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ABSTRACT
We present our experience with QUIC, an encrypted, multiplexed,
and low-latency transport protocol designed from the ground up to
improve transport performance for HTTPS traffic and to enable rapid
deployment and continued evolution of transport mechanisms. QUIC
has been globally deployed at Google on thousands of servers and
is used to serve traffic to a range of clients including a widely-used
web browser (Chrome) and a popular mobile video streaming app
(YouTube). We estimate that 7% of Internet traffic is now QUIC. We
describe our motivations for developing a new transport, the princi-
ples that guided our design, the Internet-scale process that we used
to perform iterative experiments on QUIC, performance improve-
ments seen by our various services, and our experience deploying
QUIC globally. We also share lessons about transport design and the
Internet ecosystem that we learned from our deployment.
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1 INTRODUCTION
We present QUIC, a new transport designed from the ground up
to improve performance for HTTPS traffic and to enable rapid de-
ployment and continued evolution of transport mechanisms. QUIC
replaces most of the traditional HTTPS stack: HTTP/2, TLS, and
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Figure 1: QUIC in the traditional HTTPS stack.

TCP (Figure 1). We developed QUIC as a user-space transport with
UDP as a substrate. Building QUIC in user-space facilitated its
deployment as part of various applications and enabled iterative
changes to occur at application update timescales. The use of UDP
allows QUIC packets to traverse middleboxes. QUIC is an encrypted
transport: packets are authenticated and encrypted, preventing mod-
ification and limiting ossification of the protocol by middleboxes.
QUIC uses a cryptographic handshake that minimizes handshake
latency for most connections by using known server credentials on
repeat connections and by removing redundant handshake-overhead
at multiple layers in the network stack. QUIC eliminates head-of-line
blocking delays by using a lightweight data-structuring abstraction,
streams, which are multiplexed within a single connection so that
loss of a single packet blocks only streams with data in that packet.

On the server-side, our experience comes from deploying QUIC
at Google’s front-end servers, which collectively handle billions of
requests a day from web browsers and mobile apps across a wide
range of services. On the client side, we have deployed QUIC in
Chrome, in our mobile video streaming YouTube app, and in the
Google Search app on Android. We find that on average, QUIC re-
duces latency of Google Search responses by 8.0% for desktop users
and by 3.6% for mobile users, and reduces rebuffer rates of YouTube
playbacks by 18.0% for desktop users and 15.3% for mobile users1.
As shown in Figure 2, QUIC is widely deployed: it currently ac-
counts for over 30% of Google’s total egress traffic in bytes and
consequently an estimated 7% of global Internet traffic [61].

We launched an early version of QUIC as an experiment in 2013.
After several iterations with the protocol and following our de-
ployment experience over three years, an IETF working group was
formed to standardize it [2]. QUIC is a single monolithic protocol in

1Throughout this paper "desktop" refers to Chrome running on desktop platforms
(Windows, Mac, Linux, etc.) and "mobile" refers to apps running on Android devices.
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Figure 2: Timeline showing the percentage of Google traffic served over
QUIC. Significant increases and decreases are described in Section 5.1.

Figure 3: Increase in secure web traffic to Google’s front-end servers.

our current deployment, but IETF standardization will modularize
it into constituent parts. In addition to separating out and specify-
ing the core protocol [33, 34], IETF work will describe an explicit
mapping of HTTP on QUIC [9] and separate and replace QUIC’s
cryptographic handshake with the more recent TLS 1.3 [55, 63].
This paper describes pre-IETF QUIC design and deployment. While
details of the protocol will change through IETF deliberation, we
expect its core design and performance to remain unchanged.

In this paper, we often interleave our discussions of the protocol,
its use in the HTTPS stack, and its implementation. These three are
deeply intertwined in our experience. The paper attempts to reflect
this connectedness without losing clarity.

2 MOTIVATION: WHY QUIC?
Growth in latency-sensitive web services and use of the web as a plat-
form for applications is placing unprecedented demands on reducing
web latency. Web latency remains an impediment to improving user-
experience [21, 25], and tail latency remains a hurdle to scaling the
web platform [15]. At the same time, the Internet is rapidly shifting
from insecure to secure traffic, which adds delays. As an example
of a general trend, Figure 3 shows how secure web traffic to Google
has increased dramatically over a short period of time as services
have embraced HTTPS. Efforts to reduce latency in the underlying
transport mechanisms commonly run into the following fundamental
limitations of the TLS/TCP ecosystem.
Protocol Entrenchment: While new transport protocols have been
specified to meet evolving application demands beyond TCP’s sim-
ple service [40, 62], they have not seen wide deployment [49, 52, 58].
Middleboxes have accidentally become key control points in the In-
ternet’s architecture: firewalls tend to block anything unfamiliar for
security reasons and Network Address Translators (NATs) rewrite
the transport header, making both incapable of allowing traffic from
new transports without adding explicit support for them. Any packet
content not protected by end-to-end security, such as the TCP packet

header, has become fair game for middleboxes to inspect and mod-
ify. As a result, even modifying TCP remains challenging due to
its ossification by middleboxes [29, 49, 54]. Deploying changes to
TCP has reached a point of diminishing returns, where simple pro-
tocol changes are now expected to take upwards of a decade to see
significant deployment (see Section 8).
Implementation Entrenchment: As the Internet continues to evolve
and as attacks on various parts of the infrastructure (including the
transport) remain a threat, there is a need to be able to deploy changes
to clients rapidly. TCP is commonly implemented in the Operat-
ing System (OS) kernel. As a result, even if TCP modifications
were deployable, pushing changes to TCP stacks typically requires
OS upgrades. This coupling of the transport implementation to the
OS limits deployment velocity of TCP changes; OS upgrades have
system-wide impact and the upgrade pipelines and mechanisms are
appropriately cautious [28]. Even with increasing mobile OS popula-
tions that have more rapid upgrade cycles, sizeable user populations
often end up several years behind. OS upgrades at servers tend to
be faster by an order of magnitude but can still take many months
because of appropriately rigorous stability and performance testing
of the entire OS. This limits the deployment and iteration velocity
of even simple networking changes.
Handshake Delay: The generality of TCP and TLS continues to
serve Internet evolution well, but the costs of layering have become
increasingly visible with increasing latency demands on the HTTPS
stack. TCP connections commonly incur at least one round-trip delay
of connection setup time before any application data can be sent,
and TLS adds two round trips to this delay2. While network band-
width has increased over time, the speed of light remains constant.
Most connections on the Internet, and certainly most transactions on
the web, are short transfers and are most impacted by unnecessary
handshake round trips.
Head-of-line Blocking Delay: To reduce latency and overhead costs
of using multiple TCP connections, HTTP/1.1 recommends limiting
the number of connections initiated by a client to any server [19].
To reduce transaction latency further, HTTP/2 multiplexes multi-
ple objects and recommends using a single TCP connection to any
server [8]. TCP’s bytestream abstraction, however, prevents applica-
tions from controlling the framing of their communications [12] and
imposes a "latency tax" on application frames whose delivery must
wait for retransmissions of previously lost TCP segments.

In general, the deployment of transport modifications for the
web requires changes to web servers and clients, to the transport
stack in server and/or client OSes, and often to intervening mid-
dleboxes. Deploying changes to all three components requires in-
centivizing and coordinating between application developers, OS
vendors, middlebox vendors, and the network operators that deploy
these middleboxes. QUIC encrypts transport headers and builds
transport functions atop UDP, avoiding dependence on vendors and
network operators and moving control of transport deployment to
the applications that directly benefit from them.

