Big Data Systems
Big Data Parallelism

- Huge data set
 - crawled documents, web request logs, etc.
- Natural parallelism:
 - can work on different parts of data independently
 - image processing, grep, indexing, many more
Assume that you ran a large data analysis program

- it took 10 hours on 1 node
- it took 1 hour on 100 nodes

What reasons can you come up with for this “suboptimal” performance? How would you debug?
Challenges

- Parallelize application
 - Where to place input and output data?
 - Where to place computation?
 - How to communicate data? How to manage threads? How to avoid network bottleneck?
- Balance computations
- Handle failures of nodes during computation
- Scheduling several applications who want to share infrastructure
Goal of MapReduce

- To solve these distribution/fault-tolerance issues once in a reusable library
- To shield the programmer from having to re-solve them for each program
- To obtain adequate throughput and scalability
- To provide the programmer with a conceptual framework for designing their parallel program
Map Reduce

- Overview:
 - Partition large data set into M splits
 - Run map on each partition, which produces R local partitions; using a partition function R
 - Hidden intermediate shuffle phase
 - Run reduce on each intermediate partition, which produces R output files
Details

- Input values: set of key-value pairs
 - Job will read chunks of key-value pairs
 - “key-value” pairs a good enough abstraction

- Map(key, value):
 - System will execute this function on each key-value pair
 - Generate a set of intermediate key-value pairs

- Reduce(key, values):
 - Intermediate key-value pairs are sorted
 - Reduce function is executed on these intermediate key-values
Count words in web-pages

Map(key, value) {
 // key is url
 // value is the content of the url
 For each word W in the content
 Generate(W, 1);
}

Reduce(key, values) {
 // key is word (W)
 // values are basically all 1s
 Sum = Sum all 1s in values

 // generate word-count pairs
 Generate (key, sum);
}
Reverse web-link graph

Go to google advanced search:
"find pages that link to the page:" cnn.com

Map(key, value) {
 // key = url
 // value = content
 For each url, linking to target
 Generate(output target, url);
}

Reduce(key, values) {
 // key = target url
 // values = all urls that point to the target url
 Generate(key, list of values);
}
Question: how do we implement “join” in MapReduce?

- Imagine you have a log table L and some other table R that contains say user information
- Perform Join (L.uid == R.uid)
 - Say size of L >> size of R
- Bonus: consider real world zipf distributions
Implementation

- Depends on the underlying hardware: shared memory, message passing, NUMA shared memory, etc.

- Inside Google:
 - commodity workstations
 - commodity networking hardware (1Gbps at node level and much smaller bisection bandwidth)
 - cluster = 100s or 1000s of machines
 - storage is through GFS
MapReduce Input

- Where does input come from?
 - Input is striped+replicated over GFS
 - Typically, Map reads from a local disk

- Tradeoff:
 - Good: Map reads at disk speed (local access)
 - Bad: only 2-3 choices of where Map task can be run
Intermediate Data

- Where does MapReduce store intermediate data?
 - On the local disk of the Map server (not GFS)

- Tradeoff:
 - Good: fast local access
 - Bad: only one copy, problem for fault-tolerance, load-balance
Output Storage

- Where does MapReduce store output?
 - In GFS: replicated, separate file per Reduce task
 - Output requires network communication — slow
 - Used for subsequent MapReduce tasks
Scaling

- Map calls probably scale
- Reduce calls also probably scale
 - But must be mindful of keys with many values
- Network may limit scaling
- Stragglers could be a problem
Fault Tolerance

- Main idea: map, reduce are deterministic, functional, and independent
 - Simply re-execute
- What if a worker fails while running map?
- What if Map has started to produce output, then crashed?
- What if a worker fails while running Reduce?
Load Balance

- What if some Map machines are faster than others?
 - Or some input splits take longer to process?
 - Need more input splits than machines

- Stragglers:
 - load balance only balances newly assigned tasks
 - Always schedule multiple copies of very last tasks
Discussion

- What are the constraints imposed on map and reduce functions?
- How would you like to expand the capability of map reduce?
Map Reduce Criticism

- “Giant step backwards” in programming model
- Sub-optimal implementation
- “Not novel at all”
- Missing most of the DB features
- Incompatible with all of the DB tools
Comparison to Databases

• HUGE source of controversy; claims:
 • parallel databases have much more advanced data processing support that leads to much more efficiency
 • support an index; selection is accelerated
 • provides query optimization
 • parallel databases support a much richer semantic model
 • support a scheme; sharing across apps
 • support SQL, efficient joins, etc.
Where does MR win?

