Log-Structured File
Systems




Outline




Disk Structure

track t spindle

arm assembly
sector s

cylinder ¢

platter ‘

rotation




Background

® Directory: maps name to I-node number

® |-node: structure for per-file metadata
® contains ownership, perms, timestamps + 10 datablock pointers
® form an array, indexed by “i-number”

® array is explicit in Unix File system, implicit for LFS




Unix File System

® Original Unix file system was simple and elegant, but
slow

- ® achieved




Unix File System

® Problems:

® blocks too small




Unix Fast File System

® Larger block size (4K to 8K)

® why not choose even larger blocks?

® Disk divided into cylinder groups

e

%';f

e Each contains super-block




Locality

® Key ideas:




Locality Policy

® Keep directory within a cylinder group, spread out
different directories to other groups

® Allocate runs of blocks within a cylinder group; every once
in a while, jump to a new cylinder group




® Radically different file system design

® Technology motivations:

® CPUs outpacing disks




Implications/Problems

® Lots of little writes

® because reads are taken care of

® because most files are small




Basic Idea of LFS

® Log all data and meta-data with efficient, large,
sequential writes

® Logis the “only and entire” truth, there is nothing else




Two Potential Problems

® No update-in-place; (almost) nothing has a
permanent home

® so how do we find things? (log retrieval)




Log Retrieval

® Keep same basic file structure as Unix (data, inode,
indirect blocks)

® Leti-nodes float, so we need to find a file’s inode

® Solution: an “inode map” that tells position of inode




LFS Data Structures

® Read:

® follow: map of inode map, to inode map, to inode, to block




Two Potential Problems

® No update-in-place; (almost) nothing has a
permanent home

® so how do we find things? (log retrieval)




Approach #1: Compaction

HE -

'

O —

® Works fine if you have a mostly empty disk

® But suppose 90% utilization:
® write 10%
® compact 90% (read 90%, write 90%)

® repeat!



Approach #2: Threading

L

® Fill in empty spaces
® Start at the beginning of disk once you reach end

® What is the problem with this approach?



Solution: Segmented Log

N~ [
SO I I |

® Use both compaction & threading

® compaction: big free space

® threading: leave long living things in place & don’t copy
® Segmented log:

® chop disk into a bunch of large segments

® compaction within segment, threading among segments



Segmented Log (contd.

® \When writing, use only clean segments (i.e., no live
data)

® Occasionally clean segments:

i

WIS




Cleaning Issues

ch segments to clean?



Cleaning Goals

® \Want bimodal distribution:

® small number of low-utilized segments (so cleaner can find
easy segments to clean)

® large number of high-utilized segments (so disk is well
utilized)



Greedy cleaner

® Pick the lowest util to clean
® \Works not so great for random workload

® For “hot-cold” workload: even worse

. Hot-and-cold

_ Uniform

00 02 04 06 08 1.0
Segment utilization




Induce Bi-modal

® Segments are like “fish”: swimming to the left

® Cleaner spends all its time repeatedly slinging a few hot fish

back

® Cold fish hide lots of free space, but cleaner can’t get to them

fast

F.fi("l()'l (‘f S(‘g"'(""s ho ﬁ\h get thro\'x"l brlﬂ’.(
—— U0 quickly come back

0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

dCK

g cold fish piling up

>
Hot-and cold

Uniform

04



Induce Bi-modal

® Cold segment space more valuable: if you clean cold
segments, takes them longer to come back

® Hot free space is less valuable: might as well wait a bit longer

Fraction of segments
0.008
0.007
0.006

00051 1 et hot fish
0.004 swim farther

0.003 -
0.002
0.001
0.000

LFS Cost-Benefnn

LFS Greedy

02 04 06 08 10
Segment utilization




Key Feature of the Paper

® Keen awareness of technology trends

® Willing to radically depart from conventional practice

® Yet keep sufficient compatibility