2TCP Fast Open [11, 53] and TLS 1.3 [55] seek to address this delay, and we discuss
them later in Section 8.
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3 QUIC DESIGN AND IMPLEMENTATION
QUIC is designed to meet several goals [59], including deployabil-
ity, security, and reduction in handshake and head-of-line blocking
delays. The QUIC protocol combines its cryptographic and trans-
port handshakes to minimize setup RTTs. It multiplexes multiple
requests/responses over a single connection by providing each with
its own stream, so that no response can be blocked by another. It en-
crypts and authenticates packets to avoid tampering by middleboxes
and to limit ossification of the protocol. It improves loss recovery by
using unique packet numbers to avoid retransmission ambiguity and
by using explicit signaling in ACKs for accurate RTT measurements.
It allows connections to migrate across IP address changes by us-
ing a Connection ID to identify connections instead of the IP/port
5-tuple. It provides flow control to limit the amount of data buffered
at a slow receiver and ensures that a single stream does not consume
all the receiver’s buffer by using per-stream flow control limits. Our
implementation provides a modular congestion control interface for
experimenting with various controllers. Our clients and servers nego-
tiate the use of the protocol without additional latency. This section
outlines these elements in QUIC’s design and implementation. We
do not describe the wire format in detail in this paper, but instead
refer the reader to the evolving IETF specification [2].

3.1 Connection Establishment

Figure 4: Timeline of QUIC’s initial 1-RTT handshake, a subsequent
successful 0-RTT handshake, and a failed 0-RTT handshake.

QUIC relies on a combined cryptographic and transport hand-
shake for setting up a secure transport connection. On a successful
handshake, a client caches information about the origin3. On sub-
sequent connections to the same origin, the client can establish an
encrypted connection with no additional round trips and data can
be sent immediately following the client handshake packet with-
out waiting for a reply from the server. QUIC provides a dedicated
reliable stream (streams are described below) for performing the
cryptographic handshake. This section summarizes the mechanics of
QUIC’s cryptographic handshake and how it facilitates a zero round-
trip time (0-RTT) connection setup. Figure 4 shows a schematic of
the handshake.
Initial handshake: Initially, the client has no information about the
server and so, before a handshake can be attempted, the client sends
an inchoate client hello (CHLO) message to the server to elicit a
reject (REJ) message. The REJ message contains: (i) a server config

3An origin is identified by the set of URI scheme, hostname, and port number [5].

that includes the server’s long-term Diffie-Hellman public value, (ii)
a certificate chain authenticating the server, (iii) a signature of the
server config using the private key from the leaf certificate of the
chain, and (v) a source-address token: an authenticated-encryption
block that contains the client’s publicly visible IP address (as seen at
the server) and a timestamp by the server. The client sends this token
back to the server in later handshakes, demonstrating ownership of
its IP address. Once the client has received a server config, it au-
thenticates the config by verifying the certificate chain and signature.
It then sends a complete CHLO, containing the client’s ephemeral
Diffie-Hellman public value.
Final (and repeat) handshake: All keys for a connection are es-
tablished using Diffie-Hellman. After sending a complete CHLO,
the client is in possession of initial keys for the connection since it
can calculate the shared value from the server’s long-term Diffie-
Hellman public value and its own ephemeral Diffie-Hellman private
key. At this point, the client is free to start sending application data
to the server. Indeed, if it wishes to achieve 0-RTT latency for data,
then it must start sending data encrypted with its initial keys before
waiting for the server’s reply.

If the handshake is successful, the server returns a server hello
(SHLO) message. This message is encrypted using the initial keys,
and contains the server’s ephemeral Diffie-Hellman public value.
With the peer’s ephemeral public value in hand, both sides can cal-
culate the final or forward-secure keys for the connection. Upon
sending an SHLO message, the server immediately switches to send-
ing packets encrypted with the forward-secure keys. Upon receiving
the SHLO message, the client switches to sending packets encrypted
with the forward-secure keys.

QUIC’s cryptography therefore provides two levels of secrecy:
initial client data is encrypted using initial keys, and subsequent
client data and all server data are encrypted using forward-secure
keys. The initial keys provide protection analogous to TLS session
resumption with session tickets [60]. The forward-secure keys are
ephemeral and provide even greater protection.

The client caches the server config and source-address token, and
on a repeat connection to the same origin, uses them to start the
connection with a complete CHLO. As shown in Figure 4, the client
can now send initial-key-encrypted data to the server, without having
to wait for a response from the server.

Eventually, the source address token or the server config may
expire, or the server may change certificates, resulting in handshake
failure, even if the client sends a complete CHLO. In this case, the
server replies with a REJ message, just as if the server had received
an inchoate CHLO and the handshake proceeds from there. Further
details of the QUIC handshake can be found in [43].
Version Negotiation: QUIC clients and servers perform version
negotiation during connection establishment to avoid unnecessary
delays. A QUIC client proposes a version to use for the connection
in the first packet of the connection and encodes the rest of the
handshake using the proposed version. If the server does not speak
the client-chosen version, it forces version negotiation by sending
back a Version Negotiation packet to the client carrying all of the
server’s supported versions, causing a round trip of delay before
connection establishment. This mechanism eliminates round-trip
latency when the client’s optimistically-chosen version is spoken
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by the server, and incentivizes servers to not lag behind clients
in deployment of newer versions. To prevent downgrade attacks,
the initial version requested by the client and the list of versions
supported by the server are both fed into the key-derivation function
at both the client and the server while generating the final keys.

3.2 Stream Multiplexing
Applications commonly multiplex units of data within TCP’s single-
bytestream abstraction. To avoid head-of-line blocking due to TCP’s
sequential delivery, QUIC supports multiple streams within a con-
nection, ensuring that a lost UDP packet only impacts those streams
whose data was carried in that packet. Subsequent data received on
other streams can continue to be reassembled and delivered to the
application.

QUIC streams are a lightweight abstraction that provide a reliable
bidirectional bytestream. Streams can be used for framing applica-
tion messages of arbitrary size—up to 264 bytes can be transferred on
a single stream—but they are lightweight enough that when sending
a series of small messages a new stream can reasonably be used for
each one. Streams are identified by stream IDs, which are statically
allocated as odd IDs for client-initiated streams and even IDs for
server-initiated streams to avoid collisions. Stream creation is im-
plicit when sending the first bytes on an as-yet unused stream, and
stream closing is indicated to the peer by setting a "FIN" bit on the
last stream frame. If either the sender or the receiver determines that
the data on a stream is no longer needed, then the stream can be
canceled without having to tear down the entire QUIC connection.
Though streams are reliable abstractions, QUIC does not retransmit
data for a stream that has been canceled.

A QUIC packet is composed of a common header followed by one
or more frames, as shown in Figure 5. QUIC stream multiplexing is
implemented by encapsulating stream data in one or more stream
frames, and a single QUIC packet can carry stream frames from
multiple streams.

The rate at which a QUIC endpoint can send data will always
be limited (see Sections 3.5 and 3.6). An endpoint must decide
how to divide available bandwidth between multiple streams. In our
implementation, QUIC simply relies on HTTP/2 stream priorities [8]
to schedule writes.

3.3 Authentication and Encryption
With the exception of a few early handshake packets and reset pack-
ets, QUIC packets are fully authenticated and mostly encrypted.
Figure 5 illustrates the structure of a QUIC packet. The parts of the
QUIC packet header outside the cover of encryption are required
either for routing or for decrypting the packet: Flags, Connection ID,
Version Number, Diversification Nonce, and Packet Number4. Flags
encode the presence of the Connection ID field and length of the
Packet Number field, and must be visible to read subsequent fields.
The Connection ID serves routing and identification purposes; it is
used by load balancers to direct the connection’s traffic to the right
server and by the server to locate connection state. The version num-
ber and diversification nonce fields are only present in early packets.
The server generates the diversification nonce and sends it to the
client in the SHLO packet to add entropy into key generation. Both

4The details of which fields are visible may change during QUIC’s IETF standardization.

