
CSE	550:	Introduc0on	to	
Computer	Systems	Research 

Arvind	Krishnamurthy



Course	Informa0on

• Instructor:	Arvind	Krishnamurthy	

• Interests:	distributed	systems,	networks,	opera0ng	systems	

• Email,	office	hours	on	the	website	

• Also	fine	to	just	drop	in!	

• TA:	Kaiyuan	Zhang



Course	Basics

• Quals	course	that	covers	founda0onal	systems	topics	
from:	

• Opera0ng	Systems,	Networks,	Distributed	Systems,	
Databases	

• No	prerequisite	

• Gateway	course	to	CSE	551,	552,	and	561	or	a	
terminal	course	for	students	desiring	breadth



Course	Format

• Three	components:	

• Reading	papers	and	blog	posts	on	papers,	some	
experiments	

• Programming	assignments	in	teams	of	two	

• Course	project	resul0ng	in	a	project	writeup



What	is	a	computer	system?

• Our	focus	is	on	soZware	systems	

• SoZware	system	achieves	a	specific	external	behavior		

• e.g.,	deliver	videos,	online	social	network,	email,	ML	
execu0on	

• Comprises	of	many	components	

• Components	interact	and	cooperate	to	provide	overall	
behavior	

• They	typically	have	(well)	specified	interfaces



Thought	Exercise

• Let	us	say	that	you	want	to	build	a	gmail-like	service	

• What	are	the	key	components	in	its	design?	

• Pick	one	component	and	discuss	what	are	the	key	issues/
tradeoffs	

• Example:	discuss	how	many	datacenters	do	you	need	and	
where	would	you	place	them?



Why	study	systems	now?

• Datacenter	compu0ng	

• scalable	distributed	systems	

• advancements	in	networking	

• Internet-wide	systems	such	as	block-chains	

• Systems	and	ML



Course	Topics

• Concurrency	

• Web	Services	

• Local	Transac0ons	

• Distributed	Transac0ons	

• Distributed	clocks	

• Consensus/RSM/BFT	

• Virtualiza0on

• File systems

• Large storage systems

• DHTs, Internet systems

• Big data/ML

• Networking (cong. control)

• Networking (routing)

• Experiences



Key	Goals	in	Systems

• Correctness	

• Availability/reliability	

• Security	

• Performance



What	makes	achieving	
these	goals	hard?

• System complexity:

• Large	#	of	components	

• Large	#	of	connec0ons	

• Imprecise	descrip0on	

• Irregular	interac0ons,	irregular	resource	needs	

• Technology rarely the limit!

• Limit	is	usually	the	complexity,	ability	to	reason,	etc.



Example:	EC2	Outage

• Background	on	EC2:	

• Mul0ple	regions;		mul0ple	“availability	zones”	within	each	region	

• Each	availability	zone	provides	the	Elas0c	Block	Store	(EBS)	

• EBS	volumes	are	mountable	on	EC2	nodes	

• Replicated	to	deal	with	faults	

• EBS	nodes	use	a	“peer-to-peer”	protocol	to	detect	faults	and	
replicate;		blocks	while	trying	to	replicate	

• EBS	nodes	connected	by	a	backup	lower	capacity	network	for	
providing	reliable	control	

• Control	plane	keeps	track	of	volume	loca0ons;	replicated/shared	across	
the	en0re	region



Outage

• Configura0on	change	to	upgrade	a	router	

• Normally	shiZ	traffic	off	to	a	full-capacity	redundant	router	

• Instead,	mistakenly	assigned	to	the	backup	router	which	overloaded	

• EBS	nodes	weren’t	able	to	contact	each	other,	so	declared	failure	
and	tried	to	provision	extra	copies	

• Exhausted	space.		Created	a	“re-mirroring”	storm.



Outage	(contd.)

• Created	a	huge	load	on	the	control	plane	

• could	not	handle	opera0ons	from	other	availability	zones	

• Operators	recognized	the	problem	and	disabled	“re-mirroring”	opera0ons	

• Caused	further	problems!		No	aggressive	back-off	

• there	was	a	race	condi0on	in	EBS	nodes	in	closing	connec0ons	--	which	
caused	them	to	actually	fail		

• resul0ng	in	further	re-mirroring	

• Operators	finally	disconnected	the	availability	zone



• What	are	the	take-aways	from	this	incident?



Unix	Time	Sharing	System

• Classic	system	and	paper:	described	almost	en0rely	in	10	pages	

• Key	idea:	elegant	combina0on	of	a	few	concepts	that	fit	
together	well	

• Third	system	for	0me	sharing:	

• First	system	was	CTSS	an	unqualified	success	

• Followed	by	Mul0cs,	which	suffered	from	the	second	system	
effect



Unix

• Designed	by	Ritchie	and	Thompson	

• Plakorm:	PDP-11	computer;	opera0onal	in	1971	

• Wrinen	in	C	(instead	of	assembly	--	33%	overhead)	

• 2	man-years	to	write	

• Defined	an	ecosystem	—	the	Unix	tools	

• Wrinen	collabora0vely	

• Developers	used/built	the	system	for	their	own	work



Unix	Components

• File	systems	(ordinary	files	and	device	I/O)	

• Process	management	

• Shell	

• Ques0on:	is	there	anything	missing	from	the	above	
list?



File	System

• “Important	job	of	Unix	is	to	provide	a	file	system”	

• Three	types	of	files:	

• Ordinary	files:	sequence	of	bytes	(unstructured)	

• Directories	(protected	ordinary	files)	

• Special	files	(I/O)	

• Uniform	I/O,	naming,	and	protec0on	model	

• directories	(protected	files),	hierarchical,	linking



Removable	File	System

• Tree	structured	

• “mount”-ed	on	an	ordinary	file	

• Associate	a	special	device	file	with	an	ordinary	file	inside	the	
tree	structure



File	System	Implementa0on

• Table	of	i-nodes	

• Path	name	scanning	

• Mount	table	

• Buffered	data	

• Write-behind



Processes

• Text,	data,	and	stack	segments	

• Text	is	shared,	the	rest	are	process-specific	

• Process	swapping	

• fork,	exec:	create	new	processes	from	same	or	
different	images	

• Pipes	for	communica0ng	between	processes	

• wait,	exit:	synchroniza0on	primi0ves



Shell

• Invoke	programs:	“cmd	arg1	...	argn”	

• Performs	stdio	and	I/O	redirec0on	

• Filters	&	pipes	

• Mul0-tasking	from	a	single	shell	

• Shell	is	just	a	program!



Ques0ons

• What	are	the	key	design	principles	employed	in	Unix?	

• What has changed and what hasn’t?

• What would you do differently for different settings 
(e.g., handheld devices)?

• How would you evaluate this paper now?


