
Model Checking and Abstraction

EDMUND M. CLARKE

Carnegie Mellon University

ORNA GRUMBERG

The Technion

and

DAVID E. LONG

AT&T Bell Laboratories

We descrlbc a method for u smg abstraction to reduce the complexity of temporal-loglc model

checking Using techniques similar to those involved in abstract interpretation, we construct an

abstract model of a program without ever exammmg the corresponding’ unabstracted model. We

show how this abstract model can be used to verify properties of the orgmal program. We have

Implemented a system based on these tecbmques, and we demonstrate them practlcabty using a

number of examples, including a program representing a pipelined ALU circuit with over 10 lJ”0

states,

Categories and SubJect Descriptors B 52 [Register-Transfer-Level Implementation] Design

Ads – Uerzficatxvz; F.3.1 [Logics and Meanings of Programs]: Speclfymg and Verifying and

Reasoning about Programs-rnechamcul wv-zfzcatton

General Terms Verification

Addltlonal Key Words and Phrases: Abstract mterpretatlon, binary declslon diagrams (BDDs),

model checking, temporal loglc

1. INTRODUCTION

Complicated finite-state programs arise in many applications of co reputing,

particularly in the design of hardware controllers and communicaticm proto-

Thls research was sponsored in part by the Awonics Laboratory, Wright Research and Develop-

ment Center, Aeronautical Systems Dlvmlon (AFSC), U.S. Am Force, Wright-Patterson AFB,

Ohlo, under contract F33615-90-C-1465, ARPA order 7597, m part by the National Science

Foundation under contract CCR-9005992, and in part by the U S –Israeh Binatioual Science

Foundation The views and conclusions contained In this document are those of the authors and

should not be interpreted as representing the official pohcles, either expressed or lrnphed, of the

National Science Foundation or the U S government

Author’s addresses E M Clarke, School of Computer Science, Carne~e Mellon Umverslty,

Pittsburgh, PA 15213; O Grumberg, Department of Computer Science, The Technlon, Halfa,

Israel 32000, D, E. Long, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hall, NJ

07974

Permission to copy without fee all or part of this material 1s g-ranted provided that the copies are

not made or d] strlbuted for du-ect commercial advantage, the ACM copyright notice and the title

of the publication and Its date appear, and notice 1s .gven that copying 1s by permission of the

Assoclatlon for Computing Machinery To copy otherwise, or to repubhsh, reqmres a fee and/or

specific permission

01994 ACM 0164-0925,/94/0900-1512 %03 50

AVM Tran.act]onb on Progr.ImmIng LanEuagF~ and Systcrns, Vol 16 N. 5 September 1994 Pages 1512-1542

Model Checking and AbstractIon . 1513

COIS. When the numbers of states is large, it may be very difficult to

determine if such a program is correct. Temporal-logic model checking [Clarke

and Emerson 1981; Cleaveland 1990; Liechtenstein and Pnueli 1985; Quielle

and Sifakis 1981; Sistla and Clarke 1986] is a method for automatically

deciding if a finite-state program satisfies its specification. A model-checking

algorithm for the propositional branching-time temporal logic CTL was pre-

sented at the 1983 POPL conference [Clarke et al. 1983]. The algorithm was

linear both in the size of the transition system (or model) determined by the

program and in the length of its specification. In the paper, it was used to

verify a simple version of the alternating bit protocol with 20 states.

In the 11 years that have passed since that paper [Clarke et al. 1983] was

published, the size of the programs that can be verified by this means has

increased dramatically. By developing special programming languages for

describing transition systems, it became possible to check examples with

several thousand states. This was sufficient to find subtle errors in a number

of nontrivial, although relatively small, protocols and circuit designs [Browne

et al. 1986]. Use of binary decision diagrams (BDDs) [Bryant 1986] led to an

even greater increase in size. Representing transition relations implicitly

using BDDs made it possible to verify examples that would have required

1020 states with the original version of the algorithm [Burch et al. 1990].

Refinements of the EIDD-based techniques [Burch et al. 1991] have pushed

the state count up over 10 100 states. In this paper we show that by combining

model checking with abstraction we are able to handle even larger systems.

In one example, we are able to verify a pipelined ALU circuit with 64

registers, each 64 bits wide, and with more than 101300 reachable states.

Our paper consists of three main parts: In the first, we propose a method

for obtaining abstract models of a program. In the second, we show how these

abstract models can be used to verify properties of the program. Finally, we

suggest a number of useful abstractions and illustrate them via a series of

examples.

We model pro~ams as transition systems in which the states are n-tuples

of values. Each component of a state represents the value of some variable. If

the ith component ranges over the set D,, then the set of all program states

is DI x . . . x D.. Abstractions will be formed by giving subjections hl, h.

that map each D, onto a set D, of abstract values. The subjection h =

(h ~,..., h.) then maps each program state to a corresponding abstract state.

This lmapping may be applied in a natural way to the initial states and the

transitions of the program. The result is a transition system that we refer to

as the minimal abstraction of the original program. If it is possible to

construct this abstraction, we can use it to verify properties of the program.

However, if the state space of the transition system is very large, this may

not be feasible. Even if it is possible to represent the system using BDD-based

methods, the computational complexity of building the minimal abstraction

may still be very high. To circumvent these problems, we show how to derive
an approximation to the minimal abstraction. The approximation may be

constmcted directly from the text of the program without first building the

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1514 . Edmund M Clarke et al

original transition system. We show how this can be accomplished by sym-

bolic execution of the program over the abstract state space.

This symbolic execution is exactly the same idea as is used in abstract

interpretation as pioneered by Cousot and Cousot [1977; 1979]. In the Cousots’

work, the spaces of concrete and abstract data values are complete lattices

(or, more generally, complete partial orders). The relation between levels is
given by a Galois connection (a, y). a maps concrete values to abstract

values, and y maps back. The mapping h above is the analog of a, and its

inverse would correspond to y. In abstract interpretation, given (a, y) and a

programming-language semantics, we derive an abstract semantics for the

language. Our symbolic execution corresponds to evaluating a program under

this abstract semantics. The effect of the evaluation is to produce directly an

abstract representation of the program’s behavior. The differences between

our work and most of the work on abstract interpretation are summarized

below. These differences arise mainly from the differing applications of the

work. Most abstract interpretations are designed to collect information about

the static semantics of a program (typically for use by an optimizing com-

piler). The static semantics gives information about all of the possible pro-

gram states at a given program point. Hence, it is useful for answering

questions about live variables, available expressions, etc. Furthermore, since

compilers must deal with very large programs, the emphasis is often on

trading accuracy for speed in the analysis. In contrast, we are interested in

the dynamic behavior of the program (the transitions between states), and

proving the correctness of a system generally requires a precise analysis.

Because of these strict requirements, we cannot handle very large programs.

(1) In our work, producing an abstract model of the system is only the first
step in the verification process. Afterward, we use state-space searches to

check temporal properties.

(2) In abstract interpretation, the abstractions are usually defined with a
particular type of analysis in mind and then fixed. Hence, constructing

the abstract version of the language semantics can be done once, and with

manual assistance. In verification, the user often needs to define new

abstractions “on the fly.” This need arises because of the delicate balance

between keeping enough information to have the verification go through,

and throwing out enough to keep the time and space requirements

reasonable. Having to produce a new abstract semantics by hand for each

new abstraction would be extremely tedious. As a result, our tools must

do this automatically. However, to ensure decidability, we have to restrict
ourselves to finite data domains.

(3) Because of the need to be precise, we always view expressions as evaluat-
ing (at the abstract level) to some set of possible abstract values. (This set

could be mapped back to a set of possible concrete values.) In abstract

interpretation, this would correspond to working over a power domain

[Gunter and Scott 1990]. However, in the abstract model that we con-
struct, states are simply assignments of single abstract values to the

program variables. This corresponds more to a flat domain. Because we

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1515

always use this same type of interpretation, we can eliminate many of the

technical details that would otherwise be necessary to translate back and

forth between the different types of domains.

Recently, Bensalem et al, [1992] considered abstractions as Galois connec-

tions between sets of states of two processes, They then considered the

relationship between abstract-level and concrete-level satisfaction of logical

properties expressed in a fixpoint calculus. Their notation is close to that

used in the abstract interpretation literature, whereas ours is most similar to

that in earlier work on using abstraction for finite-state verification (e.g.,

Kurshan [1989]).

The specification language that we use is a propositional temporal logic

called CTL* [Clarke et al. 1986]. This logic combines both branching-time

operators and linear-time operators and is very expressive. Formulas are

formed using the standard operators of linear temporal logic and two path

quantifiers, V and 3. The formula V(+) is true at a state whenever @ holds on

all computation paths starting at the state. The formula 3(~) is true when-

ever @ holds for some computation path. The atomic state formulas in the

logic are used to specify that a program variable has a particular abstract

value. Because of this, formulas of the logic may be interpreted with respect

to either the original transition system or its abstraction. Our goal is to check

the truth value of a formula in the abstract system and to conclude that it

has the same truth value in the original system. We prove that our approach

is corweruatiue if we restrict ourselves to a subset of the logic called b’CTL’

[Grumberg and Long 1991] in which only the V path quantifier is allowed.

That is, if a formula is true in the abstract system, we can conclude that the

formula is also true in the original system. However, if a formula is false in

the abstract system, it may or may not be false in the original system. In

addition, we note that, if the equivalence relations induced by the h, are

congruences with respect to the operations used in the program, then the

method is exact for full CTL*. That is, a formula is true in the abstract

system if and only if (iff) it is true in the original system.

