
Distributed	Transac/ons

Preliminaries

• Last	topic:	transac/ons	in	a	single	machine	

• This	topic:	transac/ons	across	machines	

• Distribu/on	typically	addresses	two	needs:	

• Split	the	work	across	mul/ple	nodes	

• Provide	more	reliability	by	replica/on	

• Focus	of	2PC	and	3PC	is	the	first	reason:	spliEng	the	work	
across	mul/ple	nodes

Failures

• What	are	the	different	classes/types	of	failures	in	a	
distributed	system?	

• What	guarantees	should	we	aim	to	provide	in	building	
fault-tolerant	distributed	systems?

Model

• For	each	distributed	transac/on	T:	
• one	coordinator	

• a	set	of	par/cipants	

• Coordinator	knows	par/cipants;	par/cipants	don’t	
necessarily	know	each	other	

• Each	process	has	access	to	a	Distributed	Transac/on	
Log	(DT	Log)	on	stable	storage

The	setup

• Each	process	has	an	input	value,	vote:	Yes,	No	

• Each	process	has	to	compute	an	output	value	
decision:	Commit,	Abort

Example

• Transfer	money	from	account	X	on	one	machine	to	
account	Y	on	another	machine

Atomic	Commit	Specifica/on

AC-1:	All	processes	that	reach	a	decision	reach	the	same	one.	

AC-2:	A	process	cannot	reverse	its	decision	aYer	it	has	reached	one.	

AC-3:	The	Commit	decision	can	only	be	reached	if	all	processes	vote	
Yes.	

AC-4:	If	there	are	no	failures	and	all	processes	vote	Yes,	then	the	
decision	will	be	Commit.	

AC-5:	If	all	failures	are	repaired	and	there	are	no	more	failures,	then	
all	processes	will	eventually	decide.

2-Phase	Commit

cCoordinator

I. sends VOTE-REQ to all participants

piParticipant

II. sends to Coordinator

 if = NO then

 := ABORT

halt

2-Phase	Commit

votei

decidei

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant

III. if (all votes YES) then

 := COMMIT

send COMMIT to all

else

 := ABORT

send ABORT to all who voted YES

halt

II. sends to Coordinator

 if = NO then

 := ABORT

halt

2-Phase	Commit

votei

decidei

decidec

decidec

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant

III. if (all votes YES) then

 := COMMIT

send COMMIT to all

else

 := ABORT

send ABORT to all who voted YES

halt

II. sends to Coordinator

 if = NO then

 := ABORT

halt

2-Phase	Commit

votei

decidei

pi

decidec

decidec

decidei

decidei

cCoordinator Participant

I. sends VOTE-REQ to all participants

votei

IV. if received COMMIT then

:= COMMIT

else

:= ABORT

halt

• How	do	we	deal	with	different	failures?

Timeout	ac/ons

Processes	are	wai/ng	on	steps	2,	3,	and	4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 Coordinator is waiting
for vote from participants

pi

Step 4 (who voted YES) is waiting
for COMMIT or ABORT

pi

Termina/on	protocols

I. Wait	for	coordinator	to	recover	

• It	always	works,	since	the	coordinator	is	never	uncertain	

• may	block	recovering	process	unnecessarily	

II. 	Ask	other	par/cipants

Logging	ac/ons

1. When	coord	sends	VOTE-REQ,	it	writes	START-2PC	to	its	DT	Log	

2. When					 	 is	ready	to	vote	YES,		

• writes	YES	to	DT	Log		

• sends	YES	to	coord	(writes	also	list	of	par/cipants)		

3. When								is	ready	to	vote	NO,	it	writes	ABORT	to	DT	Log		

4. When					is	ready	to	decide	COMMIT,		it	writes	COMMIT	to	DT	
Log	before	sending	COMMIT	to	par/cipants		

5. When	it	is	ready	to	decide	ABORT,	it	writes	ABORT	to	DT	Log	

6. AYer						receives	decision	value,	it	writes	it	to	DT	Log

pi

cpi

pi

c

			recovers	p

1. When coordinator sends VOTE-REQ,

 it writes START-2PC to its DT Log

2. When participant is ready to vote

 Yes, writes Yes to DT Log before

 sending yes to coordinator (writes

 also list of participants)

 When participant is ready to vote No,

 it writes ABORT to DT Log

3. When coordinator is ready to decide

 COMMIT, it writes COMMIT to DT Log

 before sending COMMIT to participants

 When coordinator is ready to decide

 ABORT, it writes ABORT to DT Log

4. After participant receives decision

 value, it writes it to DT Log

if DT Log contains START-2PC,
then :

if DT Log contains a decision
value, then decide accordingly

else decide ABORT

otherwise, is a participant:

if DT Log contains a decision
value, then decide accordingly

else if it does not contain a
Yes vote, decide ABORT

else (Yes but no decision)
run a termination protocol

p = c

p

• What	are	the	strengths/weaknesses	of	2PC?

