Virtual Machines




Background

® |IBM sold expensive mainframes to large organizations

® Some wanted to run different OSes at the same time
(because applications were developed on old OSes)

® Solution: IBM developed virtual machine monitor (VMM) or
hypervisor (circa 1974)
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Today’s World

® Why VMMs now? Are there new reasons for using
VMMs?




Resurgence in VMs

® Sparked by work on Disco (system from Stanford/
- Rosenblum)




VM Observations

® Instruction-set architectures is one of the few well-
documented complex interfaces

® interface includes meaning of interrupt numbers, etc.
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Outline

® Disco project




Traditional Process-OS Model

® Processes run in user mode

® Processes “trap” into OS

® when they want services from the OS




Virtualizing CPU

® Basic technique: limited direct execution

® Ideal case:

® VMM jumps to first instruction of the OS and lets the OS run

® Generalize a context switch on processes to machine switch




System Call Primer

® Consider: open(char*path, int flags, mode t mode)

open:
push dword mode
push dword flags
push dword path
mov eax, o
push eax
~ int80h




Virtualized Platform

® Application remains the same

® Trap handler is inside the VMM; executed in kernel mode

® What should the VMM do?

® does not know the details of the guest OSes

® but knows where the OS’s trap handler is




Execution Privileges

® OS cannot be in kernel mode

® Disco project: MIPS hardware had a supervisor mode

® kernel > supervisor > user

® supervisor can access little more memory than user, but
cannot execute privileged instructions
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Virtual Memory Primer

® TLB: fast cache used in every instruction

® TLB miss handled by OS in some cases (software TLB)

® In some other cases, hardware fills TLB using a page table

® OS manages the page table




Virtualizing Memory

® Normally:
® each program has a private address space
® OS virtualizes memory for its processes

® Now:

® multiple OSes can share the actual physical memory and




2-Level Translation

® Let us consider software managed TLB

® |n a virtualized system:

® Application traps into VMM; VMM jumps to OS trap
~ handler




Information Gap

® VMM often doesn’t know what the OS is doing

® For example, if OS has nothing else to run:

® gointo anidle loop and spin waiting for the next interrupt

® Another example:




Design Space

App is not modified | App is modified

Disco




Xen

® Key idea: change the machine-0S interface to make
VMs simpler and higher performance

® Pros:

o better performance on x86

Mt
@




Xen & Paravirtualization

® VM-style virtualization on an uncooperative architecture

® Support full-featured multi-user multi-application OSes

® contrast with Denali: thin OSes for lightweight services

® OSes are ported to a new “x86-xeno” architecture




Fully virtualizing the MMU

® Constraints:

® Hardware-based TLB

® Notagson T TLB

® Use shadow page tables

® Guest OS maintains “virtual to physical mem” map




Paravirtualizing the MMU

® Paravirtualization obviates the need for shadows

® modify the guest OS to handle sparse memory maps
® Guest OSes allocate and manage their own PTs

® map Xen into top 64 MB in all address spaces

® Updates to page tables must be passed to Xen for validation (use
| batc_hin_g,)




Memory Benchmarks

Relative score to Linux
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Imbench results on Linux (L), Xen (X), VMWare Workstation (V), and UML (U)




Other Nice Ideas

® Domain O:

® runthe VMM management at user level

® easier to debug