We suggest several different abstractions that are useful for reasoning

about programs. These abstractions include

(1) congruence modulo an integer, for dealing with arithmetic operations;

(2) single bit abstractions, for dealing with bitwise logical operations;

(3) product abstractions, for combining abstractions such as the above; and

(4) symbolic abstractions, which is a powerful type of abstraction that allows
us to verify an entire class of formulas simultaneously.

We demonstrate the practicality of our methods by considering a number of

examples, some of which are too complex to be handled by the BDD-based

methods alone. These examples include a 16-bit-by-16-bit hardware multi-

plier and a pipelined ALU circuit with over 4000 state variables.

Numerous other authors have considered the problem of reducing the

complexity of verification by using equivalences, preorders, etc. For example,

Graf and Steffen [1990] described a method for generating a reduced version

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No 5, September 1994

1516 . Edmund M. Clarke et al

of the global state space given a description of how the system is structured

and specifications of how the components interact. Clarke et al. [1989]

described a related attempt. Grumberg and Long [1991] and Shurek and

Grumberg [1990] proposed frameworks for compositional verification based

on ‘dCTLy. Dill [1989] developed a trace theory for compositional design of

asynchronous circuits. These methods are mainly useful for abstracting away

details of the control part of a system.

There has been relatively little work on applying model checking to sys-

tems that manipulate data in a nontrivial way. Wolper [1986] demonstrated

how t,o use model checking for programs that are data independent. This

class of programs, however, is fairly small. Our approach makes it possible to

handle programs that have some data-dependent behavior. More recently,

BDD-based model-checking techniques [Burch et al. 1990; Coudert and Madre

1990] have been used to handle circuits with data paths. These methods,

while much more powerful than explicit state enumeration, are still unable to

deal with some systems of realistic complexity. Some examples in Section 6,

for instance, could not be handled directly with these approaches. Our

method works well in conjunction with these techniques, however.

Of the work on using abstraction to verify finite-state systems, the ap-

proach described by Kurshan [1989] is most closely related to ours. This

approach has been automated in the COSPAN system [Har’El and Kurshan

1987]. The basic notion of correctness is co-language containment. The user

may give abstract models of the system and specification in order to reduce

the complexity of the test for containment. To ensure soundness, the user

specifies homomorphisms between the actual and abstract processes. These

homomorphisms are checked automatically. Our work differs from Kurshan’s

in several important respects:

(1) Our specifications are given in the temporal logic CTL’, which can
express both branching-time and linear-time properties. Moreover, we are

able to identify precisely a large class of temporal formulas for which our

verification methodology is sound. Not all properties are preserved in

going from the reduced system to the original, so this is quite important.

(2) Our abstractions correspond to language homomorphisms induced by
Boolean algebra homomorphisms in Kurshan’s work. We show how to

derive automatically an approximation to the abstracted state machine.

This approximation is constructed directly from the program, so that it is

unnecessary to examme the state space of the unabstracted machine. There

is no need to check for a homomorphism between the abstract and
unabstracted systems.

(3) The particular abstraction mappings that we use also appear to be new.
We demonstrate that these abstractions are powerful enough and that the

corresponding approximations are accurate enough to allow us to verify

interesting properties of complex systems.

Our paper is organized as follows: The next section is a brief introduction to

BDDs and symbolic model checking. This is followed by a discussion of

ACM Transactmns on Programming Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1517

transition systems and the notion of abstraction that we use. Section 4

discusses constructing an approximate abstract transition system directly

from a program. It also discusses the conditions required for exactness.

Section 5 is the heart of our paper; we relate the theory developed in the

previous sections to the temporal logic that we use for specifications. In

particular, we prove that our method is conservative in the case of VCTL*

formulas. We also note that, if the approximation is exact, then all CTL*

formulas are preserved, Section 6 describes a programming language that can

be used for specifying finite-state systems, and describes the verification of

several systems via a variety of abstractions. The paper concludes with a

discussion of some directions for future research.

2. BINARY DECISION DIAGRAMS

Binary decision diagrams (BDDs) are a canonical form representation for

Boolean formulas described by Bryant [1986]. They are often substantially

more compact than traditional normal forms such as conjunctive normal form

and disjunctive normal form, and they can be manipulated very efficiently.

Hence, they have become widely used for a variety of CAD applications,

including symbolic simulation [Beatty et al. 1991], verification of combinat-

ional logic [Fujita et al. 1988], and verification of sequential circuits [Burch

et al. 1990; Coudert and Madre 1990; Touati et al. 1990]. A BDD is similar to

a binary decision tree, except that its structure is a directed acyclic gralph

rather than a tree, and there is a strict total order placed on the occurrence of

variables as one traverses the graph from root to leaf. Consider, for example,

the BDID of Figure 1. It represents the formula (a ~ b) v (c ~ o?), using the

variable ordering a < b < c < d. Given an assignment of Boolean values to

the varnables a, b, c, and d, one can decide whether the assignment makes

the formula true by traversing the graph beginning at the root and branching

at each node, based on the value assigned to the variable that labels the node.

For example, the valuation {a = 1, b = O, c = 1, d = 1} leads to a leaf node

labeled 1; hence, the formula is true for this assignment.

Bryant [1986] showed that, given a variable ordering, there is a canonical

BDD for every formula. The size of the BDD depends critically on the variable

ordering. Bryant gave algorithms of linear complexity for computing the BDD

representations of 7 f and f V g given the BDDs for formulas f and g.

Quantification over Boolean variables and substitution of a variable by a

formula are also straightforward using this representation.

Another way to view BDDs is as deterministic finite automata (DFAs)

[Clarke and Kimura 19901. The initial state of the automata is the root oft he
BDD, and the only accepting state is the terminal 1. From this viewpoint, the

BDD operations correspond to standard constructions such as language

intersection and union for DFAs. The canonical form property of BDDs

corresponds to the uniqueness of the minimal DFA accepting a given lan-

guage.

Given a finite-state program, let V be its set of Boolean state variables, We

identify a Boolean formula over V with the set of valuations that make the

ACM TransactIons on Programmmg Langaages and Systems, Vol. 16, No 5, September 1994

1518 . Edmund M. Clarke et al

o

Fig. 1, Binary decu+,lon diagram representing

(a Ab)v(c Ad).

formula true. A valuation of the variables corresponds in a natural way to a

state of the program; hence, the formula may be thought of as representing a

set of program states. The BDD for the formula is, in practice, a concise

representation for this set of states. In addition to representing sets of states

of a program, we must represent the transitions that the program can make.

To do this, we use a second set of variables V’. A valuation for the variables

in V and V‘ can be viewed as designating a pair of states of the program.

Such a pair can be viewed as corresponding to a transition between the states

of the pair. Thus, we can represent sets of transitions using BDDs in much

the same way as we represent sets of states. Many verification algorithms

such as temporal-logic model checking and state machine comparison can

make effective use of this representation [Burch et al. 1990; Coudert and

Madre 1990; Touati et al. 1990].

3. TRANSITION SYSTEMS AND ABSTRACTIONS

We consider programs with a finite set of variables u ~, v ~, v.. If each

variable U, ranges over a (nonempty) set D, of possible values, then the set of

all possible program states is DI X Dz x s.. x D., which we denote by D. We

represent the possible behaviors of the program with a set of transitions

between states. This notion is formalized in the following definition:

DefLnLtLOn 3.1. A transition system over D is a triple M = (S, I, R),

where

(1) S = D is a set of states,

(2) 1 c S is a set of initial states, and

(3) R G S x S is a transition relation.

Abstractions are formed by letting the program variables range over (non-

empty) sets D, of abstract values. We give mappings to specify the correspon-

AC!M TransactIons on Programming Languages and Systems, Vol 16, No 5, September 1994

Model Checking and AbstractIon . 1519

dence between unabstracted and abstract~d values. Formally, we let

h ~, hz, h. be surjections~ with h,: D, s D, for each i. These mappings

induce a subjection j: D ~ D defined by

h(dlj ..., tin) = hl(dl),..., hn(dn).

Alternatively, the relation between unabstracted and abstracted values can

be specified by a set of equivalence relations. In particular, each h, corre-

sponds to the equivalence relation -~ g D, x D, defined by

d, -, e, iff h,(d,) = A,(e,).

The mapping h induces an equivalence relation - G D x D in the same

manner. We also note that

(all,..., d~)=(el, e~), e~) iff dl-lelA”””Ad~-~e~.

We will sometimes specify abstractions by mappings and sometimes specify

them by equivalence relations.

Let M be a transition system over D, and let h be a subjection from D to

fi. We now define what it means for a transition system over the abstract set

of states ~ to be an abstract version of M. The intuition is that a state 6’ of

the abstract system will represent all those states s of M for which h(s) == .$.

The abstract state .4 must be able to simulate each such s, so if s can

transition to s‘, then we will require that S be able to transition to f’ = h(.s‘).

Similarly, if M could start in state s, we require that the abstract system be

able to start in ;. Formally, we have the following definition:

Definition 3.2. Let ~ be a t~ansition system over D. We say that ~

approximates M (denoted M Ch M) when

(1) ~d(h(d) = d A l(d)) implies ~(~); and

(2) ~ldl~d,(h(dl) = #1 A h(d,) = ~, A R(dl, d,)) implies fi(dl, d2).