Figure 5: Structure of a QUIC packet, as of version 35 of Google’s
QUIC implementation. Red is the authenticated but unencrypted pub-
lic header, green indicates the encrypted body. This packet structure is
evolving as QUIC gets standardized at the IETF [2].

endpoints use the packet number as a per-packet nonce, which is
necessary to authenticate and decrypt packets. The packet number is
placed outside of encryption cover to support decryption of packets
received out of order, similar to DTLS [56].

Any information sent in unencrypted handshake packets, such as
in the Version Negotiation packet, is included in the derivation of
the final connection keys. In-network tampering of these handshake
packets causes the final connection keys to be different at the peers,
causing the connection to eventually fail without successful decryp-
tion of any application data by either peer. Reset packets are sent
by a server that does not have state for the connection, which may
happen due to a routing change or due to a server restart. As a result,
the server does not have the connection’s keys, and reset packets are
sent unencrypted and unauthenticated5.

3.4 Loss Recovery
TCP sequence numbers facilitate reliability and represent the order
in which bytes are to be delivered at the receiver. This conflation
causes the "retransmission ambiguity" problem, since a retransmit-
ted TCP segment carries the same sequence numbers as the origi-
nal packet [39, 64]. The receiver of a TCP ACK cannot determine
whether the ACK was sent for the original transmission or for a
retransmission, and the loss of a retransmitted segment is commonly
detected via an expensive timeout. Each QUIC packet carries a new
packet number, including those carrying retransmitted data. This
design obviates the need for a separate mechanism to distinguish the
ACK of a retransmission from that of an original transmission, thus
avoiding TCP’s retransmission ambiguity problem. Stream offsets
in stream frames are used for delivery ordering, separating the two
functions that TCP conflates. The packet number represents an ex-
plicit time-ordering, which enables simpler and more accurate loss
detection than in TCP.

QUIC acknowledgments explicitly encode the delay between the
receipt of a packet and its acknowledgment being sent. Together with
monotonically-increasing packet numbers, this allows for precise

5QUIC connections are susceptible to off-path third-party reset packets with spoofed
source addresses that terminate the connection. IETF work will address this issue.
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network round-trip time (RTT) estimation, which aids in loss detec-
tion. Accurate RTT estimation can also aid delay-sensing congestion
controllers such as BBR [10] and PCC [16]. QUIC’s acknowledg-
ments support up to 256 ACK blocks, making QUIC more resilient
to reordering and loss than TCP with SACK [46]. Consequently,
QUIC can keep more bytes on the wire in the presence of reordering
or loss.

These differences between QUIC and TCP allowed us to build
simpler and more effective mechanisms for QUIC. We omit further
mechanism details in this paper and direct the interested reader to
the Internet-draft on QUIC loss detection [33].

3.5 Flow Control
When an application reads data slowly from QUIC’s receive buffers,
flow control limits the buffer size that the receiver must main-
tain. A slowly draining stream can consume the entire connec-
tion’s receive buffer, blocking the sender from sending data on
other streams. QUIC ameliorates this potential head-of-line block-
ing among streams by limiting the buffer that a single stream can
consume. QUIC thus employs connection-level flow control, which
limits the aggregate buffer that a sender can consume at the receiver
across all streams, and stream-level flow control, which limits the
buffer that a sender can consume on any given stream.

Similar to HTTP/2 [8], QUIC employs credit-based flow-control.
A QUIC receiver advertises the absolute byte offset within each
stream up to which the receiver is willing to receive data. As data
is sent, received, and delivered on a particular stream, the receiver
periodically sends window update frames that increase the advertised
offset limit for that stream, allowing the peer to send more data on
that stream. Connection-level flow control works in the same way
as stream-level flow control, but the bytes delivered and the highest
received offset are aggregated across all streams.

Our implementation uses a connection-level window that is sub-
stantially larger than the stream-level window, to allow multiple
concurrent streams to make progress. Our implementation also uses
flow control window auto-tuning analogous to common TCP imple-
mentations (see [1] for details.)

3.6 Congestion Control
The QUIC protocol does not rely on a specific congestion control
algorithm and our implementation has a pluggable interface to al-
low experimentation. In our deployment, TCP and QUIC both use
Cubic [26] as the congestion controller, with one difference worth
noting. For video playback on both desktop and mobile devices, our
non-QUIC clients use two TCP connections to the video server to
fetch video and audio data. The connections are not designated as au-
dio or video connections; each chunk of audio and video arbitrarily
uses one of the two connections. Since the audio and video streams
are sent over two streams in a single QUIC connection, QUIC uses
a variant of mulTCP [14] for Cubic during the congestion avoidance
phase to attain parity in flow-fairness with the use of TCP.

3.7 NAT Rebinding and Connection Migration
QUIC connections are identified by a 64-bit Connection ID. QUIC’s
Connection ID enables connections to survive changes to the client’s

IP and port. Such changes can be caused by NAT timeout and rebind-
ing (which tend to be more aggressive for UDP than for TCP [27])
or by the client changing network connectivity to a new IP address.
While QUIC endpoints simply elide the problem of NAT rebinding
by using the Connection ID to identify connections, client-initiated
connection migration is a work in progress with limited deployment
at this point.

3.8 QUIC Discovery for HTTPS
A client does not know a priori whether a given server speaks QUIC.
When our client makes an HTTP request to an origin for the first time,
it sends the request over TLS/TCP. Our servers advertise QUIC sup-
port by including an "Alt-Svc" header in their HTTP responses [48].
This header tells a client that connections to the origin may be at-
tempted using QUIC. The client can now attempt to use QUIC in
subsequent requests to the same origin.

On a subsequent HTTP request to the same origin, the client
races a QUIC and a TLS/TCP connection, but prefers the QUIC
connection by delaying connecting via TLS/TCP by up to 300 ms.
Whichever protocol successfully establishes a connection first ends
up getting used for that request. If QUIC is blocked on the path, or
if the QUIC handshake packet is larger than the path’s MTU, then
the QUIC handshake fails, and the client uses the fallback TLS/TCP
connection.

3.9 Open-Source Implementation
Our implementation of QUIC is available as part of the open-source
Chromium project [1]. This implementation is shared code, used
by Chrome and other clients such as YouTube, and also by Google
servers albeit with additional Google-internal hooks and protections.
The source code is in C++, and includes substantial unit and end-to-
end testing. The implementation includes a test server and a test
client which can be used for experimentation, but are not tuned for
production-level performance.

4 EXPERIMENTATION FRAMEWORK
Our development of the QUIC protocol relies heavily on contin-
ual Internet-scale experimentation to examine the value of various
features and to tune parameters. In this section we describe the ex-
perimentation frameworks in Chrome and our server fleet, which
allow us to experiment safely with QUIC.

We drove QUIC experimentation by implementing it in Chrome,
which has a strong experimentation and analysis framework that
allows new features to be A/B tested and evaluated before full
launch. Chrome’s experimentation framework pseudo-randomly as-
signs clients to experiments and exports a wide range of metrics,
from HTTP error rates to transport handshake latency. Clients that
are opted into statistics gathering report their statistics along with
a list of their assigned experiments, which subsequently enables us
to slice metrics by experiment. This framework also allows us to
rapidly disable any experiment, thus protecting users from problem-
atic experiments.

We used this framework to help evolve QUIC rapidly, steering its
design according to continuous feedback based on data collected at
the full scale of Chrome’s deployment. Monitoring a broad array of
metrics makes it possible to guard against regressions and to avoid
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imposing undue risks that might otherwise result from rapid evolu-
tion. As discussed in Section 5, this framework allowed us to contain
the impact of the occasional mistake. Perhaps more importantly and
unprecedented for a transport, QUIC had the luxury of being able to
directly link experiments into analytics of the application services
using those connections. For instance, QUIC experimental results
might be presented in terms of familiar metrics for a transport, such
as packet retransmission rate, but the results were also quantified
by user- and application-centric performance metrics, such as web
search response times or rebuffer rate for video playbacks. Through
small but repeatable improvements and rapid iteration, the QUIC
project has been able to establish and sustain an appreciable and
steady trajectory of cumulative performance gains.

