pdf/
200249.pdf, 2008.

G. D. Plotkin, N. Bjgrner, N. P. Lopes, A. Rybalchenko, and G. Varghese. Scaling
network verification using symmetry and surgery. In POPL, 2016.

B. Quoitin and S. Uhlig. Modeling the routing of an autonomous system with
C-BGP. IEEE Network, 19(6), 2005.

S. Sharwood. Google cloud wobbles as workers patch wrong routers.
http://www.theregister.co.uk/2016/03/01/google_cloud_wobbles_as_workers_
patch_wrong_routers/, 2016.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3), 1985.

R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. Symnet: Scalable symbolic
execution for modern networks. In SIGCOMM, 2016.

Y. Sverdlik. Microsoft: misconfigured network device led to azure out-
age. http://www.datacenterdynamics.com/content-tracks/servers-storage/
microsoft-misconfigured-network-device-led-to-azure-outage/68312.
fullarticle, 2012.

A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam, A. Scedrov,
and C. L. Talcott. FSR: Formal analysis and implementation toolkit for safe
inter-domain routing. IEEE/ACM Trans. Networking, 20(6), 2012.

K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and Z. Tatlock.
Formal semantics and automated verification for the border gateway protocol.
In NetPL, 2016.

S. Zhang and S. Malik. SAT based verification of network data planes. In
Automated Technology for Verification and Analysis (ATVA), 2013.

http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.bgpmon.net/news-and-events/
http://www.avaya.com/en/about-avaya/newsroom/news-releases/2014/pr-140305/
http://www.avaya.com/en/about-avaya/newsroom/news-releases/2014/pr-140305/
https://www-935.ibm.com/services/au/gts/pdf/200249.pdf
https://www-935.ibm.com/services/au/gts/pdf/200249.pdf
http://www.theregister.co.uk/2016/03/01/google_cloud_wobbles_as_workers_patch_wrong_routers/
http://www.theregister.co.uk/2016/03/01/google_cloud_wobbles_as_workers_patch_wrong_routers/
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle

	Abstract
	1 Introduction
	2 Motivation
	2.1 Paths vs. graphs
	2.2 Message sets vs. combinational search

	3 The Basic Network Model
	4 Generalizing the Model
	5 Properties
	6 Optimizations
	6.1 Hoisting
	6.2 Network Slicing

	7 Implementation
	8 Evaluation
	8.1 Finding Errors in Real Configurations
	8.2 Verification Performance
	8.3 Optimization Effectiveness

	9 Related Work
	10 Conclusions
	References

