Concurrency Control and
Recovery in Databases

Outline

® Abstract model that databases try to provide

Context

® Concurrency is needed for performance (multi-core,
overlap 1/0)

Programming Model

® Transaction: unit of program execution that accesses/
updates various data items

® |t consists of all operations between:

® BEGIN TRANSACTION

® COMMIT or ABORT (end of the transaction)

Implementing Transactions

® System could fail during a transaction

Implementing Transactions

® [nconsistent executions due to concurrency:

® Lost Update: two tasks both modify the same data

® [nconsistent Read: one task sees some but not all of the

Formalizing Correctness

® Atomic: state shows either all the effects of a
transaction or none of them

® Consistent: transaction moves only between states
where integrity holds

ACID: Notes

® Consistency: database satisfied integrity constraints

® Account numbers are unique

® Sum of debits and credits is zero

Serializability

® Conflicting operations:
® two updates to the same location

® an update and an access to the same location

® Serializability check:

Consistency

® Many related concepts in dealing with consistency:
® serializability

@ coherence

.

Consistency

® Classify them using two factors:

Locking

® Two approaches to concurrency control:

® Use locking to ensure mutual access

® Optimistic concurrency control: don’t use lock and check for

Locking Concepts

® \Well-formed transactions:

® Transaction holds lock (read or write lock) on the object when
it performs the corresponding operation

® Not sufficient for serializability

Recovery

® Question:

Data Structures

® Two kinds of storage: volatile (memory) and non-
volatile (disk)

® Buffer pool: accessed or modified pages in memory

Stable Storage

® STEAL: buffer manager allows the disk version to be updated
even before the transaction is completed

® NO-STEAL: all updates made after the transaction is completed

® FORCE: all updates are reflected on disk before the transaction
is allowed to commit

= ~

® NO-FORCE: transaction commits before updates are on disk

[=

Logging

® UNDQO: rollback updates on disk for uncommitted
transactions

® REDO: make updates to disk for committed transactions

Logging

® Two types of logging:

® Physical: For every log entry, maintain the “before image”
and “after image” of the updated data value

- ® logical: Keep track of what operation was performed (say

Data Structures

® Transaction Table: contains status information of active
transactions

® Dirty pages table:

® entries contain “recoveryLSN”: LSN of log record that made the
page dirty

@ Log records of a transaction:

Write Ahead Logging

® All log records pertaining to an updated page are
written to disk before the page itself is modified on

Recovery

® Three stages:

Analysis

® Determine the point to start the REDO pass

- ® Determine which pages could have been dirty at the

REDO

® Minimize disk I/Os

® |f affected page is not on the Dirty Page Table, then don’t
REDO

- @ |If affected page is in the Dirty Page Table, then if the

UNDO

® Go back and unroll all uncommitted transactions

® Handle failures during recovery:

