Distributed Transactions

Preliminaries

® Last topic: transactions in a single machine

® This topic: transactions across machines

® Distribution typically addresses two needs:

\Yi[eYol]

® For each distributed transaction T:

® one coordinator
® a set of participants

® Coordinator knows participants; participants don’t

The setup

® Each process has an input value, vote: Yes, No

® Input could be based on program logic

® Or it could be based on a local optimistic
concurrency control (OCC) check

A digression: OCC

® Many variants of OCC, but here is a canonical version
® Transactions are assigned a txn number at completion

® \When a transaction enters the system, note the highest
committed txn number (start)

® When it is ready to commit, note the txn number (fin)

Atomic Commit Specification

AC-1: All processes that reach a decision reach the same one.
AC-2: A process cannot reverse its decision after it has reached one.

AC-3: The Commit decision can only be reached if all processes vote
Yes.

AC-4: If there are no failures and all processes vote Yes, then the
~decision will be Commit.

Failures

® What are the different classes/types of failures in a
distributed system?

2-Phase Commit

I. sends VOTE-REQ fto all participants

2-Phase Commit

I. sends VOTE-REQ fto all participants

\ II. sends vote; to Coordinator

if vote;= NO then
decide; = ABORT

2-Phase Commit

I. sends VOTE-REQ fto all participants

\ I1. sends vote; to Coordinator
/ if vote;= NO then
IIL. if (all votes YES) then decide; := ABORT

dde = COMMIT ~ halt

2-Phase Commit

I. sends VOTE-REQ fto all participants

\ I1. sends vote; to Coordinator
/ if vote;= NO then
IIL. if (all votes YES) then decide; := ABORT

decide.:= COMMIT | — | halt

Timeout actions

Processes are waiting on steps 2, 3, and 4

Step 2 piis waiting for VOTE- Step 3 Coordinator is waiting
REQ from coordinator for vote from participants

Termination protocols

|. Wait for coordinator to recover

® [t always works, since the coordinator is never uncertain

Logging actions

1. When coord sends VOTE-REQ, it writes START-2PC to its DT Log

2. When p; is ready to vote YES,
® writes YES to DT Log
® sends YES to coord

3. When p; is ready to vote NO, it writes ABORT to DT Log

4. When c is ready to decide COMMIT, it writes COMMIT to DT

P recovers

1. When coordinator sends VOTE-REQ, @ if DT Log contains START-2PC,
it writes START-2PC to its DT Log then p = c:

2. When participant is ready fo vote o if DT Log contains a decision
e iiiitecitesyto Dl ogieetore value, then decide accordingly
sending yes to coordinator (writes)

n else decide ABORT

also list of participants)
When participant is ready to vote No,
it writes ABORT to DT Log

@ otherwise, p is a participant:
o if DT Log contains a decision

Blocking and uncertainty

Why does uncertainty lead to blocking?

® An uncertain process does not know whether it can safely
decide COMMIT or ABORT because some of the processes it
cannot reach could have decided either

L] L]
- Non-blocking Prope desired!)
£ S Ry Py (@ I Sy \ Bt et :

=

Key Insight for 3-PC

® Cannot abort unless we know that no one has
committed

® We need an algorithm that lets us infer the state of
failed nodes

2PC Revisited

Vote-REQ Vote-REQ
YES NO

ABORT Q

2PC Revisited

Vote-REQ Vote-REQ
YES NO

ABORT Q
0 /

oo 4 , 4=

Coordinator Failure

® Elect new coordinator and have it collect the state of
the system

3PC: The Protocol

Dale Skeen (1982)

l. ¢ sends VOTE-REQ to all participants.

Il. When p; receives a VOTE-REQ, it responds by sending a vote to ¢
if vote; = No, then decide; := ABORT and p; halts.

lll. ¢ collects votes from all.
if all vo’res are Yes, then ¢ sends PRECOMMIT to all

Termination protocol:
Process states

At any time while running 3 PC, each participant can be in
exactly one of these 4 states:

Aborted Not voted, voted NO, received ABORT

Not all states
are compatible

Aborted

Uncertain

Committable

Committed

Aborted

Y

Y

N

N

Failures

® Things to worry about:

L] L] L] L] L] L]
a o .) - (g R \ ")
- @ timeouts: participant failure/coordinator failu

Timeout Actions

Processes are waiting on steps 2, 3,4, 5,and 6

Step 2 p;is waiting for VOTE-REQ
from coordinator

Step 3 Coordinator is waiting for
vote from participants

Step 4 pi waits for PRECOMMIT

Step 5 Coordinator waits for ACKs

Timeout Actions

Processes are waiting on steps 2, 3,4, 5,and 6

Step 2 piis waiting for VOTE-REQ | Step 3 Coordinator is waiting for
from coordinator vote from participants

Exactly as in 2PC Exactly as in 2PC

Step 4 p; waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Termination protocol

TR1. if some process decided ABORT, then?

@ When Di times out, it
starts an election protocol TR2. if some process decided COMMIT,

to elect a new then?

coordinafor TR3. if all processes that reported state

) . 5
@ The new coordinator are uncertain, then?

sends STATE-REQ to all

- procCesse TNAa

TR4. if some process is committable, but

- T

B L g S
ey

Termination protocol

TRI. if some process decided ABORT, then
@ When Pi times out, it decide ABORT

starts an election protocol ST EAEORE w al

halt
e ele,c* Salel TR2. if some process decided COMMIT, then
coordinator decide COMMIT
y send COMMIT fto all
@ The new coordinator o
sends STATE-REQ fo all TR3. if all processes that reported state

processes that are uncertain, then

Discussion