There is a natural abstract transition system having only those initial

states and transitions required by the above definition. We call this “minimal”

transition system M~l~.

Definition 3.3. M~,n is the transition system over D given by

(1) ~~,n(~~ iffA3d(h(d) = ~ A I(d)); and

(2) R~l.(dl, d,) iff 3d13d,(h(dl) = cfl A h(d,) = d, A R(dl, d,)).

Obviously M c~ ti~l. . Fu~ther~orel for any ~othe: transition ~ystem N

over D, we see that M Eh M iff Z z Im,n and R > Rm,n. Thus, M~,~ is the

most accurate approximation to M that is consistent with h.

As we will show in Section 5, an abstract transition system such as M~,~

may be used to deduce properties of M.1 Moreover, using an abstract transi-

tion system instead of M may greatly reduce the complexity of automatically

‘The reader may be concerned about eliminating deadlocks by adding new initial states and

transitions. This is discussed in Section 5.

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No. 5, September 1!194

1520 . Edmund M. Clarke et al

verifying these properties. Unfortunately, it is often expensive or impossible

to construct ti~,~ directly because we must have a representation of M to do

the abstraction. We may not be able to obtain such a representation if D is

infinite or simply too large for our system to handle. In BDD-based systems,

even if we are able to produce 13DDs representing 1 and R, computing BDDs

representing ~~1~ and R~,~ requires a number of relational products (essen-

tially, one for each h, when computing the BDD for ~~ln and two for each h,

when computing the BDD for fi~,.). In practice, we have found that evaluat-
ing these relational products is often impossible. In the next section, we

discuss a method for circumventing these problems. This method is based on

the fact that we usually have an implicit representation of M as a program

in a finite-state language. We will show how to compute an approximation to

M directly from the program text. Hence, it is never necessary to construct

BDDs representing 1 and R. In addition, we demonstrate empirically that

the approximation is generally accurate enough to allow us to verify interest-

ing properties of the program. Note that, in the abstract interpretation

literature, it is generally the approximation that is highlighted, while fl~,n is

often implicit. However, from a conceptual point of view, we would like to

produce an abstraction that is as close as possible to M~,n.

4. PRODUCING ABSTRACT MODELS

In this section we consider the problem of deriving an approximate abstract

model of M directly from a finite-state program describing M. The actual

process will be described in Subsection 4.2. However, we would like this

discussion to be relatively independent of the particular finite-state language

used. To accomplish this, we are going to argue that a program in a finite-state

language can be transformed into relational expressions Y and 9 that can be

evaluated to obtain the initial states I and the transition relation R of the

transition system M represented by the program. These relational expres-

sions are simply formulas in first-order predicate logic that will be built up

from a set of primitive relations for the basic operators and constants in the

language. Then, in Subsection 4.2, we will show how to manipulate .Y’ and .’9

to obtain the approximation to M. There will typically be types associated

with the variables and relation arguments in the relational expressions that

we write, but for notational simplicity, we will leave these implicit.

4.1 Semantics of Finite-State Programs

In this subsection we consider how .7 and ,’9?can be derived. Since this is not

the main concern of the paper, we will just consider an example program

(Figure 2). This program computes the parity p of the variable b by repeat-
edly computing the exclusive-or of p and the low-order (rightmost) bit of b

(lsb(b)), and then shifting b to the right by one bit (b >> 1).(The parity of a
number is O if the number of one bit in its binary representation is even, and

1 if this number is odd.) Since we are interested in verifying the temporal

behavior of programs, we must know the points where the state of the

variables can be observed. We call these points control points, and in the

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Model Checking and AbstractIon . 1!521

Op.==o
1: while b # O

p “= p@lsb(b)

b:=b>l
Fig. 2 Simple example program

endwhile
2. end

examplle the control points are those lines labeled with O, 1, and 2. During the

compui,ation of this program, we will observe a transition from control point O

to control point 1 (during which p is set to O), some transitions from 1 back to

1 (going around the while loop), a transition from 1 to 2 (when b = O), and,
finally, an infinite sequence of transitions from 2 to 2 when the program is in

a terminal state. (We add loops at terminal states since our specification lolgic

only describes infinite behaviors.) Contrast this with the input–output style

semantics of the program, where we would just be interested in the relation-

ship between the variables at point O and 2. Looking at the state transitions

between control points is also the basis of program verification techniques

such as the mductiwe assertion method [Floyd 1967].

The transition relation specified by this program is obtained by looking at

the sequences of statements between consecutive control points. First, con-

sider the transition between control points O and 1. During this transition, p

should be set to O. To distinguish the values of the variables at the start of

the transition (at control point O) from the values at the end of the transition

(at 1), we will decorate the latter with primes. Thus, p denotes the value of

the variable p at point O, and p‘ denotes the value of the variable p at point

1. We will use a variable PC (“Program Counter”) to denote the control point.

Then the transition from point O to point 1 can be expressed by

PC= O~p’=OAb’=b APC’ =1.

This says that PC starts at O and ends at 1, the value of p at the end point is

O, and the value of b does not change during the transition.

The transition from point 1 to point 2 does not involve any changes in the

variables, but it does require a test to see that b = O. Thus, we get the

relation

PC=l~b= O~pr=p Ab’=b A PC’ =2.

The b = O acts as a guard to eliminate the transition when the condition does

not ho] d. An expression for the transition relation of the whole program can

be derived by simply taking the disjunction of the expressions for the point-

to-point transitions. For this program, we get the following expression (the

first two lines are just the point-to-point relations derived above):

(p~=o Ap’=OAb’=b APC’ =1)

V(PC=l Ab=OAp’=p Ab’= bAPC’ =2)

V(PC=l Ab+OA~’ =p@lsb(b) Ab’=b>>l APc’ =1)

V(PC=2A p’=p Ab’=b APc’ =2).

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1522 . Edmund M. Clarke et al.

Note that, in this program, the loop is broken by a control point (point 1).

For simplicity, we assume that this is always the case. However, since we will

only be working over finite domains, it is not strictly necessary. That is, we

could allow unbroken loops between control points and then check that such

loops always terminate.

The above expression is written assuming that we have operators in the

logic for all of the operators in the language, that we can use language

constants as constants in the logic, etc. To eliminate these, we could instead

rewrite the above expression in terms of primitive relations for the operators

and constants. Consider, for example, the clause p‘ = p @ lsb(b). This in-

volves two operations: selecting the low-order bit of b, and then computing

the exclusive-or of the result with p, We now assume that we have primitive

relations Pl~6 and Pe for these operators. The former is a two-argument

relation, and the latter is a three-argument relation: The last argument in

each case will be the result produced by the operator. The clause p‘ = p @

lsb(b) can now be expressed as

3t(Pl~~(b, t) APe(p, t,p’)).

(Note that we needed to introduce a “temporary” variable t to hold the

intermediate result.) In a similar way, we could rewrite the rest of the

transition relation expression to obtain a relational expression built entirely

from primitive relations. This would be the relational expression ~. A

relational expression Y describing the initial conditions on p, b, and PC

could be derived in a similar way.

In general, the derivation of 3 and 9 is based on a relational semantics

for the finite-state language: Essentially, we write down the meaning of the

program under the semantics. A relational semantics is usually very natural

for languages intended to specify transition systems, since their purpose is to

describe the transition relation of the system. We will not give the relational

semantics for any particular language in this paper; our goal is just to

motivate the claim that we can take a finite-state program and produce

relational expressions representing the initial states and transitions of the

transition system described by the program.

4.2 Computing Approximahons

In the previous subsection, we argued that the initial states and transition

relation of a transition system M could be represented by formulas ~ and ~.

Similar formulas y~ln and ~~,~ can be obtained representing ~~,~. Since

actually evaluating ~~,n and ~~,~ can be computationally complex, we now

show how to obtain formulas ~~PP and @~PP describing an approximation

M,pp to M. Throughout this subsection and the next, we assume that ~, ~1

and ~z are relational expressions built up from the primitive relations

representing the operations in the program. For simplicity, we assume that

all of the variables xl, Xz, . . . range over the same domain D. We also use a

set 2 ~, 2Z, . . of variables ranging over the abstract domain D, with 2,

representing the abstract value of x,. We assume that there is only one

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1!;23

abstraction function h mapping elements of l) to elements of ~. (Note that

we are abusing notation a bit, since D, D, and h are also used to denote the

(procluct) concrete and abstract state spaces and the mapping between these

state spaces.)

Recall that building ~~,n requires evaluating two relational products, both

involving existential quantification over the elements of D. For conciseness,

we denote this kind of existential abstraction using an operator [.]. If’ @

depends on the free variables x ~,... , x~, then we define

[41(41,... ,Am) = 3*1 . . . ~xm(h(xl) =21 A . . . A h(xm) =Zm

A@(xl,xm)).

Note that the free variables of [~] are the abstract versions of xl, x.,.

Based on the definition of M~l~, we observe that, if .Y and @ are the

formulas representing 1 an~ R, then ~~,n = [Y] and ~~,~ = [~] are formu-

las representing ~~ln and R~,~.

Ideally, we would like to evaluate [.x] and [@] directly. However, applying

[1 to complex formulas can be computationally expensive. Thus, we now
define a transformation Y on formulas @. The idea of 7 is to simplify the

formulas to which [.] is applied. We assume that @ is given in negatllon

normal form; that is, negations are applied only to primitive relations.

h other words, S applies the operation [.] only at the innermost level. Since

these inner formulas are relatively simple, They can be evaluated easily. We

can now produce the transition system &l:PP by evaluating the formulas

~~.~) and ,!7(@). However, to be able to use iM~PP for verification purposes, we

must ensure that we have not omitted any behaviors of the abstract system.