We added QUIC support to our mobile video (YouTube) and
search (Google Search) apps as well. These clients have similar
experimentation frameworks that we use for deploying QUIC and
measuring its performance.

Google’s server fleet consists of thousands of machines distributed
globally, within data centers as well as within ISP networks. These
front-end servers terminate incoming TLS/TCP and QUIC connec-
tions for all our services and perform load-balancing across internal
application servers. We have the ability to toggle features on and
off on each server, which allows us to rapidly disable broken or
buggy features. This mechanism allowed us to perform controlled
experiments with QUIC globally while severely limiting the risk
of large-scale outages induced by these experiments. Our servers
report performance data related to current and historic QUIC con-
nections. This data is collected by a centralized monitoring system
that aggregates it and provides visualizations and alerts.

5 INTERNET-SCALE DEPLOYMENT
The experimentation framework described in Section 4 enabled safe
global deployment of QUIC to our users. We first present QUIC’s de-
ployment timeline. We then describe the evolution of one of several
metrics that we monitored carefully as we deployed QUIC globally.

5.1 The Road to Deployment
QUIC support was added to Chrome in June 2013. It was enabled
via an optional command-line flag so usage was effectively limited
to the QUIC development team. In early 2014, we were confident
in QUIC’s stability and turned it on via Chrome’s experimentation
framework for a tiny fraction (< 0.025%) of users. As QUIC proved
to be performant and safe, this fraction was increased. As of January
2017, QUIC is turned on for almost6 all users of Chrome and the
Android YouTube app.

Simultaneously developing and deploying a new secure protocol
has its difficulties however, and it has not been completely smooth
sailing to get to this point. Figure 2 shows QUIC traffic to our
services from February 2015 to December 2016. We now describe
the two notable events seen in the graph.
Unencrypted data in 0-RTT requests: In December 2015, we dis-
covered a vulnerability in our implementation of the QUIC hand-
shake. The vulnerability was traced to a bug in the client code, which

6A small holdback experiment of a few percent allows us to compare QUIC vs. TLS/TCP
performance over time.

Figure 6: Search Latency reduction for users in the QUIC experiment
over an 18-month period. Numbered events are described in Section 5.2.

could result in 0-RTT requests being sent unencrypted in an exceed-
ingly rare corner case. Our immediate response was to disable QUIC
globally at our servers, using the feature toggle mechanism described
in Section 4. This turndown can be seen as the drop to zero, and is
also visible in Figures 6 and 14. The bug was fixed and QUIC traffic
was restored as updated clients were rolled out.
Increasing QUIC on mobile: A substantial fraction of our users
access our services through mobile phones, often using dedicated ap-
plications (apps). The majority of our mobile users perform searches
via our mobile search app. Similarly, the majority of mobile video
playbacks are performed through the YouTube app. The YouTube
app started using QUIC in September 2016, doubling the percentage
of Google’s egress traffic over QUIC, from 15% to over 30%.

5.2 Monitoring Metrics: Search Latency
Our server infrastructure gathers performance data exported by front-
end servers and aggregates them with service-specific metrics gath-
ered by the server and clients, to provide visualizations and alerts.
We will use Search Latency as an example of such a metric. Search
Latency is defined as the delay between when a user enters a search
term into the client and when all the search-result content is gen-
erated and delivered to the client, including images and embedded
content. We analyze the evolution of Search Latency improvement
for users in the QUIC experiment7 versus those using TLS/TCP over
an 18-month period, as shown in Figure 6.

Over the 18-month period shown in Figure 6 there are two notable
regressions, and one improvement. The first regression started in July
2015 (labeled ’1’ in Figure 6) and lasted for about 5 months. This
regression was attributed to changes in our serving infrastructure
and to a client configuration bug, both of which inadvertently caused
a large number of clients in the QUIC experiment to gradually stop
speaking QUIC.

The second regression in December 2015 lines up with the com-
plete disabling of QUIC described in Section 5.1. When QUIC was
re-enabled in February 2016 (labeled ’2’ in Figure 6), the client con-
figuration bug had been fixed, and Search Latency improved, albeit
not to the same extent as earlier, since the infrastructure changes
hadn’t been resolved.

We take a slight detour to describe restricted edge locations
(RELs) and UDP proxying. A large number of our servers are de-
ployed inside ISPs, and we refer to these as RELs. For technical,
commercial and other considerations, RELs do not terminate TLS
sessions to a number of domains. For these domains, RELs therefore
simply act as TCP-terminating proxies, proxying the TCP payload to

7The QUIC experiment is described in Section 6.1
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an unrestricted front-end server for termination of the TLS session
and further processing. There is no QUIC equivalent to a TCP-
terminating proxy, since the transport session cannot be terminated
separately from the rest of the cryptographic session. UDP-proxying
therefore simply forwards incoming client UDP packets to the un-
restricted front-end servers. This allows users getting served at the
RELs to use QUIC, since without UDP-proxying the RELs would
only be able to speak TCP.

QUIC’s performance improvement in July 2016 is attributed to the
deployment of UDP-proxying at our RELs (labeled ’3’ in Figure 6).
As a result of UDP-proxying, QUIC’s average overall improvement
in Search Latency increased from about 4% to over 7%, showing
that for this metric, QUIC’s latency reductions more than made up
for improvements from TCP termination at the RELs.

6 QUIC PERFORMANCE
In this section, we define three key application metrics that drove
QUIC’s development and deployment, and we describe QUIC’s
impact on these metrics. We also describe QUIC’s CPU utilization at
our servers and outline known limitations of QUIC’s performance.

Though we use "mobile" as shorthand throughout this paper, we
note that it refers to both a difference in operating environment
as well as a difference in implementation. The Google Search and
YouTube apps were developed independently from Chrome, and
while they share the same network stack implementation, they are
tuned specifically for the mobile environment. For example, the
Google Search app retrieves smaller responses, whose content has
been tailored to reduce latency in mobile networks. Similarly, the
YouTube app pre-warms connections to reduce video playback la-
tency and uses an Adaptive Bit Rate (ABR) algorithm that is opti-
mized for mobile screens.

Tables 1 and 2 summarize the difference between QUIC users and
TLS/TCP users on three metrics: Search Latency, Video Playback
Latency, and Video Rebuffer Rate. For each metric, the tables show
QUIC’s performance impact as a percent reduction between using
TLS/TCP and using QUIC. If QUIC decreased Search Latency from
100 seconds to 99 seconds, it would be indicated as a 1% reduction.
We describe QUIC’s performance on these metrics further below but
briefly discuss our experiment setup first.

6.1 Experiment Setup
Our performance data comes from QUIC experiments deployed
on various clients, using the clients’ frameworks for randomized
experimental trials. Users are either in the QUIC experimental group
(QUICg) or in the TLS/TCP control group (TCPg). Unless explicitly
specified, we show QUIC performance as the performance of users
in QUICg, which includes users who were unable to speak QUIC due
to failed handshakes. This group also includes data from TLS/TCP
usage prior to QUIC discovery as described in Section 3.8. Most
users in this group however are able to speak QUIC (see Section 7.2),
and most of their traffic is in fact QUIC. Clients capable of using
QUIC use TLS/TCP for only 2% of their HTTP transactions to
servers which support QUIC. The size of the QUICg and TCPg
populations are equal throughout.

