
Clocks,	Event	Ordering,	and	Global	
Predicate	Computa:on



Distributed	Make

• Distributed	file	servers	holds	source	and	object	files	

• Clients	specify	modifica:on	:me	on	uploaded	files	

• Use	:mestamps	to	decide	what	needs	to	be	rebuilt	

• if	object	O	depends	on	source	S,	and		

• O.:me	<	S.:me,	rebuild	O	

• What	can	go	wrong?



Two	Approaches

• Synchronize	physical	clocks	

• Logical	clocks



• Design	a	scheme	that	synchronizes	physical	clocks	

• What	do	you	think	are	the	sources	of	inaccuracy?	

• Why	is	clock	synchroniza:on	hard?



Varia:ons	in	Network	Latency

• Latency	can	be	unpredictable	and	has	a	lower	bound

• Simple	approach:	Designated	server	broadcasts	:me,	
Clients	receive	broadcast,	set	their	clock	to	the	value	
in	the	message	+	minimum	delay



Interroga:on	Based	Approach

• Client	sends	a	roundtrip	message	to	query	server’s	:me	

• Set’s	client’s	clock	to	server’s	clock	+	half	of	RTT

• Worst	case	error	(if	we	know	the	min	latency):	(T2-T0)/2	-	min



Logical	Clocks

• another	way	to	keep	track	of	:me	

• based	on	the	idea	of	causal	rela:onships	between	
events	

• doesn’t	require	any	physical	clocks



Events	and	Histories

• Processes	execute	sequences	of	events	

• Events	can	be	of	3	types:	local,	send,	and	receive	

• The	local	history	of	a	process	is	the	sequence	of	
events	executed	by	process	



Ordering	events

• Observa:on	1:		
• Events	in	a	local	history	are	totally	ordered	

• Observa:on	2:		
• For	every	message,		send	precedes	receive
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Lamport	Clock:	Increment	Rules
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Discussion

• What	are	the	strengths	and	limita:ons	of	Lamport	
clocks?



Example	of	Global	Predicate

• Sebng:	Locks	in	distributed	system	

• Objects	locked	by	nodes	and	moved	to	the	node	that	is	
currently	modifying	it	

• Nodes	reques:ng	the	object/lock,	send	a	message	to	the	
current	node	locking	it	and	blocks	for	a	response	

• Global	predicate:	detect	deadlocks



Global	States	&	Clocks

• Need	to	reason	about	global	states	of	a	distributed	system	

• Global	state:	processor	state	+	communica:on	channel	
state	

• Consistent	global	state:	causal	dependencies	are	captured	

• Use	virtual	clocks	to	reason	about	the	:ming	rela:onships	
between	events	on	different	nodes



Space-Time	diagrams

A	graphic	representa:on	of	a	distributed	execu:on
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Cuts

A	cut	C	is	a	subset	of	the	global	history	of	H	

The	fron:er	of	C	is	the	set	of	events		
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Consistent	cuts	and	
consistent	global	states

• A	cut	is	consistent	if	

• A	consistent	global	state	is	one	corresponding	to	a	
consistent	cut	

∀ei, ej : ej ∈ C ∧ ei → ej ⇒ ei ∈ C



What							sees

Not	a	consistent	global	state:	the	cut	contains	the	event	
corresponding	to	the	receipt	of	the	last	message	by				
but	not	the	corresponding	send	event
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Global	Consistent	States

• Can	we	use	Lamport	Clocks	as	part	of	a	mechanism	to	
get	globally	consistent	states?



• Develop	a	simple	global	snapshot	protocol	

• Refine	protocol	as	we	relax	assump:ons		

• Record:	
1. processor	states	
2. channel	states		

• Assump:ons:	
1. FIFO	channels	
2. Each							:mestamped	with	

Global	Snapshot

m T (send(m))



Snapshot	I

i.      selects  

ii.     sends “take a snapshot at     ” to all processes 

iii.when clock of     reads       then  
records its local state  
sends an empty message along its outgoing channels 
starts recording messages received on each of incoming 
channels  
stops recording a channel when it receives first message 
with timestamp greater than or equal to 
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Snapshot	II
processor    selects 


    sends “take a snapshot at  ” to all processes; it waits for 
all of them to reply and then sets its logical clock to 


when clock of    reads    then 

records its local state 

sends an empty message along its outgoing channels

starts recording messages received on each incoming 
channel

stops recording a channel when receives first message 
with timestamp greater than or equal to 
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Relaxing	synchrony

Process does nothing 
for the protocol 
during this time!
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Snapshot	III
processor    sends itself “take a snapshot “


when   receives “take a snapshot” for the first time from    :

records its local state 

sends “take a snapshot” along its outgoing channels

sets channel from    to empty


starts recording messages received over each of its other incoming 
channels


when   receives “take a snapshot” beyond the first time from    :


stops recording channel from  


when    has received “take a snapshot” on all channels, it sends 
 collected state to    and stops. 
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Same	problem,	different	approach

• Monitor	process	does	not	query	explicitly	

• Instead,	it	passively	collects	informa:on	and	uses	it	to	
build	an	observa:on.	

(reactive architectures, Harel and Pnueli [1985])


An	observa:on	is	an	ordering	of	events	of	the	distributed	
computa:on	based	on		the	order	in	which	the	receiver	is	
no:fied	of	the	events.



Update	rules
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TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1



Example
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Opera:onal	interpreta:on

= no. of events executed by      up to and including


= no. of events executed by    that happen before    of  
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VC	proper:es: 
event	ordering

Given two vectors  and  , less than is defined as:


Strong Clock Condition:


Simple Strong Clock Condition: 

   Given     of   and   of   , where   


Concurrency

   Given    of   and   of   , where   

V V
′

V < V
′ ≡ (V ̸= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

ei ∥ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i ̸= j

ei pi pjej i ̸= j

e → e
′
≡ V C(e) < V C(e′)



The	protocol

   maintains an array             of counters


                   where     is the last 
message delivered from 


Rule: Deliver   from    as soon as both of 
the following conditions are satisfied:
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Summary

• Lamport	clocks	and	vector	clocks	provide	us	with	
good	tools	to	reason	about	:ming	of	events	in	a	
distributed	system	

• Global	snapshot	algorithm	provides	us	with	an	
efficient	mechanism	for	obtaining	consistent	global	
states