Key	Insight	for	3-PC

• Cannot	abort	unless	we	know	that	no	one	has	
commieed	

• We	need	an	algorithm	that	lets	us	infer	the	state	of	
failed	nodes	

• Introduce	an	addi/onal	state	that	helps	us	in	our	
reasoning	

• But	start	with	the	assump/on	that	there	are	no	
communica/on	failures

3-Phase	Commit

• Two	approaches:	

1. Focus	only	on	site	failures	

• Non-blocking,	unless	all	sites	fails	

• Timeout						site	at	the	other	end	failed	

• Communica/on	failures	can	produce	inconsistencies	

2. Tolerate	both	site	and	communica/on	failures	

• par/al	failures	can	s/ll	cause	blocking,	but	less	oYen	
than	in	2PC

≡

Blocking	and	uncertainty

Why	does	uncertainty	lead	to	blocking?	

• An	uncertain	process	does	not	know	whether	it	can	safely	
decide	COMMIT	or	ABORT	because	some	of	the	processes	it	
cannot	reach	could	have	decided	either	

Non-blocking	Property	
If	any	opera/onal	process	is	uncertain,	then	no	process	has	
decided	COMMIT

C

2PC	Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT In U, both A and C are
reachable!

pi

C

2PC	Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT

pi

PC

In state PC

a process knows that it

will commit unless it fails

Coordinator	Failure

• Elect	new	coordinator	and	have	it	collect	the	state	of	
the	system	

• If	any	node	is	commieed,	then	send	commit	
messages	to	all	other	nodes	

• If	all	nodes	are	uncertain,	what	should	we	do?

3PC:	The	Protocol
Dale Skeen (1982)

I. sends VOTE-REQ to all participants.

II. When receives a VOTE-REQ, it responds by sending a vote to
if = No, then := ABORT and halts.

III. collects votes from all.
if all votes are Yes, then sends PRECOMMIT to all
else := ABORT; sends ABORT to all who voted Yes halts

IV. if receives PRECOMMIT then it sends ACK to

V. collects ACKs from all.
When all ACKs have been received, := COMMIT;
 sends COMMIT to all.

VI. When receives COMMIT, sets := COMMIT and halts.

c

pi

votei decidei

c

c

decidec

c

c

pi

pi

decidec

c

pi pi decidei

c

Termina/on	protocol:
Process	states

At	any	/me	while	running		3	PC,	each	par/cipant	can	be	in	
exactly	one	of	these	4	states:	

Aborted				 	 Not	voted,	voted	NO,	received	ABORT	

Uncertain	 			Voted	YES,	not	received	PRECOMMIT	

Commieable	 Received	PRECOMMIT,	not	COMMIT	

Commieed	 	 Received	COMMIT

Not	all	states	
are	compa/ble

Aborted Uncertain Committable Committed

Aborted Y Y N N

Uncertain Y Y Y N

Committable N Y Y Y

Committed N N Y Y

Failures

• Things	to	worry	about:	

• /meouts:	par/cipant	failure/coordinator	failure	

• recovering	par/cipant	

• total	failures

Timeout	Ac/ons

Processes	are	wai/ng	on	steps	2,	3,	4,	5,	and	6

Step 3 Coordinator is waiting for
vote from participants

Step 4 waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Timeout	Ac/ons

Processes	are	wai/ng	on	steps	2,	3,	4,	5,	and	6

Step 3 Coordinator is waiting for
vote from participants

Step 4 waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Exactly as in 2PC Exactly as in 2PC

Coordinator sends COMMITRun some Termination protocol

Run some Termination protocol

Termina/on	protocol
TR1. if some process decided ABORT, then?

TR2. if some process decided COMMIT,
then?

TR3. if all processes that reported state

 are uncertain, then?

TR4. if some process is committable, but

 none committed, then?

When times out, it
starts an election protocol
to elect a new
coordinator

The new coordinator
sends STATE-REQ to all
processes that
participated in the
election

The new coordinator
collects the states and
follows a termination rule

pi

Termina/on	protocol
TR1. if some process decided ABORT, then

 decide ABORT

 send ABORT to all

 halt

TR2. if some process decided COMMIT, then

 decide COMMIT

 send COMMIT to all

 halt

TR3. if all processes that reported state

 are uncertain, then

 decide ABORT

 send ABORT to all

 halt

TR4. if some process is committable, but

 none committed, then

 send PRECOMMIT to uncertain processes

 wait for ACKs

 send COMMIT to all

 halt

When times out, it
starts an election protocol
to elect a new
coordinator

The new coordinator
sends STATE-REQ to all
processes that
participated in the
election

The new coordinator
collects the states and
follows a termination rule

pi

Discussion

• What	are	the	strengths/weaknesses	of	3PC?

