Clocks, Event Ordering, and Global
Predicate Computation

Distributed Make

® Distributed file servers holds source and object files
® Clients specify modification time on uploaded files

- ® Use timestamps to decide what needs to be rebuilt

ve

Two Approaches

® Design a scheme that synchronizes physical clocks

hd R ¥ - 1Y |

Variations in Network Latency

® Latency can be unpredictable and has a lower bound

® Simple approach: Designated server broadcasts time,
Clients receive broadcast, set their clock to the value
in the message + minimum delay

Interrogation Based Approach

® Client sends a roundtrip message to query server’s time

® Set’s client’s clock to server’s clock + half of RTT

master

® \Worst case error (if we know the min latency): (T2-T0)/2 - min

Logical Clocks

® another way to keep track of time

Events and Histories

® Processes execute sequences of events

® Events can be of 3 types: local, send, and receive

® The local history of a process is the sequence of
events executed by process

Ordering events

® Observation 1:
® Eventsin alocal history are totally ordered

D; O——O—O—O——O— OO O———O—0 >

® O_bservation 2:

o o™

Lamport Clock: Increment Rules

Discussion

Example of Global Predicate

® Setting: Locks in distributed system

® Objects locked by nodes and moved to the node that is
currently modifying it

Global States & Clocks

® Need to reason about global states of a distributed system

® Global state: processor state + communication channel
state

Space-Time diagrams

A graphic representation of a distributed execution

‘P1

P1

£

time

‘r >

Cuts

A cut Cis a subset of the global history of H

The frontier of C is the set of events

Consistent cuts and
consistent global states

® A cutis consistent if
s ey O e ey e = g e O

® A consistent global state is one corresponding to a

What po sees

P1 f? G
/ AW

P2 -

' &l ocd

VYA YT YT L

Global Consistent States

Global Snapshot

® Develop a simple global snapshot protocol
® Refine protocol as we relax assumptions

® Record:

1. processor states
2. channel states

~—
s

Snapshot |

i. po selects tss
ii. po sends "take a snapshot at tss' to all processes

iii. when clock of pireads tss then p
@ records its local state o;
@ sends an empty message along its outgoing channels

Snapshot Il

@ processor po selects ()

@ po sends “take a snapshot at Q” to all processes; it waits for
all of them tfo reply and then sets its logical clock to ()

@ when clock of p; reads 2 then p;

0 records its local state o;

1 sends an empty message along its outgoing channels

Relaxing synchrony

empty message:
RS (e

take a
snapshot at ()

Pi

Snapshot Il

@ processor po sends itself “take a snapshot "

@ when p; receives “take a snapshot” for the first time from p;:

O records its local state 0;
D sends “take a snapshot” along its outgoing channels

0 sets channel from p; to empty

DO starts recording messages received over each of its other incoming

Same problem, different approach

® Monitor process does not query explicitly

® Instead, it passively collects information and uses it to
build an observation.
(reactive architectures, Harel and Pnueli [1985])

Update rules

Pi . >

Example

[1,0,0] [2,1,0] [3,1,2] [4,1,2] [5,1,2]

" A [1,2,3]

Operational interpretation

[1,0,0] [2,1,0] [3,1,2] [4,1,2] [5,1,2]

A

[0,1,0] [4,3,3]

VC properties:
event ordering

Given two vectors V and V/ less than is defined as:
V<Vi=VAV)IANEk:1<k<n:V[k] <V'[k])

@ Strong Clock Condition: e — ¢’ =V C(e) < VC(e')

@ Simple Strong Clock Condition:

The protocol

@ po maintains an array D|1,...,n|of counters

@ D|i] = TS(m;)|i]| where m; is the last
message delivered from p;

Summary

® Lamport clocks and vector clocks provide us with
good tools to reason about timing of events in a
distributed system