- Scaling
- Loading data into system
- Fault tolerance (partial restarts)
- Approachability
In MapReduce, the only way to share data across jobs is stable storage -> slow!
Spark Goal: In-Memory Data Sharing

How to build a distributed memory abstraction that is fault tolerant and efficient?
Resilient Distributed Datasets (RDDs)

- Restricted form of distributed shared memory
 - Immutable, partitioned collection of records
 - can only be built through coarse-grained deterministic transformations (map, filter, join)

- Efficient fault tolerance through lineage
 - Log coarse-grained operations instead of fine-grained data updates
 - RDD has enough information about its derivation
 - Recompute lost partitions on failure
Fault-tolerance
Design Space

Granularity of Updates

Fine
K-V stores, databases, RAMCloud

Network bandwidth

Best for transactional workloads

Coarse
HDFS

Write Throughput

Low

High

Memory bandwidth

Best for batch workloads

RDDs
Example: Console Logs

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split('\t')[2])
messages.persist()

messages.filter(lambda s: "foo" in s).count()
messages.filter(lambda s: "bar" in s).count()
...
RDD Fault Tolerance

- Track lineage to recompute lost data

```python
messages = textFile(...).filter(lambda s: s.contains("ERROR"))
 .map(lambda s: s.split('\t')[2])
```
RDD Implementation

- List of partitions
- Parent partition
  - Narrow: depends on one parent (e.g., map)
  - Wide: depends on several parents (e.g., join)
- Function to compute (e.g., map, join)
- Partitioning scheme
- Computation placement hint
RDD Computations

- Spark uses the lineage to schedule job
  - Transformation on the same partition form a stage
    - Joins, for example, are a stage boundary
    - Need to reshuffle data
  - A job runs a single stage
    - pipeline transformation within a stage
- Schedule job where the RDD partition is
Example: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to
   \[ \sum_{i \in \text{neighbors}} \frac{\text{rank}_i}{|\text{neighbors}_i|} \]

```scala
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
 ranks = links.join(ranks).flatMap {
 (url, (links, rank)) =>
 links.map(dest => (dest, rank/links.size))
 }.reduceByKey(_ + _)
}
```

What are the performance and fault tolerance issues in this code?
PageRank

- Co-locate ranks and links
- Each iteration creates two new RDDs: ranks, temp
- Long lineage graph!
  - Risky for fault tolerance.
  - One node fails, much recomputation
- Solution: user can replicate RDD
  - Programmer pass "reliable" flag to persist()
  - Replicates RDD in memory
  - With REPLICA flag, will write to stable storage (HDFS)
Tensorflow: System for ML

- Open source, lots of developers
- Used in RankBrain, Photos, SmartReply
Three types of ML

• Large scale training
• Low latency inference
• Testing new ideas (single node prototyping systems)
TensorFlow

- Common way to write programs
- Dataflow + Tensors
- Mutable state
- Simple mathematical operations
- Automatic differentiation
Background: NN Training

- Take input image
- Compute loss function (forward pass)
- Compute error gradients (backward pass)
- Update weights
- Repeat
Dataflow Graph

Graph of Nodes, also called Operations or ops.

- biases
- weights
- examples
- labels

- MatMul
- Add
- Relu
- Xent
System Architecture

- Parameter server architecture
  - Stateless workers, stateful parameter servers (DHT)
  - Commutative updates to parameter server
- Data parallelism vs. model parallelism
  - Every worker works on the entire data flow graph (data parallelism)
  - Model and layers split across workers (model parallelism)
- What are the tradeoffs of different types of parallelism?
Synchrony

- Asynchronous execution is sometimes helpful (stragglers)
- Asynchrony causes consistency problems
- TensorFlow pursues synchronous execution
  - But adds k backup nodes to address straggler problems
Open Research Problems

- Automatic data placement
- Efficient code generation from data flow graph