
Virtual	Machines



Background

• IBM	sold	expensive	mainframes	to	large	organiza<ons	

• Some	wanted	to	run	different	OSes	at	the	same	<me	
(because	applica<ons	were	developed	on	old	OSes)	

• Solu<on:	IBM	developed	virtual	machine	monitor	(VMM)	or	
hypervisor	(circa	1974)	

• Monitor	sits	between	one	or	more	OSes	and	HW	

• Gives	the	illusion	that	each	OS	controls	the	HW	

• Monitor	mul<plexes	running	OSes	

• A	level	of	indirec<on:	apps	assume	separate	CPU,	unlimited	
memory;	now	another	layer	to	provide	similar	illusion	to	OS



Today’s	“VMs"



Today’s	VMs

• Why	VMMs	now?		Are	there	new	reasons	for	using	
VMMs?			

• Which	deployment	models	are	appropriate	for	which	
uses?	

• What	are	the	key	challenges/issues	in	building	
VMMs?



Resurgence	in	VMs

• Sparked	by	work	on	Disco	(system	from	Stanford/
Rosenblum)	

• Resulted	in	VMware	--	now	a	market	leader	in	
virtualiza<on



VM	Observa<ons

• Instruc<on-set	architectures	is	one	of	the	few	well-
documented	complex	interfaces	

• interface	includes	meaning	of	interrupt	numbers,	etc.	

• Anything	that	implements	the	interface	can	execute	
the	so]ware	for	the	pla^orm	

• Virtual	machine	is	a	so]ware	implementa<on	of	this	
interface



Outline

• Disco	project	

• Design	space	for	virtualiza<on	

• Xen	project



What	is	a	machine?

• The	hardware	architecture	defines	the	following:	

• instruc<ons	

• special	instruc<ons	(system	calls,	sebng	trap	handlers,	etc.)	

• memory	management	(page	tables,	TLB)	

• device	interface	(I/O	-	memory	mapped	loads/stores)	

• How	do	we	build	a	“virtual	machine”	that	conforms	to	
an	architecture	specifica<on?



Tradi<onal	Process-OS	Model

• Processes	run	in	user	mode	

• Processes	“trap”	into	OS	

• when	they	want	services	from	the	OS	

• or	when	they	have	“faults”	

• OS	runs	in	privileged	(kernel)	mode	

• can	execute	instruc<ons	to	setup/update	TLB	or	paging	

• can	execute	instruc<ons	to	install	trap	handlers



Virtualizing	CPU

• Basic	technique:	limited	direct	execu<on	

• Ideal	case:	

• VMM	jumps	to	first	instruc<on	of	the	OS	and	lets	the	OS	run	

• Generalize	a	context	switch	on	processes	to	machine	switch		

• save	the	en<re	machine	state	of	one	OS	including	
registers,	PC,	and	privileged	hardware	state	

• restore	the	target	OS	state	

• Guest	OS	cannot	run	privileged	instruc<ons	(like	TLB	ops);	
VMM	must	intercept	these	ops	and	emulate	them



System	Call	Primer

• Consider:	open(char*path,	int	flags,	mode_t	mode)	

open: 
push dword mode             // args 
push dword flags 
push dword path 
mov eax, 5                        // system call number 
push eax 
int 80h                               // trap 

• Process	code,	hardware,	and	OS	cooperate	to	
implement	the	interface	

• Trap:	switches	to	kernel	mode,	jumps	to	OS	trap	
handler;		trap	handlers	registered	by	OS	at	startup



Virtualized	Pla^orm

• Trap	handler	is	inside	the	VMM;	executed	in	kernel	mode	

• What	should	the	VMM	do?	

• does	not	know	the	details	of	the	guest	OSes	

• but	knows	where	the	OS’s	trap	handler	is	

• when	the	guest	OS	afempted	to	install	trap	handlers,	VMM	
intercepts	and	records	the	informa<on	

• so	jump	into	OS;		which	executes	the	actual	handler,	performs	
another	privileged	instr	(iret	on	x86),	bounces	back	into	VMM	

• VMM	performs	a	real	return	from	trap	and	returns	to	app



Execu<on	Privileges

• OS	cannot	be	in	kernel	mode	

• Disco	project:	MIPS	hardware	had	a	supervisor	mode	

• kernel	>	supervisor	>	user	

• supervisor	can	access	lifle	more	memory	than	user,	but	
cannot	execute	privileged	instruc<ons	

• No	extra	mode:	

• run	OS	in	user	mode	and	use	memory	protec<on	(page	
tables	and	TLBs)	to	protect	OS	data	structures	appropriately	

• x86	has	4	protec<on	rings,	so	extra	mode	is	available



Virtual	Memory	Primer

• TLB:	fast	cache	used	in	every	instruc<on	

• TLB	miss	handled	by	OS	in	some	processors	(so]ware	TLB)	

• In	other	cases,	hardware	fills	TLB	using	a	page	table	

• OS	manages	the	page	table	

• Hardware	is	a	consumer	of	the	page	table	

• Ques<on:	what	issues	arise	with	virtual	machines?	