Clients that do not use QUIC use HTTP/28 over a single TLS/TCP
connection for Search and HTTP/1.1 over two TLS/TCP connections
for video playbacks. Both QUIC and TCP implementations use a
paced form of the Cubic algorithm [26] for congestion avoidance. We
show data for desktop and mobile users, with desktop users accessing
services through Chrome, and mobile users through dedicated apps
with QUIC support. Since TCP Fast Open is enabled at all Google
servers, results include such connections. However TCP Fast Open
has seen limited deployment at clients (seen Section 8).

Unless otherwise noted, all results were gathered using QUIC
version 35 and include over a billion samples. All search results
were gathered between December 12, 2016 and December 19, 2016,
and all video playback results were gathered between January 19,
2017 and January 26, 2017.

6.2 Transport and Application Metrics
Before diving into application performance, we first discuss transport-
level handshake latency as a microbenchmark that QUIC seeks to
improve. We then discuss our choice of application metrics used in
the rest of this section.

Handshake latency is the amount of time taken to establish a
secure transport connection. In TLS/TCP, this includes the time
for both the TCP and TLS handshakes to complete. We measured
handshake latency at the server as the time from receiving the first
TCP SYN or QUIC client hello packet to the point at which the
handshake is considered complete. In the case of a QUIC 0-RTT
handshake, latency is measured as 0 ms. Figure 7 shows the impact
of QUIC’s 0-RTT and 1-RTT handshakes on handshake latency.

Figure 7: Comparison of handshake latency for QUICg and TCPg ver-
sus the minimum RTT of the connection. Solid lines indicate the mean
handshake latency for all connections, including 0-RTT connections.
The dashed line shows the handshake latency for only those QUICg
connections that did not achieve a 0-RTT handshake. Data shown is
for Desktop connections, mobile connections look similar.

With increasing RTT, average handshake latency for TCP/TLS
trends upwards linearly, while QUIC stays almost flat. QUIC’s hand-
shake latency is largely insensitive to RTT due to the fixed (zero)
latency cost of 0-RTT handshakes, which constitute about 88% of all
QUIC handshakes. The slight increase in QUIC handshake latency
with RTT is due to the remaining connections that do not success-
fully connect in 0-RTT. Note that even these remaining connections
complete their handshake in less time than the 2- or 3-RTT TLS/TCP
handshakes.

We do not show microbenchmarks to characterize transport-level
impact of QUIC’s improved loss recovery, but this improvement

8Google’s SPDY protocol [3] has been subsumed by the HTTP/2 standard [8].
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manifests itself as higher resilience to loss in general and lower
latency for short connections.

Microbenchmarks such as the ones above are a useful measure of
whether a transport change is working correctly, but application and
user-relevant metrics are a measure of the usefulness of the change.
The impact of QUIC’s improvements on different application metrics
is discussed in the rest of this section, but we offer two insights about
the impact of networking changes on applications.

First, networking remains just one constituent of end-to-end ap-
plication measures. For instance, handshake latency contributes to
well under 20% of Search Latency and Video Latency. An almost
complete elimination of handshake latency will still yield only a
small percentage of total latency reduction. However, even a small
change in end-to-end metrics is significant, since this impact is of-
ten directly connected to user-experience and revenue. For instance,
Amazon estimates that every 100 ms increase in latency cuts profits
by 1% [24], Google estimates that increasing web search latency
by 100 ms reduces the daily number of searches per user measur-
ably [36], and Yahoo demonstrated that users are more likely to
perform clicks on a result page that is served with lower latency [6].

Second, the sensitivity of application metrics to networking changes
depends on the maturity of the application. In the rest of this section
we describe QUIC’s impact on Google Search and YouTube. These
are highly-optimized and mature Web applications, and consequently
improving end-to-end metrics in them is difficult.

We chose these applications for two reasons. First, improving per-
formance for these highly optimized applications has direct revenue
impact. Second, they represent diverse transport use-cases: Search
represents a low-load latency-sensitive application, and YouTube
represents a heavy-load bandwidth-sensitive application.

6.3 Search Latency
Recall that Search Latency is the delay between when a user enters a
search term and when all the search-result content is generated and
delivered to the client by Google Search, including all corresponding
images and embedded content. On average, an individual search
performed by a user results in a total response load of 100 KB
for desktop searches and 40 KB for mobile searches. As a metric,
Search Latency represents delivery latency for small, delay-sensitive,
dynamically-generated payloads.

As shown in Table 1, users in QUICg experienced reduced mean
Search Latency. The percentile data shows that QUICg’s improve-
ments increase as base Search Latency increases. This improvement
comes primarily from reducing handshake latency, as demonstrated
in Figure 9 which shows desktop latency reduction for users in
QUICg

9 as a function of the client’s minimum RTT to the server. As
the user’s RTT increases, the impact of saving handshake round trips
is higher, leading to larger gains in QUICg. Figure 8 further shows
that users with high RTTs are in a significant tail: more than 20% of
all connections have a minimum RTT larger than 150ms, and 10%
of all connections have a minimum RTT larger than 300ms. Of the
handshake improvements, most of the latency reduction comes from
the 0-RTT handshake: about 88% of QUIC connections from desk-
top achieve a 0-RTT handshake, which is at least a 2-RTT latency

9For the sake of brevity we show only desktop data for these supporting graphs. Mobile
trends are similar.

% latency reduction by percentile
Lower latency Higher latency

Mean 1% 5% 10% 50% 90% 95% 99%

Search
Desktop 8.0 0.4 1.3 1.4 1.5 5.8 10.3 16.7
Mobile 3.6 -0.6 -0.3 0.3 0.5 4.5 8.8 14.3

Video
Desktop 8.0 1.2 3.1 3.3 4.6 8.4 9.0 10.6
Mobile 5.3 0.0 0.6 0.5 1.2 4.4 5.8 7.5

Table 1: Percent reduction in global Search and Video Latency for users
in QUICg, at the mean and at specific percentiles. A 16.7% reduction at
the 99th percentile indicates that the 99th percentile latency for QUICg
is 16.7% lower than the 99th percentile latency for TCPg.

% rebuffer rate reduction by percentile
Fewer rebuffers More rebuffers

Mean < 93% 93% 94 % 95% 99%

Desktop 18.0 ∗ 100.0 70.4 60.0 18.5
Mobile 15.3 ∗ ∗ 100.0 52.7 8.7

Table 2: Percent reduction in global Video Rebuffer Rate for users in
QUICg at the mean and at specific percentiles. An 18.5% reduction at
the 99th percentile indicates that the 99th percentile rebuffer rate for
QUICg is 18.5% lower than the 99th percentile rate for TCPg. An ∗ in-
dicates that neither QUICg nor TCPg have rebuffers at that percentile.

saving over TLS/TCP. The remaining QUIC connections still benefit
from a 1-RTT handshake.

Figure 8: Distribution of connection minimum RTTs for TCP connec-
tions to our servers. These results were gathered from video playbacks.
The distribution is similar for search connections.

We believe that QUIC’s loss recovery mechanisms may also play
a role in decreasing Search latency at higher RTTs. Recall that
QUIC includes richer signaling than TCP, which enables QUIC
loss recovery to be more resilient to higher loss rates than TCP
(see Section 3.4). Figure 10 shows the relationship between TCP
retransmission rates measured at our servers against minimum client
RTTs. Employing TCP retransmission rate as a proxy for network
loss, this figure shows that network quality is highly correlated with
the client’s minimum RTT. Consequently, QUIC’s improved loss
recovery may also contribute to Search Latency improvement at
higher RTTs.

Table 1 shows that Search Latency gains on mobile are lower
than gains on desktop. In addition to differences between desktop
and mobile environments and usage, the lower gains are explained
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Figure 9: Comparison of QUICg and TCPg for various metrics, versus
minimum RTT of the connection. The y-axis is normalized against the
maximum value in each dataset. Presented data is for desktop, but the
same trends hold for mobile as well. The x-axis shows minimum RTTs
up to 750 ms, which was chosen as reasonable due to Figure 8: 750 ms
encompasses over 95% of RTTs and there is no information gained by
showing more data.