TAhat is, we must check that every transition of ~~,n is also a transition of

M.PP and that every initial state of 114~ln is also an initial state of M,PP. To do

this, we examine the relationship between [41 and Y(4).

THEOREM 4.2.1. [+] implies 5(~). In particular, [.71 implies 5(Y), and

[AZ?] implies 9(J%). (The converse does not hold in general: in cases (2) and (4)

above, Y pushes existential quantifications over conjunctions, leading to

inequiualent formulas.)

PROOF. We apply induction on the structure of the formulas ~.

(1) If @ = P(xl,..., x~) or @ = ~ P(xl,..., Xn), where P is a primitive

relation, then [@] = J9 +), and the lemma holds.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1524 . Edmund M. Clarke et al.

(2) Let 4(x1,..., Xm) = @l ~ oz. (@l and ~z should be assumed to have the

same parameter lists as 4, but for conciseness, we omit them.) Then,

[01 A 421 is identical to the formula

This formula implies

which is exactly [011 ~ [@z]. Now J$Z@l ~ &) = :/141) ~ X6), and by
the induction hypothesis, we have that [411 implies %01) and [d~~1

implies~~~z), Hence, [@l] ~ [@z] implies~qol) ~ X(@z), and so [41 ~ Ozl

implies ~q~l ~ 42).

(3) The case where @ = @l v 4Z is similar to the previous case. (Note though
that pushing the abstraction over a disjunction does not cause us to lose

any information.)

(4) Let @(xl,..., x,.) = ‘dx O1. Then [Vxdll is

We can assume without loss of generality that the bound variable x is

different from the x, and 2,, so the above formula is equivalent to

3X1 . . . ()=xmvx A h(x,) ‘~, A @l(X, X1,...,,),)

L

This implies

VX3X1 . . . IXm ()Ah(x) ‘~, ~ @l(X,X,,...,Xm) .
1

Since h is a subjection, for every abstract element in D, there is some

element of D that maps onto it. Hence, the above formula implies

This is exactly V;[@l]. Now, by the induction hypothesis, [~1] implies

~~ol), and so VX[+11 implies V2.91@l). This latter formula is equal to
Y(vx@l).

(5) ‘l’he case where @ = 3x @l is similar to the previous case. (Although as
with disjunction, we do not lose information by pushing an abstraction

over an existential quantification.) ❑

The above idea of “pushing the abstractions inward” is the same idea that

is used in abstract interpretation [Cousot and Cousot 1977; 1979; Mycroft

1981; Nielson 1982]. In abstract interpretation, when defining the abstract

ACM Transactmns on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1’525

semantics induced by an abstraction, the meaning of part of the program

(say, an expression) in the programming language is given in terms of a

composition of abstract versions of the operators in the language. Our ab-

stract primitive relations correspond exactly to these abstract operators, Note

that, in general, though, we will be producing these abstract primitive

relations automatically based on the user-supplied abstraction mappings.

To be able to use M~PP for verification purposes, we want to know that the

relation Ek holds between M and M~PP. Then we will show in Section 5 that

every formula that is true for fl~PP is also true for M.

THEOREM 4.2.2. Let fi,PP b: the transition system obtained by evaluating

Y(>) and JYW). Then M Lh M, PP.

PRO~F. W: know that M L~ M~l~. By the previous theorem, ~m,n c ~lpp,

and R ~,~ L RaPP. We also have ~~,~ = S,PP. By the definition of ~~ , these

facts trivially imply that M Lk M,PP. ❑

4.3 [~xact Approximations

Above, we have demonstrated that M ~~ M~,n and M ~~ M~PP. These re-

sults will be used to show that our verification methodology is conservative.

In this subsection, we make a note of some additional properties that suffice

to make the method exact. By “exact,” we mean that a property will be true at

the concrete level ifjf it is true at the abstract level. Thus, the concrete and

abstract models exhibit identical behavior in an appropriate sense. In our

experience, requiring an exact approximation to M generally allows very

little simplification, and hence, exact approximations are not very useful for

reducing the complexity of verification. For this reason, we omit most of the

details and proofs in this subsection. Recall that each h, induces are equiva-

lence relation =, on D,.

Definition 4.3.1. Let P(xI, x~) be a relation with xl ranging over D,].

The equivalence relations N,j are a congruence with respect to P if

()Vcll ..Vd~Yel ...Ve~ Adl -,j e~ + (P(dl,..., d~) ~P(el,..., e~)) .

1

If the N, are congruences with respect to the primitive relations, then

illapp is an exact approximation of M. This can be shown in two steps: first,

M ml n = tiapp; and second, Mm,n is an exact approximation of M. As in the

prew ous subsection, we simplify notation by assuming that all va~iables
range over the same domain D, that there is one abstract domain D, and

that there is one abstraction mapping h with corresponding equivalence

relation N .

LEMMA 4.3.2. If - is a congruence with respect to the primitive relations,

then [o] ~m~).

THEOREM 4.3.3. If - is a congruence with respect to the primitive rela-

tions, then M~,n = M~PP.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1526 . Edmund M. Clarke et al,

Now we make precise what it means for one transition system to approxi-

mate another one exactly. Recall that M approximates M when initial states

and transitions in M have corresponding initial states and transitions in M.

For exact approximation, we must have a type of converse as well: If .4 is an

initial state of M, then all of the states s of M that map to .4 should be initial

as well (and similarly for transitions).

DefLnitlon 4.3.4. Let k be a transiti~n system over D. We say that k

exactly approximates M (denoted M ‘k M) when J%!~k M. Also,

(1) ~(~) implies Vd(h(d) = ~ ~ l(d)); and

(2) fi(~l, ~,) implies VdlVd,(h(dl) = a?, A h(d,) = ~, ~ R(dl, d,)).

THEOREM 4.3.5. ~If - is a congruence with respect to the primitive rela-

tions, then M =~ M~,~ (and hence, M =}, ~~PP).

5. TEMPORAL LOGIC

The logics that we will use for specifying properties are subsets of the logic

CTL’. CTLY is a powerful temporal logic that can express both branching-time

and linear-time properties. For convenience, when defining subsets of the

logic, we assume that all formulas are given in negation normal form. That is,

negations only appear in atomic state formulas.

Defzrwtion 5.1. The logic CTLY [Clarke et al. 1986] is the set of state

formulas given by the following inductive definition:

(1) true and false are atomic state formulas. If v, is a program variable and

d, ~ D,, then v, = d, and v, # d, are atomic state formulas. Atomic state
formulas are used to describe the values of variables in a state.

(2) If q5 and $ are state formulas, the n ~ A $ and @ V ~J are state formulas.

(3) If @ is a path formula, then V(4) and 3(c)) are state formulas. These
state formulas express that all paths (execution sequences) or some path

starting at a state satisfy the property given by ~.

(4) If @ is a state formula, then @ is also a path formula. In this case, @
describes a property of the first state on the path.

(5) If @ and 4 are path formulas, then so are @ A @ and @ v @.

(6) If @ and + are path formulas, then so are the following:

(a) X4. -A path satisfies X@ (“next time @“) when @ holds starting at the
second state on the path.

(b) @u+. A path satisfies OU+ (“0 until v“) when 1 is true starting at
some point on the path, and @ holds up until that point.

(c) q5Vij!J. The V operator is slightly unusual; it is the dual of U. OV(J is
read as “~ releases ~ ,“ and means that the formula ~ is true initially

and that ~ must remain true until (and including) the first point

where @ becomes true. There is no obligation that ~ ever become

true: ~V@ also holds if + remains true forever.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1!527

We also use the following abbreviations: F@ (“+ holds at some point in the

future on the path”) and G@ (“+ holds globally on the path”), where q5 is a

path formula, denote (trueU@) and (@seV@), respectively. When specifying

abstract transition systems, the atomic state formulas will take the form

0, = cf, instead of U, = d,.

C’I’L is a restricted subset of CTL* in which the V and 3 path quantifiers

may only precede a restricted set of path formulas. More precisely, CTL is the

logic obtained by eliminating rules (3)–(6) above and by adding the following

rule:

(3’) If @ and @ are state formulas, then VX~, 3X@, V(@l.J$), X@U@),

V(@V~), and 3(@V+) are state formulas.

CTL is of interest because there is a very efficient model-checking algorithm

for it [Clarke et al. 1986]. ‘dCTL* and VCTL [Grumberg and Long 1991; Josko

1989; Shurek and Grumberg 1990] are restricted subsets of CTL* and C’I’L,

respectively, in which the only path quantifier allowed is b’. These two logics

are sufficient to express many of the properties that arise when verifying

programs. As we will see, these logics will also be used when the conditicms

needed for exactness do not hold.

We now define the semantics of CTL* for a concrete transition system M

over D.

Delrinition 5.2. A path in M is an infinite sequence of states r = so SI Sz “”.

such that, for every i ●flj R(sL, s,+ ~).

The notation n=n will denote the suffix of w that begins at s.. If w = so SI . . .

is a sequence of states from D, we denote the sequence h(so)h(sl)”. ” by h(m-).

