Google File System

Google File System

® Google needed a good distributed file system

® \Why not use an existing file system?
® Different workload and design priorities
® GFSis designed for Google apps
® Google apps are designed for GFS!

® What are the applications and the workload
considerations that drives the design of GFS?

Google Workload

® Hundreds of web-crawling application
® Files: few million of 100MB+ files
® Reads: small random reads and large streaming reads

® \Writes:

® many files written once, read sequentially

® random writes non-existent, mostly appends

® What are the design choices made by GFS?

GFS Design Decisions

® Files stored as chunks (fixed size: 64MB)
® Reliability through replication
® each chunk replicated over 3+ chunkservers

® Simple master to coordinate access, keep metadata
® No data caching! Why?

® Familiar interface, but customize the API

® focus on Google apps; add snapshot and record append
operations

GFS Architecture

Application| _ : ‘FS maste ‘oo/bar
Pt (file name, chunk index) | GFS master »~ [Too/bai

. N al . ’ > . ’ : -
GFS client File namespace , [chunk 2e10

(chunk handle,

chunk locations) Leeend
cgend:

mmm) Dala messages

Instructions to chunkserver —_— Control messages

Chunkserver state
(chunk handle, byte range)
GFS chunkserver GFS chunkserver

chunk data
Linux file system Linux file system

Key Design Choices

® Shadow masters

® Minimize master involvement

Never move data through it (only metadata)

Cache metadata at clients

®
®
® Llarge chunk size
®

Master delegates authority to primary replicas in data
mutations

Metadata

® Global metadata is stored on the master

® File and chunk namespaces
® Mapping from files to chunks

® locations of each chunk’s replicas

® Allin memory (64B/chunk)

® Few million files ==> can fit all in memory

Durability

® Master has an operation log for persistent logging of
critical metadata updates

® each log write is 2PC to multiple remote machines

replicated transactional redo log

®
® group commit to reduce the overhead
®

checkpoint all (log) state periodically; essentially mmap file
to avoid parsing

checkpoint: switch to new log and copy snapshot in
background

Mutable Operations

® Mutation is write or append

Client o | Master
2
>
S

® Goal: minimize master
involvement

Secondary
. Replica A
® Lease mechanism |

® Master picks one replica Primary
, : : Replica |
as primary; gives it a Legend:
lease —— Control
Secondary e

- : : Replica B
® Primary defines a serial —

order of mutations

® Data flow decoupled from
control flow

Write Operations

Application originates write request

GFS client translates request from (fname, data) -->
(fname, chunk-index) sends it to master

Master responds with chunk handle and (primary
+secondary) replica locations

Client pushes write data to all locations; data is stored
in chunkservers’ internal buffers

Client sends write command to primary

Write Operations (contd.)

Primary determines serial order for data instances
stored in its buffer and writes the instances in that
order to the chunk

Primary sends serial order to the secondaries and tells
them to perform the write

Secondaries respond to the primary
Primary responds back to client

Note: if write fails at one of the chunkservers, client is
informed and retries the write

Life without random writes

E.g., results of a previous search:

www.pagel.com -> www.myv.blogspot.com
WWW.page?2.com -> Www.my.blogspot.com

Let’s say new results: page2 no longer has the link, but there is a new page,
page3:

www.pagel.com -> www.my.blogspot.com
www.page3.com -> www.my.blogspot.com

Option: delete the old record (page2), and insert a new record (page3). This is
cumbersome!

® requires locking; just way too complex.

® better: delete the old file, create a new file where this program (run on
more than one machines) can append new records to the file
“atomically”

Atomic Record Append

® GFS client contacts the primary
® Primary chooses and returns the offset
® Client appends the data to each replica at least once

® No need for a distributed lock manager; actual write
can be an idempotent RPC (like in NFS)

Data Corruption

® Files stored on Linux and Linux has bugs
® sometimes silent corruptions
® Files stored on disks and disks are not fail stop

® stored blocks could be corrupted

® rare events become common at scale

® Chunkserver maintains per-chunk CRC (64KB)

® Discussion: Identify one thing that you would improve
about GFS and suggest an alternative design

~15 years later

® Scale is much bigger

® now 10K servers instead of 1K, 100 PB instead of 100 TB

® Bigger upload change: updates to small files

® Around 2010: incremental updates of the Google
search index

GFS -> Colossus

® Main scalability limit of GFS: single master

® fixed by partitioning the metadata

® ~100M files per master, smaller chunk sizes (1MB)

® Reduce storage overhead using erasure coding

