Virtual Machines




Background

® |IBM sold expensive mainframes to large organizations

® Some wanted to run different OSes at the same time
(because applications were developed on old OSes)

® Solution: IBM developed virtual machine monitor (VMM) or
hypervisor (circa 1974)




Today’s “VMs"

“Platform”
(HW/SW Programming
Interface) Processor Language

Process

Java
Program

Virtualisation Layer S UL

Platform VM or System VM OS-level VM / Process VM
Type-1 Type-2 Containers




Today’s VMs

® Why VMMs now? Are there new reasons for using
VMMs?




Resurgence in VMs

® Sparked by work on Disco (system from Stanford/




VM Observations

® Instruction-set architectures is one of the few well-
documented complex interfaces

® interface includes meaning of interrupt numbers, etc.




Outline

sco project

o ¥ T 5
i Rt Ay

s, 2% BRG] R
AR = s SN



What is a machine?

® The hardware architecture defines the following:

® instructions
® special instructions (system calls, setting trap handlers, etc.)

ent (page tables, TLB) |

® memory managem

A
Bhe "



Traditional Process-OS Model

® Processes run in user mode

® Processes “trap” into OS

® when they want services from the OS




Virtualizing CPU

® Basic technique: limited direct execution

® Ideal case:

® VMM jumps to first instruction of the OS and lets the OS run

® Generalize a context switch on processes to machine switch




System Call Primer

® Consider: open(char*path, int flags, mode _t mode

open:
push dword mode /] args
push dword flags
push dword path
mov eax, 9 /| system call number
push eax




Virtualized Platform

® Trap handler is inside the VMM; executed in kernel mode

® What should the VMM do?

® does not know the details of the guest OSes

® but knows where the OS’s trap handler is




Execution Privileges

® OS cannot be in kernel mode

® Disco project: MIPS hardware had a supervisor mode

® kernel > supervisor > user

® supervisor can access little more memory than user, but
cannot execute privileged instructions




Virtual Memory Primer

® TLB: fast cache used in every instruction

® TLB miss handled by OS in some processors (software TLB

® In other cases, hardware fills TLB using a page table

® OS manages the page table




Virtualizing Memory

® Normally:

® each program has a private address space, OS virtualizes
memory for its processes

® Now:

® multiple OSes can share the actual physical memory




2-Level Translation

® Let us consider software managed TLB

® |n a virtualized system:

® Application traps into VMM; VMM jumps to OS trap




Information Gap

® VMM often doesn’t know what the OS is doing

® For example, if OS has nothing else to run:

® gointo anidle loop and spin waiting for the next interrupt

'® Another example:




Design Space

App is not modified | App is modified




® Key idea: change the machine-0S interface to make
VMs simpler and higher performance




Xen & Paravirtualization

® \VM-style virtualization on an uncooperative architecture

® OSes are ported to a new “x86-xeno” architecture

~ ® call to Xen for privileged operations




Fully virtualizing Hardware TLB

® Constraints:

® Notagson TLB

® Use shadow page tables

® Guest OS maintains “virtual to physical mem” map




Paravirtualizing Hardware TLB

® Paravirtualization obviates the need for shadows
® modify the guest OS to handle sparse memory maps
® Guest OSes allocate and manage their own PTs

® map Xen into top 64 MB in all address spaces

ShoE e bctespasenioenioialidaticniiusaibatea e i



Memory Benchmarks

x
3
=
3
S
S
3]
3
7
o
2>
L
o
o

.,..._..,_;.
o i ] | P e
74
21¢

e J« _J ¢ _§ I
a—|
I

i

L X v U L X Vv U
Page fault (us) Process fork (us)

Imbench results on Linux (L), Xen (X), VMWare Workstation (V), and UML (U)




Other Nice Ideas

® Domain O:

® run the VMM management at user level

® easier to debug