Dejrinition 5.3. Satisfaction of a state formula $ by a state s (s + c)) and

of a path formula @ by a path w (n t= @) is defined inductively as follows:

(1) s % true, and s & false. If s = (e,,..., e.), then s + v, = d, iff e, = d,.

s + U, + d, iff it is not the case that s t= v, = d,.

(2)s+@A Oiffs!= @andsi=+. s>@ V+iffs+@ors/=~.

(3) s + V(4) iff, for every path m- starting at s, w R @ s > ~(+) iff there
exists a path n- starting at s such that w K +.

(4) w % 0, where + is a state formula, iff the first state of m satisfies the
state formula.

(5)nk~A+iff~S@andw~@.nS ~V#iffw!=+or~k@.

(6) (a) T + X4 iff ml I= @.
(b) T i= @U~ iff there exists n ● fl such that n‘ t==~ and, for all i < n,

m’l=cj.

(c:) rr > @V* iff, for all n ●W, if m-’ # ~ for all i < n, then Wn h 1.

The notation M R= @ indicates that every initial state of M satisfies the

formula +.

In the case of an abstract transition system V, we defi~e satisfaction in

exact ly the same way except that the atomic formula OZ= d, is true at state

(21,..., $.) iff ~, = c!,.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

1528 . Edmund M. Clarke et al.

We now d:fine a translation 27 between formulas describing the abstract

transition M and formulas describing M. Our goal is to be able to check a

formula q on M and to infer that the corresponding f~rmula %(p) holds for

M. Suppose that p is a simple atomic formula 6, = d,. When this fo~mula

holds, it conceptually means that h, applied to the value of U, gives d,. The

only thing that we can infer at the concrete level is that v, = cl, for some d,

satisfying h,(dl) = d“,. Hence, ‘% should map the formula ~, = d, to

V{u, = d,lh,(d,) = d,},

that is, the disjunction of all atomic formulas u, = d, for which d, maps to cf,.

For more complex formulas, the mapping is defined recursively.

Definition 5.4. g’ is the mapping from formulas describing it? to formulas

describing M that is defined as follows:

(1) %’(true) ; true. %(falsej = false. @tL = #,) is V{u, == d,lh,(d,) = cf,}.

$?(0, + d,) = =6(6, = d,).

(2) If @ and ~ are state formulas, then %(4 ~ LIJ) = %(~) A %(~), and

‘%(O v IJ) = %(@) v %?(+).

(3) If@ is a path formula, then %’(V(@)) = W%(d)), and %’(=(@)) = 3%’(+)).

(4) If @ is a path formula that is also a state formula, then g’(O) is given by
the above rules.

(5) If ~ and {j are path formulas, then %(O ~ V) = %(~) ~ 8(~), and

%(@ V ~J) = %(~) v %(~).

(6) If @ and ~ are path formulas, then

(a) %’(XO) = X$7(O),

(b) f%(qbU+) = %(@)U%’(@), and

(c) %(f+vtj) = %’(@)v%(l/J).

We now turn to the main theorems. For the remainder of the section, M
. .

and M are transition systems over D and D, respectively. First, we have a

straightforward lemma that says that paths in the concrete system M can be

lifted to the abstract level.

LEMMA 5.5. Assume M L), M. If w is a path in M, then h(n) is a path in

M.

Using this observation, we prove the main preservation theorem: formulas

that hold at the abstract level also hold for the concrete system.

THEOREM 5.6. Assume M El, M. Then,

(1) for all VCTL” state formulas 1#1describing M and euery state s of M,

h(s) I= @ implies s % %(~); and

(2) for all VCTL* path formulas d describing M and every path n in M,

h(~) & q5 implies IT b ~(c)).

PROOF. The proof proceeds by induction on the structure of the formula.

Lets =(el, ..., en) and h(s) = ($1, d~).

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1529

(1) lf @ = true pr + = false, the result is trivial. If@ = (0, = ci?,), th:n /z(s) %

d iff 21 = d,. Obviously, s + u, = e,. Since we have h,(e,) = d,, we can

infer that s satisfies

V{U, = d;lh,(d,) = ~,}.

l~ut this is just %(0, = ~,), and so s i= %(01 = ~l). The case for @ = (0, +

01,) is similar.

(2) h(s) I= @ A ~ implies h(s) + @ and h(s) ~ +. The induction hypothesis

implies s 1= %(~) and s + %(~), so s * %’(4 A ~). The case for @ V @ is

similar.

(3) Assume h(s) + V(O). s ~ %(V(@)) if, for e~ery path n from s, n I= ~(~).
E]y the previous lemma, h(n) is a path in M from h(s). Since h(s) 1= V(0),

h(m) t= ~. Then the induction hypothesis implies m t= %(4).

(4) Assume @ is a state formula and h(m) + O. If the initial state of w is s,
then the initial state of h(~) is h(s). This implies h(s) R @, and then by

the induction hypothesis, s F %(+). Hence, w + ~(d).

(5) The cases for the conjunction and disjunction of path formulas are similar
to case (2).

(6) (a) h(m) F=X4 implies (h(w))l I= ~. Now (h(w))l = h(n-1), and so the
induction hypothesis implies n 1 > %’(~). Thus, n 1=X$%(4), and so m ~

%(X+).

(b) If h(n) k @U+, then there exists n GA’ such that (h(fi))’ * O and,
for all i < n, (h(n))’ R +. This implies MT”) R @ and Mm’) + + for all

i < n. Using the inductive hypothesis, we find that n R %(+U+).

(c) The case when h(n) s q5V@ is similar to the previous two cases. R

CO~OLLARY fj.7. Assume M Lk M, and let ~ be a VCTL” formula describ-

ing ill. Then M * ~ implies M R $%(~).

Note that this result only talks about preserving the truth of formulas that

describe behavior that should hold on all paths from a state. Since the

abstraction process adds extra behaviors to the model, properties describing

the existence of a path may not be preserved in the same manner. Thus,

verifying something like absence of deadlock at the abstract level requires

proving a stronger pro~ess property.2

In the case where M exactly approximates M, we also have the converse

result: Satisfaction at the concrete level implies satisfaction at the abstract

level. We omit the proofs here. First, we note that paths at the abstract level

and at the concrete level exactly coincide.

LEMMA 5.8. Assume M =~ ~, and let T be an infinite sequence of stat~s

from S (the set of states of M). Then w is a path in M iff h(w) is a path in M.

——
2 It is the opinion of one of the authors that this is what you really want to do anyway. Said

author prefers systems that will do something useful to those that might.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No. 5, September 19’94.

1530 . Edmund M. Clarke et al,

Then we have the analog of Theorem 5.6, except now going both ways:

THEOREM 5.9. Assume M =k M; then,

(1) for all CTL” state formulas ~ describing M and euery state s of M,
h(s) = @ iffs ➤ %’(0); and

(2) for all CTL” path formulas ~ describing M and every path w in M,

h(w) + ~ iff n * %(~).

COROLLARY 5.10. Assume M =~ M, and let c) be a CTL” formula describ-

ing M. Then M > %(~) iff M > ~.

6. EXAMPLES

In this section we discuss some abstractions that have proved useful in

practice. Each is illustrated with a small example. All of the programs for the

examples are given in a simple finite-state language, which we now describe.

Our verification system consists of a compiler for this language, plus a

BDD-based model checker. Both the compiler and the model checker are

written in LISP, except for the BDD routines, which are written in C.

6.1 A Simple Language

The language that we will be using is a procedural language designed for

specifying reactive programs. The main features of this language are as

follows:

(1) It contains a variety of structured programming constructs, such as
while loops. Nonrecursive procedures are also available.

(2) It is finite state. The user must specify a fixed number of bits for each
input and output in a program.

(3) The model of computation is a synchronous one. At the start of each time
step, inputs to the program are obtained from the environment. All

computation in a program is viewed as instantaneous (i. e., occurring in

zero time). There is one special statement, wait, which is used to indicate

the passage of time. When a wait statement is encountered, any changes

to the program’s outputs become visible to the environment, and a new

time step is initiated. Thus, computation proceeds as follows: Obtain

inputs, compute (in zero time) until a wait is encountered, make output

changes visible, obtain new inputs, etc. The wait statements indicate the
control points in the program.

Aside from the wait statement, most of the language features used in the

examples in this paper are self-explanatory.

A program in the language may be compiled into a Moore machine for

verification or for implementation in hardware. Here, we are only concerned

with the first of these. Since the Moore machine for a program may have a

large number of states (even after abstraction), it is important not to generate

an explicit-state representation of this machine. Instead, our compiler di-

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1531

rectl y produces a description of the Moore machine in the form of a BI)D.

This is then used as the input to the BDD-based model-checking program.

When a program is compiled, the user may also specify abstractions for

some of the inputs or outputs. By using the techniques described previously,

the compiler can directly generate an (approximate) abstract Moore machine.

There are a number of abstractions built into the compiler, some of which are

described in the following subsections. In addition, the user may define new

abstractions by supplying procedures to build the BDDs representing them.

Abstract versions of the primitive relations are computed automatically by

the compiler.

Figure 3 is a small example program, a settable countdown timer, written

in the language. The timer has two inputs, set and start, which are one and

eight bits wide, respectively. There are also two outputs: count, which is eight

bits wide and initially zero; and alarm, which is one bit and initially one. At

each time step, the operation of the counter is as follows: If set is one, then

the counter is set to the value of start. Otherwise, if the counter is not zero, it

is decremented. The alarm output is set to one when count is zero, and to zero

if count is nonzero.

