Flash: an efficient and
portable web server




High Level Ideas

® Lots of different choices on how to express and effect
concurrency in a program

® Paper argues that event-driven asynchronous I/O has
- least overhead and greatest scalability but Unix has




Model of a TCP Connection

® TCP flows provide reliable in-order delivery

® Flow control ensures that there is enough buffer
space at the destination

® Congestion control reacts to packet loss

® Slow start allows TCP to probe for available




Model of a Web page

® Body of the page is HTML content

® Includes links to embedded images and CSS

® Also includes Javascipt that can execute at the client




Model of an HTTP Fetch

® Establish TCP connection
® Send HTTP get request

® Server reads requested content from the file system

® Server performs server-side computation




Back of the Envelope Calculations

® What would you guess is a typical web page load in
terms of latency?

® How would you determine the number of “active”




HTTP Improvements

® Multiple concurrent connections per client
® Early browsers: 4 concurrent connections
® HTTP/1.1 spec: no more than two per hostname
® browsers tend to do ~6 per hostname/subdomain

® What implications does this have for TCP?

o




HTTP Improvements

® Pipelining

® Send multiple back to back requests on a single persistent
connection without waiting for replies

® Server sends replies in same order as requests

® Ability to mask the latency of HTTP request/response delay




Model of a Processor

® Processes incur context switching costs, occupy memory
(for stack frames)

® User-level threads implemented within a single process;
OS knows only about the process and not the threads
inside of it

® Kernel threads implemented as OS visible entities;




Model of a Disk

® Disks contain tracks (concentric circles) across multiple surfaces
(same track on multiple surfaces form a cylinder)

® Access costs:
® Seek to the appropriate cylinder
® Wait for the appropriate segment to rotate underneath the disk head

- ® Performance governed by mechanics ==> improvements

are




Flash Paper

® Discuss:




Issues in Server-side Handling

® Static requests:
® Read data from file and send into network

® Needless copy from kernel to user-level, back into kernel;
- sendfile() optimizes this




Dynamic Requests

® Need to find or fire up a helper process/thread;
potentially expensive interpreter warmup

® Don’t want to expose the server itself to the risk of
- potentially buggy/blocking CGl environment; need it




Concurrency in a web server

® Why do we want to exploit it?

® Multi-core: want to be able to exploit multiple CPUs
concurrently

® Multiple disks: want to be able to exploit multiple disk arms
- concurrently




OS Issues

® Potentially blocking system calls
® network receive: caller blocks until data is available

® network send: caller block until send buffer has space available

® network accept: caller blocks until new connection arrives




Concurrency Architectures

® Multiple process (MP): pool of idle processes

® Multiple threads (MT): similar, but pool of idle




AMPED

® Approach:
® Use event driven (ED) to process network
® Use MT or MP to process disk, helper processes, etc.

® Connect using pipes

_® Benefits:




Comparison Metrics

® Concurrency/utilization:
® Not be blocked and utilize all resources efficiently
® SPED blocks on disk I/O (also bad on multi-cores)
® Overhead

® Memory overheads, context switching costs, inter-process




Performance Tricks

® Use caches for as many things as possible:
® name translation caches

® response header caches

® Maintain memory mapped files and send data directly
- without requiring copies




Contributions

® Discusses issues regarding how to implement a high-
performance networked service

® Some of the design choices were driven by

'y R e