Figure 10: Average TCP retransmission rate versus minimum RTT ob-
served by the connection. These results were gathered from video play-
backs. We note that this graph shows the retransmission rate averaged
within 10 ms RTT buckets, and the actual rate experienced by a connec-
tion can be much higher [22]. Across all RTTs, retransmission rates are
0%, 2%, 8% and 18% at the 50th, 80th, 90th and 95th percentiles.

in part by the fact that QUIC connections established by the mo-
bile app only achieve a 68% 0-RTT handshake rate on average—a
20% reduction in successful 0-RTT handshake rate as compared
to desktop—which we believe is due to two factors. Recall from
Section 3.1 that a successful 0-RTT handshake requires both a valid
server config and a valid source address token in a client’s handshake
message, both of which are cached at the client from a previous suc-
cessful handshake. The source-address token is a server-encrypted
blob containing the client’s validated IP address, and the server

config contains the server’s credentials. First, when mobile users
switch networks, their IP address changes, which invalidates the
source-address token cached at the client. Second, different server
configurations and keys are served and used across different data
centers. When mobile users switch networks, they may hit a different
data center where the servers have a different server config than that
cached at the client. Analysis of server logs shows that each of these
two factors contributes to about half of the reduction in successful
0-RTT handshakes.

Finally, we attribute the latency increase in QUICg at the 1st
and 5th percentiles to additional small costs in QUIC, including
OS process scheduler costs due to being in user-space, which are a
higher proportion of the total latency at low overall latencies. We
discuss QUIC’s limitations further in Section 6.8.

6.4 Video Latency
Video Latency for a video playback is measured as the time between
when a user hits "play" on a video to when the video starts playing.
To ensure smooth playbacks, video players typically buffer a couple
seconds of video before playing the first frame. The amount of data
the player loads depends on the bitrate of the playback. Table 1 shows
that users in QUICg experience decreased overall Video Latency for
both desktop and mobile YouTube playbacks.

Figure 9 shows that Video Latency gains increase with client RTT,
similar to Search Latency. An average of 85% of QUIC connections
for video playback on desktop receive the benefit of a 0-RTT hand-
shake, and the rest benefit from a 1-RTT handshake. As with Search
Latency, QUIC loss recovery improvements may help Video Latency
as client RTT increases.

QUIC benefits mobile playbacks less than desktop. The YouTube
app achieves a 0-RTT handshake for only 65% of QUIC connections.
Additionally, the app tries to hide handshake costs, by establishing
connections to the video server in the background while users are
browsing and searching for videos. This optimization reduces the
benefit of QUIC’s 0-RTT handshake, further reducing gains for
mobile video in QUICg.

6.5 Video Rebuffer Rate
To ensure smooth playback over variable network connections, video
players typically maintain a small playback buffer of video data. The
amount of data in the buffer varies over time. If the player reaches
the end of the buffer during playback, the video pauses until the
player can rebuffer data. Video Rebuffer Rate, or simply Rebuffer
Rate is the percentage of time that a video pauses during a playback
to rebuffer data normalized by video watch time, where video watch
time includes time spent rebuffering. In other words, Rebuffer Rate is
computed as (Rebuffer Time) / (Rebuffer Time + Video Play Time).

Table 2 indicates that users in QUICg experience reduced Rebuffer
Rate on average and substantial reductions at higher percentiles.
These results are qualitatively different from Search Latency and
Video Latency since the contributing factors are different: Rebuffer
Rate is largely insensitive to handshake latency. It is instead influ-
enced by loss-recovery latency, since missing data on an audio or
video stream can stall video playback. It is also influenced by the
connection’s overall throughput, which determines the rate at which
video is delivered to the client.
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Figure 11: CDF of TCP connections where the server’s maximum con-
gestion window was limited by the client’s maximum receive window.
Data presented is for video playbacks from one week in March 2016.
Data begins at about 16KB, which represents the smallest observed re-
ceive window advertisement.

Loss-Recovery Latency: Figure 9 shows Rebuffer Rate for video
playbacks as a function of the client’s minimum RTT to the video
server. Benefits with QUIC increase with client RTT, which, as
shown in Figure 10, also correspond to increases in network loss.
The video player uses two TCP connections to the server for every
playback fragment. Use of two connections causes TCP’s loss detec-
tion to be slower: data and ACKs on one connection cannot assist
in loss detection on the other connection, and there are two recov-
ery tails, which increases the probability of incurring tail-recovery
latency [7, 21]. Additionally, QUIC’s loss-recovery improvements
described in Section 3.4 appear to increase QUIC’s resiliency to
higher loss rates. As Figure 9 shows, both QUICg’s and TCPg’s
rebuffer rates increase at higher RTTs. However, as this figure also
shows, QUICg’s rebuffer rate increases more slowly than TCPg’s,
implying that QUIC’s loss-recovery mechanisms are more resilient
to greater losses than TCP.
Connection Throughput: Connection throughput is dictated by
a connection’s congestion window, as estimated by the sender’s
congestion controller, and by its receive window, as computed by
the receiver’s flow controller. For a given RTT, the maximum send
rate of a connection is directly limited by the connection’s maximum
achievable congestion and receive windows.

The default initial connection-level flow control limit advertised
by a QUIC client is 15MB, which is large enough to avoid any
bottlenecks due to flow control. Investigation into client-advertised
TCP receive window however paints a different picture: TCP connec-
tions carrying video data can be limited by the client’s receive win-
dow. We investigated all video connections over TCP for a week in
March 2016, specifically looking into connections that were receive-
window-limited—where the congestion window matched the adver-
tised receive window—and the results are shown in Figure 11. These
connections accounted for 4.6% of the connections we examined.
The majority of these constrained connections were limited by a
maximum receive window advertisement of 64 KB, or roughly 45
MTU-sized packets. This window size limits the maximum possible
send rate, constraining the sender when the path has a large RTT and
during loss recovery. We believe that the low advertised maximum
receive window for TCP is likely due to the absence of window
scaling [37], which in turn may be caused by legacy clients that lack
support for it and/or middlebox interference.

Rebuffer rates can be decreased by reducing video quality, but
QUIC playbacks show improved video quality as well as a decrease

in rebuffers. As a measure of video quality, we consider the fraction
of videos that were played at their optimal rate: the format best suited
for the video viewport size and user intent. Among video playbacks
that experienced no rebuffering, this fraction is the same for users
in QUICg as those in TCPg. Among playbacks that experienced
non-zero rebuffering, QUIC increased the number of videos played
at their optimal rates by 2.9% for desktop and by 4.6% for mobile
playbacks.

QUIC’s benefits are higher whenever congestion, loss, and RTTs
are higher. As a result, we would expect QUIC to benefit users most
in parts of the world where congestion, loss, and RTTs are highest;
we look into this thesis next.

6.6 Performance By Region
Differences in access-network quality and distance from Google
servers result in RTT and retransmission rate variations for different
geographical regions. We now look at QUIC’s impact on Search
Latency10 and on Video Rebuffer Rate in select countries, chosen to
span a wide range of network conditions.

Table 3 show how QUIC’s performance impact varies by country.
In South Korea, which has the lowest average RTT and the low-
est network loss, QUICg’s performance is closer to that of TCPg.
Network conditions in the United States are more typical of the
global average, and QUICg shows greater improvements in the USA
than in South Korea. India, which has the highest average RTT and
retransmission rate, shows the highest benefits across the board.

QUIC’s performance benefits over TLS/TCP are thus not uni-
formly distributed across geography or network quality: benefits are
greater in networks and regions that have higher average RTT and
higher network loss.