6.2 The Model Checker

The model checker is essentially a propositional CTL model checker (as

described by Burch et al. [1990]), extended with a notion of types. State

components need not be only Boolean, but they are restricted to finite

domains. The model checker knows about all of the types allowed by the

compiler. Integers are handled via two’s-complement representation. When

we write temporal-logic formulas in this section, we will often write them so

as to maximize readability. However, they do not necessarily represent the

input format accepted by the model checker. We do this especially with

abstracted variables. For example, if x is a variable that is abstracted by

{
h(x) = :’ if x is even,

if x is odd,

then we will generally write something like even(x) in a formula rather than

i = O. We emphasize, however, that all of the properties can be expressed

concisely at the abstract level when using the abstractions being considered.

6.3 Congruence Moduio an Integer

For verifying programs involving arithmetic operations, a useful abstraction

is congruence modulo a specified integer m:

h(i) = i mod m.

This abstraction is motivated by the following properties of arithmetic mod-

U1O m:

(i mod m) + (jmd m)mod m = z+j (mod m),

(i mod m) – (jmod m)mod m = i –j (mod m),

(i mod m)(jmod m)mod m - V (mod m).

ACM TransactIons on Programming Languages and Systems, Vol 16, No 5, September 1994

1532 . Edmund M. Clarke et al.

Flg 3 Example program.

input set 1

input start 8

output count : 8 := O

output alarm 1=1

loop

if set = 1

count = start

else if count > 0

count = count — 1

endif

if count = O

alarm

else

alarm

endif

wait

endloop

In other words, we can determine the value modulo m of an

=1

–o.—

expression

involving addition, subtraction, and multiplication by working with the val-

ues modulo m of the subexpressions.s

The abstraction may also be used to verify more complex relationships by

applying the following result from elementary number theory:

CHINESE REMAINDER THEOREM. Let m 1, mz, ..., m. be positive integers

that are pair-wise relattuely prime. Define m = mlmz ~”” mn, and let b,

LI, L2, ..., L,, be integers. Then there is a unique integer i such that

b<i<b+m and i~il (modmj) for l<j <n.

Suppose that we are able to verify that, at a certain point in the execution of
a program, the value of the nonnegative integer variable x is equal to L]

modulo m, for each of the relatively prime integers ml, m2, ..., m~. Further-

more, suppose that the value of x is constrained to be less than m ~m z “”. mn.

Then, using the above result, we can conclude that the value of x at that

point in the program is uniquely determined.

We illustrate this abstraction using a 16-bit-by-16-bit unsigned multiplier

(see Figure 4). The program has inputs req, inl, and in2. The last two inputs

provide the factors to operate on, and the first is a request signal that starts

the multiplication. Some number of time units later, the output ack will be

set to true. At that point, either the output gives the 16-bit result of the
multiplication, or the overflow is one if the multiplication overflowed. The

‘It may not be Immedlatcly clear how complex representmg a relationship hke z = 3 (mod 7) is,
so we briefly describe this BDD here Suppose z 1s k + 1 bits wide If the high-order (k th) blt of z
1s O, then the low-order k bits must represent a number that 1s also eqrnvalent to 3 (mod 7)

Otherwise, the low-order k bits must represent a number that is equivalent to 3 – 2h (mod 7)

Both of these relationships have the same form as the orlgmal one, but they revolve a number

with only k bits Furthermore, there are only seven modulo values that we wdl ever have to

consider By mntmuing to decompose the relatmnships m thm way, we see that the BDD will

have O(mk) nodes We also note that this 1s independent of the BDD variable order

ACM TransactIons on Programming Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1533

input ml 16

input in2 16

input req 1

output factorl 16 = O

output factor2 16 .= O

output output : 16 ,= O

output overflow 1 ,= O

output ack 1 ,= O

procedure wa,tfor(e)

while ye

wait

endwhile

endproc

loop

1 waitfor(req)

factorl = inl

fact0r2 = in2

output := o
overflow : = O

wait

loop

if (factorl = O) V (overflow = 1)

break

endif

if Isb(factorl) = 1

(overflow, output) = (output. 17)+ fact0r2

endif

factorl = factorl >1

wait

if (factorl = O) V (overflow = 1)

break

endif

(overflow] fact0r2) = (factor2: 17)< 1

wait

endloop

ack := I

wait

waitfor(~req)

ack := O
endloop

Fig. 4. Program using a 16-bit-by-16-bit unsigned multiplier

multiplier then waits for req to become zero before starting another cycle. The

multiplication itself is done with a series of shift-and-add steps. At each step,

the low-order bit (bit O) of the first factor is examined; if it is one, then the

second factor is added to the accumulating result. The first factor is then

shifted right, and the result is shifted left in preparation for the next step.4

40ne feature of the language that the program uses is the ability to extend an operand to a
specified number of bits. For example, z :5 extends x to be 5 bits wide by adding leading O bits.
This facility is used to extend output and factor2 when adding that shifting so that overflow can
be detected. The statement (overflow, output) = (output: 17) + factor2 sets output to the 16-bit

sum of output and factor2, and overflow to the carry from this sum. Also, .%<< 1 is x shifted left
by one bit. Right shifts are indicated using >> The break statement is used to exit the

innermost loop.

ACM Transactions on Programming Languages and Systems, Vol 16, No 5, September 1994

1534 . Edmund M, Clarke et al

The specification we used for the multiplier was a series of formulas of the

following form:s

b’G waiting ~ req A (inl mod m = z) A (in2 mod m = j)

~ V(= ack U ack A (overflow v (output mod m = ij mod m))).

Here, i and j range from O through m – 1 (hence, we have to check O(m2)

formulas), and waiting is an atomic proposition that is true when execution is

at the program statement labeled 1. The input in2 and the outputs factor2

and output were all abstracted modulo m. The output factorl was not

abstracted, since its entire bit pattern is used to control when factor2 is

added to output. We performed the verification for m = 5, 7, 9, 11, and 32.

These numbers are relatively prime, and their product, 110,880, is sufficient

to cover all 216 possible values of output. The entire verification required

slightly less than 30 minutes of CPU time on a Sun 4. We also note that

because the BDDs needed to represent multiplication grow exponentially

with the size of the multiplier, it would not have been feasible to verify the

multiplier directly. Furthermore, even checking the above formulas on the

unabstracted multiplier proved to be impractical.

6.4 Representation by Logarithm

When only the order of magnitude of a quantity is important, it is sometimes

useful to represent the quantity by (a fixed-precision approximation of) its

logarithm. For example, suppose i >0. Define

lg i = [log2(i + 1)1;

that is, lg i is O if i is O, and for i >0, lg i is the smallest number of bits
needed to write i in binary. We take h(i) = lg i.

As an illustration of this abstraction, again consider the multiplier of

Figure 4. Recall that a program that always indicated an overflow would

satisfy our previous specification. We note that, if lg z + lg j < 16, then

lg ij < 16, and hence, the multiplication of i and ~ should not overflow.

Conversely, if lg i + lg j > 18, then lg ij > 17, and the multiplication of i and

j will overflow. When Ig i + lg j = 17, we cannot say whether overflow should

occur. These observations lead us to strengthen our specification to include

the following two formulas:

VG waiting A req A (lg inl + lg in2 < 16) + V(T ack U ack A ~ overflow),

VG waiting A req A (lg inl + lg in2 > 18) s V(1 ack U ack A overflow).

We represented all of the 16-bit variables in the program by their logarithms.

Compiling the program with this abstraction and checking the above proper-

ties required less than a minute of CPU time.

5Thls specification admits the possibility that the multiplier always signals an overflow We will

verify that this M not the case using a different abstraction (see Subsection 6,4).

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 15:35

6.5 S/lngle-Bit and Product Abstractions

For programs involving bitwise logical operations, the following abstraction is

often useful:

h(i) = thejth bit of i,

where j is some fixed number.

If hl and hz are abstraction mappings, then

h(i) = hi(i), hz(i)

also defines abstraction mapping. Using this abstraction, it may be possible

to verify properties that are not possible to verify with either h ~ or h ~ alone.

As an example of using these types of abstractions, consider the program

shown in Figure 5. This program reads an initial 16-bit input and computes

the parity of it. The output done is set to one when the computation is

complete; at that point, parity has the result. Let #i be true if the parity of i

is odd. One desired property of the program is the following:

(1) The value assigned to b has the same parity as that of in, and

(2) #b @ parity is invariant from that point onward.

We can express this with the following formula:

1 #in A VX(~ #b A VG~ (#b @ parity)) v #in A VX(#b A VG(#b @ parity)).

To verify this property, we used a combined abstraction for in and b. Namely,

we grouped the possible values for these variables both by the value of their

low-order bit and by their parity. The verification required only a few

seconds.

6.6 Symbolic Abstractions

The use of a BDD-based compiler together with a model checker makes it

possible to use abstractions that depend on symbolic values. This idea can

greatly increase the power of a particular type of abstraction. As a simple

example, consider the program in Figure 6.

We wish to show that the next-state value of b is always equal to the

current-state value of a. We can express this property for a fixed value, say,

42, using the formula

VG(a = 42 ~ VXb = 42).

If we want to verify just this property, we can use the following abstraction

for a and b:

When we apply this abstr~ction and compile the program, we obtain the
transition relation R(ti, 6‘, b, $‘) defined by $‘ = d. Here, the primes denote

next-state variables, and all of the variables range over {O, 1}. Now, to check

ACM Transactions on Programming Languages and Systems, Vol 16, No 5, September 1994

1536 . Edmund M. Clarke et al.