• How	do	we	tackle	such	issues?



Virtualizing	Memory

• Normally:	

• each	program	has	a	private	address	space,	OS	virtualizes	
memory	for	its	processes	

• Now:	

• mul<ple	OSes	can	share	the	actual	physical	memory	

• So	we	have	virtual	memory	(VM),	physical	memory	(PM),	
and	machine	memory	(MM)	

• OS	maps	virtual	to	physical	addresses	via	its	per-process	
page	tables	

• VMM	maps	the	physical	address	to	machine	memory	via	its	
per-OS	page	tables



2-Level	Transla<on

• Let	us	consider	so]ware	managed	TLB	

• In	a	virtualized	system:	

• Applica<on	traps	into	VMM;		VMM	jumps	to	OS	trap	
handler	

• OS	tries	to	install	(VM,	PM)	in	TLB,	but	this	traps	

• VMM	installs	(VM,	MM),	returns	to	OS	and	then	App	

• VMM	maintains	(PM,	MM)	mappings	and	even	does	paging



Informa<on	Gap

• VMM	o]en	doesn’t	know	what	the	OS	is	doing	

• For	example,	if	OS	has	nothing	else	to	run:	

• go	into	an	idle	loop	and	spin	wai<ng	for	the	next	interrupt	

• Another	example:	

• most	OSes	zero	pages	before	giving	to	processes	for	security	

• VMM	also	has	to	the	do	the	same,	resul<ng	in	double	work!	

• One	op<on	is	inference	of	OS	behavior,	another	is	
paravirtualiza<on



Design	Space

App is not modified App is modified

OS is not modified Disco
(VMWare) ---

OS is modified Xen Denali



Xen

• Key	idea:	change	the	machine-OS	interface	to	make	
VMs	simpler	and	higher	performance	

• Pros:		

• befer	performance	on	x86	

• some	simplifica<ons	in	VM	implementa<on	

• OS	might	want	to	know	that	it	is	virtualized	

• Cons:	must	modify	the	guest	OS



Xen	&	Paravirtualiza<on

• VM-style	virtualiza<on	on	an	uncoopera8ve	architecture	

• OSes	are	ported	to	a	new	“x86-xeno”	architecture	

• call	to	Xen	for	privileged	opera<ons	

• por<ng	requires	source	code	

• Retain	compa<bility	with	OS	API	

• Must	virtualize	applica<on	visible	architecture	features



Fully	virtualizing	Hardware	TLB

• Constraints:	

• No	tags	on	TLB	

• Use	shadow	page	tables	

• Guest	OS	maintains	“virtual	to	physical	mem”	map	

• VMM	maintains	“virtual	to	machine	mem”	map	

• Guest	reads	of	page	table	is	free	

• Guest	writes	need	switching	to	VMM	

• Accessed/dirty	bits	require	upcalls	into	OS



Paravirtualizing	Hardware	TLB

• Paravirtualiza<on	obviates	the	need	for	shadows	

• modify	the	guest	OS	to	handle	sparse	memory	maps	

• Guest	OSes	allocate	and	manage	their	own	PTs	

• map	Xen	into	top	64	MB	in	all	address	spaces	

• Page	table	updates	passed	to	Xen	for	valida<on	(use	batching)	

• Valida<on	rules:	

• only	map	a	page	if	owned	by	the	reques<ng	guest	OS	

• only	map	a	page	containing	PTEs	for	read-only	access	

• Xen	tracks	page	ownership	and	current	use



Memory	Benchmarks

• Body	Level	One	

• Body	Level	Two	

• Body	Level	Three	

• Body	Level	Four	

• Body	Level	Five



Other	Nice	Ideas

• Domain	0:	

• run	the	VMM	management	at	user	level	

• easier	to	debug	

• Network	and	disk	are	virtual	devices	

• virtual	block	devices:	similar	to	SCSI	disks	

• model	each	guest	OS	has	a	virtual	network	interface	
connected	to	a	virtual	firewall	router