6.7 Server CPU Utilization
The QUIC implementation was initially written with a focus on rapid
feature development and ease of debugging, not CPU efficiency.
When we started measuring the cost of serving YouTube traffic over
QUIC, we found that QUIC’s server CPU-utilization was about 3.5
times higher than TLS/TCP. The three major sources of QUIC’s CPU
cost were: cryptography, sending and receiving of UDP packets, and
maintaining internal QUIC state. To reduce cryptographic costs, we
employed a hand-optimized version of the ChaCha20 cipher favored
by mobile clients. To reduce packet receive costs, we used asyn-
chronous packet reception from the kernel via a memory-mapped
application ring buffer (Linux’s PACKET_RX_RING). Finally, to
reduce the cost of maintaining state, we rewrote critical paths and
data-structures to be more cache-efficient. With these optimizations,
we decreased the CPU cost of serving web traffic over QUIC to
approximately twice that of TLS/TCP, which has allowed us to in-
crease the levels of QUIC traffic we serve. We believe that while
QUIC will remain more costly than TLS/TCP, further reductions
are possible. Specifically, general kernel bypass [57] seems like a
promising match for a user-space transport.

6.8 Performance Limitations
QUIC’s performance can be limited in certain cases, and we describe
the limitations we are aware of in this section.
10Video Latency trends are similar to Search Latency.
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% Reduction in Search Latency % Reduction in Rebuffer Rate

Country Mean Min RTT (ms) Mean TCP Rtx % Desktop Mobile Desktop Mobile

South Korea 38 1 1.3 1.1 0.0 10.1
USA 50 2 3.4 2.0 4.1 12.9
India 188 8 13.2 5.5 22.1 20.2

Table 3: Network characteristics of selected countries and the changes to mean Search Latency and mean Video Rebuffer Rate for users in QUICg.

Pre-warmed connections: When applications hide handshake la-
tency by performing handshakes proactively, these applications re-
ceive no measurable benefit from QUIC’s 0-RTT handshake. This
optimization is not uncommon in applications where the server is
known a priori, and is used by the YouTube app. We note that some
applications, such as web browsers, cannot always pre-warm con-
nections since the server is often unknown until explicitly indicated
by the user.
High bandwidth, low-delay, low-loss networks: The use of QUIC
on networks with plentiful bandwidth, low delay, and low loss rate,
shows little gain and occasionally negative performance impact.
When used over a very high-bandwidth (over 100 Mbps) and/or very
low RTT connection (a few milliseconds), QUIC may perform worse
than TCP. We believe that this limitation is due to client CPU limits
and/or client-side scheduler inefficiencies in the OS or application.
While these ranges are outside typical Internet conditions, we are
actively looking into mitigations in these cases.
Mobile devices: QUIC’s gains for mobile users are generally more
modest than gains for desktop users. As discussed earlier in this
section, this is partially due to the fact that mobile applications are
often fine-tuned for their environment. For example, when applica-
tions limit content for small mobile-screens, transport optimizations
have less impact. Mobile phones are also more CPU-constrained
than desktop devices, causing CPU to be the bottleneck when net-
work bandwidth is plentiful. We are actively working on improving
QUIC’s performance on mobile devices.

7 EXPERIMENTS AND EXPERIENCES
We now share lessons we learned during QUIC’s deployment. Some
of these involved experiments at scale, such as determining QUIC’s
maximum packet size. Others required deploying at scale, such as
detecting the extent and nature of UDP blocking and throttling on the
Internet. A few lessons were learned through failures, exemplified
by our attempt to design and use FEC in QUIC. We also describe
a surprising ecosystem response to QUIC’s deployment: its rapid
ossification by a middlebox vendor.

7.1 Packet Size Considerations
Early in the project, we performed a simple experiment to choose
an appropriate maximum packet size for QUIC. We performed a
wide-scale reachability experiment using Chrome’s experimentation
framework described in Section 4. We tested a range of possible
UDP payload sizes, from 1200 bytes up to 1500 bytes, in 5 byte
increments. For each packet size, approximately 25,000 instances
of Chrome would attempt to send UDP packets of that size to an
echo server on our network and wait for a response. If at least one

Figure 12: Unreachability with various UDP payload sizes. Data col-
lected over 28 days in January 2014.

response was received, this trial counted as a reachability success,
otherwise it was considered to be a failure.

Figure 12 shows the percentage of clients unable to reach our
servers with packets of each tested size. The rapid increase in un-
reachability after 1450 bytes is a result of the total packet size—
QUIC payload combined with UDP and IP headers—exceeding the
1500 byte Ethernet MTU. Based on this data, we chose 1350 bytes
as the default payload size for QUIC. Future work will consider path
MTU discovery for QUIC [45].

7.2 UDP Blockage and Throttling
We used video playback metrics gathered in November 2016 to
measure UDP blocking and throttling in the network. QUIC is suc-
cessfully used for 95.3% of video clients attempting to use QUIC.
4.4% of clients are unable to use QUIC, meaning that QUIC or
UDP is blocked or the path’s MTU is too small. Manual inspection
showed that these users are commonly found in corporate networks,
and are likely behind enterprise firewalls. We have not seen an entire
ISP blocking QUIC or UDP.

The remaining 0.3% of users are in networks that seem to rate
limit QUIC and/or UDP traffic. We detect rate limiting as substan-
tially elevated packet loss rate and decreased bandwidth at peak
times of day, when traffic is high. We manually disable QUIC at our
servers for entire Autonomous Systems (AS) where such throttling is
detected and reach out to the operators running the network, asking
them to either remove or at least raise their limits. Reaching out
to operators has been effective—we saw a reduction in AS-level
throttling from 1% in June 2015 to 0.3% in November 2016—and
we re-enabled QUIC for ASes that removed their throttlers.

7.3 Forward Error Correction
Forward Error Correction (FEC) uses redundancy in the sent data
stream to allow a receiver to recover lost packets without an explicit
retransmission. Based on [21], which showed that single losses are
common, we experimented with XOR-based FEC (simple parity) to
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Figure 13: CDF of fraction of QUIC loss epochs vs. number of packet
losses in the epoch. Data collected over one week in March 2016.

enable recovery from a single packet loss within a group. We used
this simple scheme because it has low computational overhead, it
is relatively simple to implement, and it avoids latency associated
with schemes that require multiple packets to arrive before any can
be processed.

We experimented with various packet protection policies—protecting
only HTTP headers, protecting all data, sending an FEC packet only
on quiescence—and found similar outcomes. While retransmission
rates decreased measurably, FEC had statistically insignificant im-
pact on Search Latency and increased both Video Latency and Video
Rebuffer Rate for video playbacks. Video playback is commonly
bandwidth limited, particularly at startup; sending additional FEC
packets simply adds to the bandwidth pressure. Where FEC reduced
tail latency, we found that aggressively retransmitting at the tail [17]
provided similar benefits.

We also measured the number of packets lost during RTT-long
loss epochs in QUIC to see if and how FEC might help. Our goal
was to determine whether the latency benefits of FEC outweighed
the added bandwidth costs. The resulting Figure 13 shows that the
benefit of using an FEC scheme that recovers from a single packet
loss is limited to under 30% of loss episodes.

In addition to benefits that were not compelling, implementing
FEC introduced a fair amount of code complexity. Consequently, we
removed support for XOR-based FEC from QUIC in early 2016.

7.4 User-space Development
Development practices directly influence robustness of deployed
code. In keeping with modern software development practices, we
relied heavily on extensive unit and end-to-end testing. We used a
network simulator built into the QUIC code to perform fine-grained
congestion control testing. Such facilities, which are often limited
in kernel development environments, frequently caught significant
bugs prior to deployment and live experimentation.