Fig. 5 Parity-computation program

input in : 16
output parity : 1 : = O
output b : 16 := O
output done : 1 := O

b = tn

wait

while b # O

parity := parity @ lsb(b)

b:=b>l

wait

endwhile

done := I

input a ; 8
output b :8 ::= O

Fig. 6, Simple program. loop

b:=a

wait

endloop

that our program works correctly for the value 42, we would check the

following formula at the abstract level:

‘v’G(ti = O + VX6 = O).

The formula would, of course, turn out to be satisfied. Obviously, though, we

do not want to have to repeat this process for each possible data value.

Suppose now that we were to modify our abstraction function as follows:

We have introduced a new symbolic parameter that our abstraction depends

on. Imagipe compiling the program with this abstraction; we should get a

relation RC(6A 6‘, b, $‘, c) that is parameterized by c. Fixing c = 42 will give

the relation R that we encountered above. If we could run the model-check-

ing algorithm on our parameterized relation, we would obtain a par,ameter-

ized state set representing the states for which our formula is true. Now our

specification

VG(6=0-VX~=O)

is essentially saying that

VG(a =C +VXb =c).

If the formula turns out to be true for all values of c, we will have proved the

desired specification. The observation now is that, by introducing eight extra

BDD variables to encode the possible choices for c, we can in fact

(1) represent hC with a BDD (the user will supply just hC);

(2) compile with h, to get a BD13 representing fi,,(d, d’, 8, 6‘, c) (the compiler

handles this step automatically);

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No 5, September 1994

(3)

(4)

Model Checking and AbstractIon . 1537

perform the model checking to obtain a BDD representing the parametri-

zed state set (the model checker does this automatically; it simply views

c as an additional state component that never changes); and

if necessary, choose a specific c, and generate a counterexample (al:so
done by the model checker).

Furthermore, note that, in this case the program behaves identically regardl-

ess of the value of c, so when we compile it, the BDD for RC will be

independent of the extra variables that we introduced. As a result, doing the

model checking will be no more complex than in the case when we were just

verifying

VG(a = 42 * VXb = 42).

In general, we have found that sharing in the BDDs makes it possible to

perform efficiently the abstraction, compilation, and model checking. We Cdl

abstractions such as hC “symbolic abstractions”; below, we give some more

complex examples that make use of these abstractions.

Con sider a simple partitioning:

We might try to use such an abstraction when the program we are trying to

verify involves comparisons. If two numbers are not equivalent according to

this abstraction, we can find the truth value of a comparison between them.

As an example of using this abstraction, consider the program in Figure 7.

This program represents a cell in a linear sorting array. There is one cell for

each integer to be sorted, and the cells are numbered consecutively from right

to left. In the array, each cell’s left and left-sorted inputs are connected to its

left neighbor’s y and sorted outputs, and each cell’s right input is connected to

its right neighbor’s x output. The values to be sorted are the values of the x

outputs. The sort proceeds in cycles. During each cycle, exactly half the cells

(either all of the odd-numbered cells or all of the even-numbered cells) WIJ1

have their comparing output equal to one. These cells compare their own x

output with that of their right neighbor, The smaller of these values is placed

in y. In addition, if the values were swapped, the cell’s sorted output is set to

zero. .During the next clock period, the right neighbor’s x and sorted values

are copied from the first cell’s y and sorted outputs. When the rightmost celll’s

sortedl output becomes one, the sort is complete. In this example, we consider

an array for sorting eight numbers.G

The properties that we verified are

(1) for every c, eventually the values of the x outputs are such that all

numbers that are less than c come before all numbers that are greater

6 In this program x and y may have any mitlal values. The comparing output is set to O or 1,
depending on the cell’s position in the array The left and right ends of the sorting array are

dummy cells for which x is 216 – 1 and O, respectively. The left cell’s sorted output M also fixed

at 1

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1538 . Edmund M. Clarke et al,

Flg 7 Program representing a cell in a hnear sor’ung array

input left 16

input Ieftsorted 1

output sorted 1 = O

output comparing 1 = O or 1

output swap 1 = O

output X 16

Output y 16
input right 16

loop

if comparing = 1

swap = (x < right)

wait

if swap = 1

y=x

x = right

sorted ,= O

else

y = right

endif

wait

else

wait

wait
x = left

sorted = leftsorted

endif

comparmg ,= ?comparmg

1 wait

endloop

than or equal to c, and this condition holds invariantly from that point

on; and

(2) for every c, the number of the x outputs that are less than c is invariant
except when elements are being swapped.

The first property implies that the array is eventually sorted. The second

implies that the final values of the x outputs form a permutation of the initial

values.

We performed the verification by abstracting all of the 16-bit variables in

the program as described above. The temporal formulas corresponding to the

two properties are

VFVG(X1< CVX2>C)A. .. A(X7 <C VX8>C)

and

(;(XC<C)=7Z) [[+’v’G ;(XL<C)=n
~=1 5=1 iv7s’ablel

Here, x, is the value of the variable x in the ith cell of the array. The

summation notation denotes the number of formulas x, < c that are true,

and stable is an atomic proposition that is true when every cell is executing

the statement labeled 1.7 Verifying these properties required just under five

7 We also verified the property VG tfF stable to check that the cells mamtam lockstep,

ACM Transactions on Pmgramm,ng Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1539

minutes of CPU time. In addition, checking these properties on the unab-

stracted program was not feasible due to space limitations.

We also used symbolic abstractions to verify a simple pipeline circuit. This

circuit is shown in Figure 8 and is described in detail elsewhere [Burch et al.

1990; 1991]. It performs three-address arithmetic and logical operations cm

operands stored in a register file.

We used two independent abstractions to perform the verification. First,

the register addresses were abstracted so that each address was either one of

three symbolic constants (ra, rb, or rc) or some other value. This abstraction

made it possible to collapse the entire register file down to only three

registers, one for each constant. The second abstraction involved the individ-

ual registers in the system. In order to verify an operation, say, addition, we

create symbolic constants ca and cb, and allow each register to be either ca,

cb, ca + cb, or some other value. As part of the specification, we verified that

the circuit’s addition operation works correctly. This property is expressed by

the temporal formula

VG(srcaddrl = ra) ~ (srcaddr2 = rb) A (destaddr = rc) ~ ~ stall

- VXVX((regra = ca) A (regrb = cb) ~ VX(regrc + ca + cb)).

This formula states that, if the source address registers are ra and rb, the

destination address register is rc, and the pipeline is not stalled, then the

values in registers ra and rb two cycles from now will sum to the value in

register rc three cycles from now. The reason for using the values of registe rs

ra and rb two cycles in the future is to account for the latency in the pipeline.

The largest pipeline example we tried had 64 registers in the register file,

and each register was 64 bits wide. This circuit has more than 4,000 state

bits and over 101300 reachable states, The verification required slightly less

than 6 1/2 hours of CPU time. In addition, the verification times scale

linearly in both the number of registers and the width of the registers. For

comparison, the largest circuit verified by Burch et al. [1991] had 8 registers,

each 32 bits, and the verification required about 4 1/2 hours of CPU time cm

a Sun 4. In addition, the verification times there were growing quadratically

in the register width and cubicly in the number of registers. We also note that

the complexity of verifying systems like this can be further reduced using a

techruque that we call symbolic compositions. Symbolic compositions have

the same flavor as symbolic abstractions, but are designed to take advantage

of the compositional verification properties of VCTL* [Grumberg and Long

1991]. By combining symbolic compositions with symbolic abstractions, we

were i~ble to verify the system with 64 registers, each 64 bits, in less than 25

minutes of CPU time on a SUN 3/60, and with verification times that scale

polylogarithmically in the number of registers and linearly in the width of

registers. We discuss these techniques in more detail elsewhere [Long 1993].

7. CONCLUSION

We have described a simple but powerful method for using abstraction to
simphfy the problem of model checking. There are two parts to this method.

First, we have shown how to extract abstract finite-state machines directly

ACM TransactIons on Programming Languages and Systems,VO116,No 5, September 1994

1540 . Edmund M Clarke et al,

Flg 8 Plpelme cmcult block diagram.

Read ports Write port

Bypass cmxutm

from finite-state programs, using techniques similar to those involved in

abstract interpretation. The process guarantees that the actual state machine

for the program is a refinement of the extracted state machine. Second, we

have examined when satisfaction of a formula by an abstract machine implies

satisfaction by the actual machine. For formulas given in the logic VCTL*,

this is always the case. We have also implemented a symbolic verification

system based on these ideas and used it to verify a number of nontrivial

examples. In the process of doing these examples, we have found a number of

useful abstractions. Our work on generating abstract systems could be used

with other verification methodologies, such as testing language containment.

There are a number of possible directions for future work. One problem

with using our current approach with logics like CTLW, which can express the

existence of a path, is in ensuring the strict exactness conditions. By using a

more complex finite-state model such as AND/OR graphs, it should be

possible to extend the techniques and to obtain a conservative model-check-

ing algorithm for such Iogics. We also wish to explore thoroughly the problem

of generating abstractions for infinite-state systems. The important step in

doing this is to determine abstract versions of the primitive relations. Some of

the techniques and results from automated theorem proving, term rewriting,
abstract interpretation, and algebraic specification of abstract data types

should prove useful for this problem. Similar techniques would be useful for

studying the flow of data in a system. Data items might be represented as

terms in the Herbrand universe, and functional transformations on the data

would correspond to building new terms from the input terms. Given an

equivalence relation of finite index on terms, we would derive abstract

primitive relations for the operations and use these to produce an abstract

version of the system.

