Virtual Machines




Background

® |IBM sold expensive mainframes to large organizations

® Some wanted to run different OSes at the same time
(because applications were developed on old OSes)

® Solution: IBM developed virtual machine monitor (VMM) or
hypervisor (circa 1974)

. .
fah Sl = “' .'ﬂ & ’ | L ",- A‘ ." .'I ;ez l'..- . e .a_. .. . " L/ ’ G' M /A‘ ot " 4

h




Today’s World

® Why VMMs now? Are there new reasons for using
VMMs?




Resurgence in VMs

® Sparked by work on Disco (system from Stanford/
- Rosenblum)




VM Observations

® Instruction-set architectures is one of the few well-
documented complex interfaces

® interface includes meaning of interrupt numbers, etc.

L] L] L]
A A ) NDIE ) ) ) ) ) a
- @ ANy <1l ments tne Interic dN EXE
B ad X et Mg (& Sty e ) - L g it ™ R - | [E s ol A -y el Al 4 2 S Al v




Outline

® Disco project




Traditional Process-OS Model

® Processes run in user mode

® Processes “trap” into OS

® when they want services from the OS




Virtualizing CPU

® Basic technique: limited direct execution

® Ideal case:

® VMM jumps to first instruction of the OS and lets the OS run

® Generalize a context switch on processes to machine switch




System Call Primer

® Consider: open(char*path, int flags, mode t mode)

open:
push dword mode
push dword flags
push dword path
mov eax, o
push eax
~ int80h




Virtualized Platform

® Application remains the same

® Trap handler is inside the VMM; executed in kernel mode

® What should the VMM do?

® does not know the details of the guest OSes

® but knows where the OS’s trap handler is




Execution Privileges

® OS cannot be in kernel mode

® Disco project: MIPS hardware had a supervisor mode

® kernel > supervisor > user

® supervisor can access little more memory than user, but
cannot execute privileged instructions

S




Virtual Memory Primer

® TLB: fast cache used in every instruction

® TLB miss handled by OS in some cases (software TLB)

® In some other cases, hardware fills TLB using a page table

® OS manages the page table




Virtualizing Memory

® Normally:
® each program has a private address space
® OS virtualizes memory for its processes

® Now:

® multiple OSes can share the actual physical memory and




2-Level Translation

® Let us consider software managed TLB

® |n a virtualized system:

® Application traps into VMM; VMM jumps to OS trap
~ handler




Information Gap

® VMM often doesn’t know what the OS is doing

® For example, if OS has nothing else to run:

® gointo anidle loop and spin waiting for the next interrupt

® Another example:




Design Space

App is not modified | App is modified

Disco




Xen

® Key idea: change the machine-0S interface to make
VMs simpler and higher performance

® Pros:

o better performance on x86

Mt
@




Xen & Paravirtualization

® VM-style virtualization on an uncooperative architecture

® Support full-featured multi-user multi-application OSes

® contrast with Denali: thin OSes for lightweight services

® OSes are ported to a new “x86-xeno” architecture




Fully virtualizing the MMU

® Constraints:

® Hardware-based TLB

® Notagson T TLB

® Use shadow page tables

® Guest OS maintains “virtual to physical mem” map




Paravirtualizing the MMU

® Paravirtualization obviates the need for shadows

® modify the guest OS to handle sparse memory maps
® Guest OSes allocate and manage their own PTs

® map Xen into top 64 MB in all address spaces

® Updates to page tables must be passed to Xen for validation (use
| batc_hin_g,)




Memory Benchmarks

Relative score to Linux

I I

o=
=
l

L b} v U L A Vv U
Page fault (us) Process fork (us)

Imbench results on Linux (L), Xen (X), VMWare Workstation (V), and UML (U)




Other Nice Ideas

® Domain O:

® runthe VMM management at user level

® easier to debug




