Cluster Computing
Big Data Parallelism

- Huge data set
 - crawled documents, web request logs, etc.

- Natural parallelism:
 - can work on different parts of data independently
 - image processing, grep, indexing, many more
What are the issues that we need to tackle in building big data analytics systems?
Challenges

- Parallelize application
 - Where to place input and output data?
 - Where to place computation?
 - How to communicate data? How to manage threads? How to avoid network bottleneck?
- Balance computations
- Handle failures of nodes during computation
- Scheduling several applications who want to share infrastructure
Goal of MapReduce

- To solve these distribution/fault-tolerance issues once in a reusable library
- To shield the programmer from having to re-solve them for each program
- To obtain adequate throughput and scalability
- To provide the programmer with a conceptual framework for designing their parallel program
Map Reduce

- Overview:
 - Partition large data set into M splits
 - Run map on each partition, which produces R local partitions; using a partition function R
 - Run reduce on each intermediate partition, which produces R output files
 - Hidden intermediate shuffle phase
Details

- **Input values**: set of key-value pairs
 - Job will read chunks of key-value pairs
 - “key-value” pairs a good enough abstraction

- **Map(key, value)**:
 - System will execute this function on each key-value pair
 - Generate a set of intermediate key-value pairs

- **Reduce(key, values)**:
 - Intermediate key-value pairs are sorted
 - Reduce function is executed on these intermediate key-values
Count words in web-pages

Map(key, value) {
 // key is url
 // value is the content of the url
 For each word W in the content
 Generate(W, 1);
}

Reduce(key, values) {
 // key is word (W)
 // values are basically all 1s
 Sum = Sum all 1s in values

 // generate word-count pairs
 Generate (key, sum);
}
Reverse web-link graph

Go to google advanced search:
"find pages that link to the page:" cnn.com

Map(key, value) {
 // key = url
 // value = content
 For each url, linking to target
 Generate(output target, url);
}

Reduce(key, values) {
 // key = target url
 // values = all urls that point to the target url
 Generate(key, list of values);
}
Question: how do we implement “join” in MapReduce?

- Imagine you have a log table L and some other table R that contains say user information
- Perform Join (L.uid == R.uid)
 - Say size of L >> size of R
- Bonus: consider real world zipf distributions
Implementation

- Depends on the underlying hardware: shared memory, message passing, NUMA shared memory, etc.

- Inside Google:
 - commodity workstations
 - commodity networking hardware (1Gbps at node level and much smaller bisection bandwidth)
 - cluster = 100s or 1000s of machines
 - storage is through GFS
Partition input data into M splits
- starts up many copies of the program on a cluster
- one master and multiple slaves
- Map function invoked on key-values
- Output is buffered in memory and periodically logged to disk (local disk)

Reduce invocations: partition the intermediate key space into R pieces (e.g., hash(key) \% R)

R and partition function is specified by user
Implementation

- Master keeps track of locations of intermediate keys
- Reducer accesses these values through RPCs
 - reducer sorts all keys assigned to it
 - iterates over each unique key and performs reduce over associated values
 - emits output values that are appended to a final output file for this reduce partition (in GFS)
Role of the Master

• Keeps state regarding the state of each worker machine (pings each machine)
• Reschedules work corresponding to failed machines
• Orchestrates the passing of locations to reduce functions
Discussion

• what are the performance limitations of map reduce?
• what are the constraints imposed on map and reduce functions?
• how would you like to expand the capability of map reduce?
Map Reduce Criticism

- “Giant step backwards” in programming model
- Sub-optimal implementation
- “Not novel at all”
- Missing most of the DB features
- Incompatible with all of the DB tools
Comparison to Databases

- Huge source of controversy; claims:
 - parallel databases have much more advanced data processing support that leads to much more efficiency
 - support an index; selection is accelerated
 - provides query optimization
 - parallel databases support a much richer semantic model
 - support a scheme; sharing across apps
 - support SQL, efficient joins, etc.
Where does MR win?

- Scaling
- Loading data into system
- Fault tolerance (partial restarts)
- Approachability
Piccolo

- MapReduce restrictions:
 - just two phases
 - map can see only its split
 - reduce sees just one key at a time

- Piccolo programming model:
 - any number of phases (determined by controller)
 - computation proceeds in rounds:
 - example: page rank
 - global key/value tables store intermediate data
Naive PageRank

curr = Table(key=PageID, value=double)
next = Table(key=PageID, value=double)

def main():
 for i in range(50):
 launch_jobs(NUM_MACHINES, pr_kernel, graph, curr, next)
 swap(curr, next)
 next.clear()

def pr_kernel(graph, curr, next):
 i = my_instance
 n = len(graph)/NUM_MACHINES
 for s in graph[(i-1)*n:i*n]
 for t in s.out:
 next[t] += curr[s.id] / len(s.out)

Jobs run by many machines
Controller launches jobs in parallel
Run by a single controller
Naïve PageRank is Slow

Graph
B->D
...

Ranks
A: 0
...

Graph
C->E,F
...

Ranks
C: 0
...

get
put

1

put
g

get
put
g

2

Ranks
B: 0
...

Graph
A->B,C
...

3
PageRank: Locality

curr = Table(…, partitions=100, partition_by=site)
next = Table(…, partitions=100, partition_by=site)
group_tables(curr, next, graph)

def pr_kernel(graph, curr, next):
 for s in graph.get_iterator(my_instance)
 for t in s.out:
 next[t] += curr[s.id] / len(s.out)

def main():
 for i in range(50):
 launch_jobs(curr.num_partitions,
 pr_kernel,
 graph, curr, next,
 locality=curr)
 swap(curr, next)
next.clear()
curr = Table(…, partition_by=site, accumulate=sum)
next = Table(…, partition_by=site, accumulate=sum)
group_tables(curr, next, graph)

def pr_kernel(graph, curr, next):
 for s in graph.get_iterator(my_instance):
 for t in s.out:
 next.update(t, curr.get(s.id)/len(s.out))

def main():
 for i in range(50):
 handle = launch_jobs(curr.num_partitions,
 pr_kernel,
 graph, curr, next,
 locality=curr)
 barrier(handle)
 swap(curr, next)
next.clear()
Efficient Synchronization

1. Workers buffer updates locally → Release consistency

2. update \((a, 0.2)\)

3. update \((a, 0.3)\)
PageRank: Checkpointing

curr = Table(…, partition_by=site, accumulate=sum)
next = Table(…, partition_by=site, accumulate=sum)
group_tables(curr, next)
def pr_kernel(graph, curr, next):
 for node in graph.get_iterator(my_instance)
 for t in s.out:
 next.update(t, curr.get(s.id)/len(s.out))
def main():
curr, userdata = restore()
last = userdata.get('iter', 0)
for i in range(last, 50):
 handle = launch_jobs(curr.num_partitions, pr_kernel,
 graph, curr, next,
 locality=curr)
cp_barrier(handle, tables=(next), userdata={'iter':i})
swap(curr, next)
next.clear()
How does Piccolo compare to MapReduce:

- in terms of programmability
- in terms of performance (stragglers, load balance, etc.)
- in terms of fault tolerance