An added benefit of user-space development is that a user-space
application is not as memory-constrained as the kernel, is not limited
by the kernel API, and can freely interact with other systems in the
server infrastructure. This allows for extensive logging and integra-
tion with a rich server logging infrastructure, which is invaluable for
debugging. As an example, recording detailed connection state at
every packet event at the server led us to uncover a decade-old Cubic
quiescence bug [18]. Fixing this bug reduced QUIC’s retransmission
rates by about 30%, QUIC’s CPU utilization by about 17%, and
TCP’s retransmission rates by about 20% [30].

Due to these safeguards and monitoring capabilities, we were able
to iterate rapidly on deployment of QUIC modifications. Figure 14

Figure 14: Incoming QUIC requests to our servers, by QUIC version.

shows versions used by all QUIC clients over the past two years. As
discussed in Section 5, our ability to deploy security fixes to clients
was and remains critically important, perhaps even more so because
QUIC is a secure transport. High deployment velocity allowed us
to experiment with various aspects of QUIC, and if found to not be
useful, deprecate them.

7.5 Experiences with Middleboxes
As explained in Section 3.3, QUIC encrypts most of its packet
header to avoid protocol entrenchment. However a few fields are
left unencrypted, to allow a receiver to look up local connection
state and decrypt incoming packets. In October 2016, we introduced
a 1-bit change to the public flags field of the QUIC packet header.
This change resulted in pathological packet loss for users behind one
brand of firewall that supported explicit blocking of QUIC traffic. In
previous versions of QUIC, this firewall correctly blocked all QUIC
packets, causing clients to fall back to TCP. The firewall used the
QUIC flags field to identify QUIC packets, and the 1-bit change in
the flags field confounded this detection logic, causing the firewall to
allow initial packets through but blocking subsequent packets. The
characteristics of this packet loss defeated the TCP fallback logic
described in Section 3.8. As a result, clients that were previously
using TCP (since QUIC was previously successfully blocked) were
now starting to use QUIC and then hitting a packet black-hole. The
problem was fixed by reverting the flags change across our clients.

We identified the middlebox and reached out to the vendor. The
vendor addressed the issue by updating their classifier to allow the
variations seen in the flags. This fix was rolled out to their customers
over the following month.

While we were able to isolate the problem to one vendor in this
instance, our process of reaching out to them does not scale to all
middleboxes and vendors. We do not know if other bits exposed
by QUIC have been ossified by this or other middleboxes, and
we do not have a method to answer this question at Internet scale.
We did learn that middlebox vendors are reactive. When traffic
patterns change, they build responses to these observed changes.
This pattern of behavior exposes a "deployment impossibility cycle"
however, since deploying a protocol change widely requires it to
work through a huge range of middleboxes, but middleboxes only
change behavior in response to wide deployment of the change. This
experience reinforces the premise on which QUIC was designed:
when deploying end-to-end changes, encryption is the only means
available to ensure that bits that ought not be used by a middlebox
are in fact not used by one.
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8 RELATED WORK
SPDY [3] seeks to reduce web latency and has been subsumed by
the HTTP/2 standard [8]. QUIC is a natural extension of this work,
seeking to reduce latency further down the stack.

QUIC’s design is closest to that of Structured Stream Transport
(SST) [23]. Among other similarities, SST uses a channel identi-
fier, uses monotonically increasing packet numbers, encrypts the
transport header, and employs lightweight streams. QUIC builds on
these design ideas. QUIC differs from SST in several, sometimes
subtle, ways. For instance, while SST avoids handshake latency for
subsequent streams, the first stream incurs it. QUIC avoids hand-
shake latency on repeat connections to the same server, and includes
version negotiation in the handshake. Stream multiplexing to avoid
head-of-line blocking is not a new idea; it is present in SCTP [62],
SST [23], and as message chaining in Minion [32]. QUIC borrows
this design idea. QUIC also uses shared congestion management
among multiple application streams, similar to SCTP, SST, and the
Congestion Manager [7]. MinimaLT [51] was developed contempo-
raneously. It has a similar 0-RTT handshake, multiplexes application
"connections" within an encrypted MinimaLT "tunnel", and performs
congestion control and loss detection on the aggregate. MinimaLT
additionally prevents linkability of a connection as it migrates from
one IP address to another. This privacy-preserving feature is cur-
rently under consideration as QUIC evolves at the IETF.

Modifications to TCP and TLS have been proposed to address
their handshake latencies. TCP Fast Open (TFO) [11, 53] addresses
the handshake latency of TCP by allowing data in the TCP SYN
segment to be delivered to a receiver on a repeat connection to the
same server. TFO and QUIC differ in two key ways. First, TFO
limits client data in the first RTT to the amount that fits within the
TCP SYN segment. This limit is absent in QUIC, which allows
a client to send as much data as allowed by the congestion and
flow controllers in this initial RTT. Second, TFO is useful on repeat
connections to a destination with the same IP address as the first
connection. A common load balancing method employed by servers
is to use multiple IP addresses for the same hostname, and repeat
TCP connections to the same domain may end up at different server
IP addresses. Since QUIC combines the cryptographic layer with
transport, it uses 0-RTT handshakes with repeat connections to the
same origin. Finally, while TFO is now implemented in major OSes
(Windows, Linux, MacOS/iOS), its deployment is limited due to
middlebox interference [50] and due to slow client OS upgrades.

QUIC’s cryptographic handshake protocol was a homegrown pro-
tocol, but has been formally analyzed by various groups [20, 38, 44].
Facebook’s Zero Protocol was directly derived from QUIC’s cryp-
tographic protocol [35]. TLS 1.3 [55], inspired in part by QUIC’s
handshake protocol [42], addresses the handshake latency of TLS
1.2, the currently deployed TLS version. Since TLS 1.3 now pro-
vides the latency benefits of QUIC’s cryptographic handshake, IETF
standardization work will replace QUIC’s cryptographic handshake
with TLS 1.3 [63].

9 CONCLUSION
QUIC was designed and launched as an experiment, and it has now
become a core part of our serving infrastructure. We knew that wide
deployment of a new UDP-based encrypted transport for HTTP was

an audacious goal; there were many unknowns, including whether
UDP blocking or throttling would be show-stoppers. Our experimen-
tation infrastructure was critical in QUIC’s deploy-measure-revise
cycles, and it allowed us to build and tune a protocol suited for
today’s Internet.

We expect to continue working on reducing QUIC’s CPU cost at
both the server and the client and in improving QUIC performance
on mobile devices. One of QUIC’s most important features is its
ability to be used as a platform for wide-scale experimentation with
transport mechanisms, both at the server and at the client. Ongo-
ing experimentation and work is continuing on several fronts. First,
we are experimenting with connection migration to reduce latency
and failures with various mobile applications. Later work may in-
clude implementation of general-purpose multipath [31, 54]. Second,
we are experimenting with modern congestion controllers such as
BBR [10] and PCC [16]. Third, we are working on using QUIC for
WebRTC [4] and intend to explore avenues for better supporting
real-time payloads.

The lessons we learned and described in this paper are transferable
to future work on Internet protocols. Of the lessons, we’ll reiterate
a few important ones. First, developing and deploying networking
protocols in user space brings substantial benefits, and it makes
development, testing, and iteration cycles faster and easier. Second,
layering enables modularity but often at the cost of performance,
and re-designing and rewriting critical paths in the protocol stack is
a useful exercise. Squashing the layers of HTTPS in QUIC allowed
us to weed out inefficiencies in the HTTPS stack.

Finally, while a tussle between the endpoints and the network is
expected and inevitable, it can only be resolved when all interested
parties come to the table [13]. Previous attempts to deploy proto-
cols that require any modification to network devices—ECN [41],
SCTP [62], TCP Fast Open [11], and MPTCP [47, 54], to name a
few—have unequivocally exposed the difficulties of incentivizing
and achieving consensus on proposed network changes. As noted
in [13], "the ultimate defense of the end to end mode is end to end en-
cryption." Encryption forces the conversation among various parties
and remains the sole guardian of the end-to-end principle.
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