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Background

® Directory: maps name to I-node number

® |-node: structure for per-file metadata
® contains ownership, perms, timestamps + 10 datablock pointers
® form an array, indexed by “i-number”

® array is explicit in Unix File system, implicit for LFS




Unix File System

® Original Unix file system was simple and elegant, but
slow
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Unix File System

® Problems:

® blocks too small




Unix Fast File System

® Larger block size (4K to 8K)

® why not choose even larger blocks?

® Disk divided into cylinder groups
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e Each contains super-block




Locality

® Key ideas:




Locality Policy

® Keep directory within a cylinder group, spread out
different directories to other groups

® Allocate runs of blocks within a cylinder group; every once
in a while, jump to a new cylinder group




® Radically different file system design

® Technology motivations:

® CPUs outpacing disks




Implications/Problems

® Lots of little writes

® because reads are taken care of

® because most files are small




Basic Idea of LFS

® Log all data and meta-data with efficient, large,
sequential writes

® Logis the “only and entire” truth, there is nothing else




Two Potential Problems

® No update-in-place; (almost) nothing has a
permanent home

® so how do we find things? (log retrieval)




Log Retrieval

® Keep same basic file structure as Unix (data, inode,
indirect blocks)

® Leti-nodes float, so we need to find a file’s inode

® Solution: an “inode map” that tells position of inode




LFS Data Structures

® Read:

® follow: map of inode map, to inode map, to inode, to block




Two Potential Problems

® No update-in-place; (almost) nothing has a
permanent home

® so how do we find things? (log retrieval)




Approach #1: Compaction
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® Works fine if you have a mostly empty disk

® But suppose 90% utilization:
® write 10%
® compact 90% (read 90%, write 90%)

® repeat!



Approach #2: Threading
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® Fill in empty spaces
® Start at the beginning of disk once you reach end

® What is the problem with this approach?



Solution: Segmented Log
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® Use both compaction & threading

® compaction: big free space

® threading: leave long living things in place & don’t copy
® Segmented log:

® chop disk into a bunch of large segments

® compaction within segment, threading among segments



Segmented Log (contd.

® \When writing, use only clean segments (i.e., no live
data)

® Occasionally clean segments:
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Cleaning Issues

ch segments to clean?



Cleaning Goals

® \Want bimodal distribution:

® small number of low-utilized segments (so cleaner can find
easy segments to clean)

® large number of high-utilized segments (so disk is well
utilized)



Greedy cleaner

® Pick the lowest util to clean
® \Works not so great for random workload

® For “hot-cold” workload: even worse
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Induce Bi-modal

® Segments are like “fish”: swimming to the left

® Cleaner spends all its time repeatedly slinging a few hot fish

back

® Cold fish hide lots of free space, but cleaner can’t get to them

fast
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Induce Bi-modal

® Cold segment space more valuable: if you clean cold
segments, takes them longer to come back

® Hot free space is less valuable: might as well wait a bit longer
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Key Feature of the Paper

® Keen awareness of technology trends

® Willing to radically depart from conventional practice

® Yet keep sufficient compatibility