ACM TransactIons on Programming Languages and Systems, Vol 16, No 5, September 1994

Model Checking and Abstraction . 1541

REFERENCES

BEATTY, D. L., BRYANT, R. E., ANrI SEG~R, C.-J. 1991. Formal hardware verification by symbolic

ternary trajectory evaluation. In Proceedings of the 28th DesLgn Automation Conference. IEEE
Computer Society Press, Los Alamltos, Cahf., 397-402.

BENSALKM, S., BOUAJJANI, A., LOISEACR, C., AND SIFAKIS, J. 1992. Property preserving simula-

tions, In Proceedings of the 4th Workshop on Computer-AZded Verlflcatlon, G. V, Bochmarm

and I) K. Probst, Eds. Lecture Notes m Computer Science, vol. 663. Springer-Verlag, New

York, 260–273,

BROWNE, M. C., CLARKE, E. M., DILL, D. L., AND MMFIRA, B. 1986 Automatic verification of

sequential circuits using temporal logic IEEE Trans. Comput. C-35, 12, 1035– 1044

BRYANT, R. E, 1986. Graph-based algorithms for Boolean function mampulatlon, ZEEE Trans.

Comput. C-35, 8, 677-691

BURCH, J. R., CLARKE, E. M., AND LONG, D. E. 1991. Representing circuits more efficiently m

symbolic model checking. In Proceedings of the 28th DesLgn Automat~on Conference. IEEE

Computer Society Press, Los Alamltos, Cahf,, 403-407.

BURCH, J. R., CLARKE, E M., MCMILLAN, K. L., AND DILL, D. L. 1990 Sequential circuit

verification using symbohc model checking. In Proceedings of the 27th Destgn Autornatmn

Conference. IEEE Computer Society Press, Los Alamitos, Calif., 46-51

CLARKE E. M., AND EMERSON, E. A. 1981. Synthesis of synchronization skeletons for branching

time temporal logic. In Logw of Programs: Workshop, Yorktown Hezghts, NY, May 1981,

Lecture Notes m Computer Science, vol. 131. Springer-Verlag, New York

CLARKE E. M., AND KIMURA, S. 1990. A parallel algorithm for constructing binary decision

dlagri~ms. In Proceedings of the 1990 IEEE Internat~onal Conference on Computer Design.

IEEE Computer Society Press, Los Alamitos, Calif., 220-223.

CLARKE E. M., EMF,RSON, E. A., ANI) SISTLA, A. P. 1986. Automatic verification of finite-state

concurrent systems using temporal 10WC specifications. ACM Trans. Program, Lang. Syst. 8, 2

(April), 244-263.

CLARKE, E. M., EMERSON, E. A., AND SISTLA, A, P, 1983. Automatic verification of finite-state

concurrent systems using temporal loglc specifications. In Proceedings of the IOth Annual

ACM Symposmm on Prlnmples of Programmmg Languages (Austin, Tx Jan). ACM, New

York, 117-126.

CLARKR, E. M., LONG, D, E., AND MCMILLAN, K. L. 1989, Composatlonal model checking. 1n
proceedings of the 4th Annual Symposium on Logm m Computer Science IEEE Computer

Society Press, Los Alamitos, Calif., 46-51.

CLEAVELAND, R. 1990. Tableau-based model checking m the propositional mucalculus. Acts Inf.

27, 8 (Sept.), 725-747

COUDERT, O., AND MADRF,, J. C. 1990. A unified framework for the formal verification of

sequential circuits. In Proceedings of the 1990 Znternatlonal Conference on Computer-Azded

Design. IEEE Computer Society Press, Los Alamitos, Calif., 126-129

Cousor, P., AND COUSOT, R. 1979. Systematic design of program analysls frameworks, [n

procei?dmgs of the 6th Annual ACM Symposium on Pnnclples of Programmmg Languages (San

Antonio, Tx, Jan.). ACM, New York, 269-282

COUSOT, P., AND COUSOT, R. 1977. Abstract interpretation: A unified lattlce model for static

analysm of programs by construction or approximation of fixpomts. In Proceedings of the 4th

Annual ACM Symposium on Principles of Programming Languages (Los Angeles, Calif. Jan)

ACM, New York, 238-252.

DILL, D. L. 1989. Trace Theory for AutomatLc Hlerarchtcal VerLficat60n of Speed-Independe,~ t

Circuits. ACM Distingoished Dissertations, MIT Press, Cambridge, Mass.

FLOYD, R. W. 1967. Assigning meanings to programs. In Proceedings of the Symposmm on

Applwd Mathematics 19 (Mathematical Aspects of Computer Science), J. T. Schwartz, Ed.

American Mathematical Society, Providence, R.I.

FUJITA, M., FUJISAWA, H., AND KAWATO, N. 1988. Evaluation and improvements of Boolean

comparison method based on binary decision diagrams. In proceedings of the 1988 Intern,z-

ttonal Conference on Computer-Azded Deszgn (Santa Clara, Calif. Nov.). IEEE Computer

Society Press, Los Alamitos, Calif, 2-5.

ACM Transactions on Programming Languages and Systems, Vol 16, No 5, September 1994

1542 . Edmund M. Clarke et al

GRAF, S , AND STEFFEN, B 1990 Compositional minimization of ilmte state processes. In

proceedings of the 1990 Workshop on Computer-Azded VerLficutLon (New Brunswick, NJ.

~June), R P Kurshan and E M Clarke, Eds Sprmger-Verlag, New York, 186-196

GRUMBF,RG, O., AND LONG, D E 1991 Model checking and modular verification In Procazhngs

of CONCUR 91: 2nd International Conference on Concurrency Theory, J. C. M. Baeten and J.

F. Groote, Eds Lecture Notes m Computer Science, vol. 527 Sprmger-Verlag, Ncw York,

250-265

GUNTER, C A , AND SCOTT, D S 1990 Semantic domains In Handbook of Theoretical Computer

Sctence, Vol. B. J, van Leeuwen, Ed. Elsewer, New York, 633-674.

HAR’EL, Z , AND KURSHAN, R P 1987 The COSPAN user’s gmde Tech Rep 11211-871OO9-21TM,

AT&T Bell Laboratories, Murray Hill, N J

JOSKO, B 1989 Verifying the correctness of AADL modules using model checking In Proceed-

ings of the REX Workshop on Stepwwe Refinement of Dwtrtbuted Systems, Models, For-

malisms, Correctness, J W. de Bakker, W -P de Roever, and G Rozenberg, Eds J,ecture Notes

in Computer Science, vol. 430 Springer-Verlag, New York, 386–400

KURSHAN, R. P. 1989, Analysls of discrete event coordmatlon, In Proceedings of the REX

Work~hop on Stepwwe Ref~nement of D~strLbuted Systems, Models, Forma lwms, Correctness, J

W de Bakker, W -P de Roever, and G Rozenberg, Eds Lecture Notes m Computer Science,

vol 430 Sprmger-Verlag, New York, 414–453,

LICH’rENSTMN, O., AND PNU~LI, A. 1985. Checking that fimte state concurrent programs satisfy

tbelr hnear specification In pmceedmgs of the 12th Annual ACM Symposturn on Prmclple,s of

Programming Languages (New Orleans, LA Jan) ACM, New York, 97-107

LoN~, D. E. 1993. Model checking, abstraction, and compositional verification Ph D thesis,

School of Computer Science, Carnc~e Mellon Umv., Pittsburgh, Pa.

MYCROFT, A 1981 Abstract interpretation and optimizing transformations for applicative

programs Ph D thesis, Dept of Computer Science, Univ of Edinburgh, Scotland

NIELSON, F, 1982. A denotatlonal framework for data flow analysm. Acts Inf. 18, 3 (Dec.),

265-287

QUI~LLE, J , ANrI SIFAKM, J. 1981 Specification and verification of concurrent systems in

CESAR. In Proceedings of the 5th International Symposium m Program m~ng,

SHUREK, G,, AND GRUMBER~, O. 1990. The modular framework of computer-aided verification

Motlvatlon, solutlons and evaluation crlterla In Proceedings of the 1990 Workshop on Con--

puter-Azded Verzficatzon (New Brunswick, NJ. June), R P Kurshan and E, M. Clarke, Eds,,

Sprmger-Verlag, New York, 214-223.

SISTLA, A. P., AND CLARKE, E. 1986. Complexity of Proposltlonal temporal loglcs J ACM ,?2, 3

(July), 733-749

TOUATI, H , SAVOJ, H , LIN, B , BRAYTON, R. K , AND SANGIOVANNI VINC~NTELLI, A. 1990. Im-

phclt state enumeration of fimte state machmes using BDD’s. In Proceedings of the 1990

International Conference on Computer-Azded Deszgn IEEE Computer Society Press, Los

Alamitos, Calif, 130-133

WOLPER, P. 1986. Expressing mterestmg properties of programs m propositional temporal loggc,

In Proceedings of the 13th Annual ACM Symposcum on Prmclples of Programrnlng Languages

(St Petersburg Beach, FL Jan) ACM, New York

Received September 1992; revised November 1993 and February 1994; accepted February 1994

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

