
Google	File	System



Google	File	System

• Different	workload	and	design	priori8es	

• GFS	is	designed	for	Google	apps	

• Google	apps	are	designed	for	GFS!

• Google	needed	a	good	distributed	file	system	

• Why	not	use	an	exis8ng	file	system?	



• What	are	the	applica8ons	and	the	workload	
considera8ons	that	drives	the	design	of	GFS?



Google	Workload

• Hundreds	of	web-crawling	applica8on	

• Files:	few	million	of	100MB+	files	

• Reads:	small	random	reads	and	large	streaming	reads	

• Writes:	

• many	files	wriMen	once,	read	sequen8ally	

• random	writes	non-existent,	mostly	appends



• What	are	the	design	choices	made	by	GFS?



GFS	Design	Decisions

• Files	stored	as	chunks	(fixed	size:	64MB)	

• Reliability	through	replica8on	

• each	chunk	replicated	over	3+	chunkservers	

• Simple	master	to	coordinate	access,	keep	metadata	

• No	data	caching!		Why?	

• Familiar	interface,	but	customize	the	API	

• focus	on	Google	apps;	add	snapshot	and	record	append	
opera8ons



GFS	Architecture

• What	are	the	implica8ons	of	this	design?



Key	Design	Choices

• Shadow	masters	

• Minimize	master	involvement	

• Never	move	data	through	it	(only	metadata)	

• Cache	metadata	at	clients	

• Large	chunk	size	

• Master	delegates	authority	to	primary	replicas	in	data	
muta8ons



Metadata

• Global	metadata	is	stored	on	the	master	

• File	and	chunk	namespaces	

• Mapping	from	files	to	chunks	

• Loca8ons	of	each	chunk’s	replicas	

• All	in	memory	(64B/chunk)	

• Few	million	files	==>	can	fit	all	in	memory



Durability

• Master	has	an	opera8on	log	for	persistent	logging	of	
cri8cal	metadata	updates	

• each	log	write	is	2PC	to	mul8ple	remote	machines	

• replicated	transac8onal	redo	log	

• group	commit	to	reduce	the	overhead	

• checkpoint	all	(log)	state	periodically;	essen8ally	mmap	file	
to	avoid	parsing	

• checkpoint:	switch	to	new	log	and	copy	snapshot	in	
background



Mutable	Opera8ons

• Muta8on	is	write	or	append	

• Goal:	minimize	master	
involvement	

• Lease	mechanism	

• Master	picks	one	replica	
as	primary;	gives	it	a	
lease		

• Primary	defines	a	serial	
order	of	muta8ons	

• Data	flow	decoupled	from	
control	flow



Write	Opera8ons

• Applica8on	originates	write	request	

• GFS	client	translates	request	from	(fname,	data)	-->	
(fname,	chunk-index)	sends	it	to	master	

• Master	responds	with	chunk	handle	and	(primary
+secondary)	replica	loca8ons	

• Client	pushes	write	data	to	all	loca8ons;	data	is	stored	
in	chunkservers’	internal	buffers	

• Client	sends	write	command	to	primary



Write	Opera8ons	(contd.)

• Primary	determines	serial	order	for	data	instances	
stored	in	its	buffer	and	writes	the	instances	in	that	
order	to	the	chunk	

• Primary	sends	serial	order	to	the	secondaries	and	tells	
them	to	perform	the	write	

• Secondaries	respond	to	the	primary	

• Primary	responds	back	to	client	

• Note:	if	write	fails	at	one	of	the	chunkservers,	client	is	
informed	and	retries	the	write



Life	without	random	writes

• E.g.,	results	of	a	previous	search:	

www.page1.com	->	www.my.blogspot.com	
www.page2.com	->	www.my.blogspot.com	

• Let’s	say	new	results:	page2	no	longer	has	the	link,	but	there	is	a	new	page,	
page3:	

www.page1.com	->	www.my.blogspot.com	
www.page3.com	->	www.my.blogspot.com	

• Op8on:	delete	the	old	record	(page2),	and	insert	a	new	record	(page3).	This	is	
cumbersome!	

• requires	locking;	just	way	too	complex.	

• beMer:	delete	the	old	file,	create	a	new	file	where	this	program	(run	on	
more	than	one	machines)	can	append	new	records	to	the	file	
“atomically”



Atomic	Record	Append

• GFS	client	contacts	the	primary	

• Primary	chooses	and	returns	the	offset	

• Client	appends	the	data	to	each	replica	at	least	once	

• No	need	for	a	distributed	lock	manager;	actual	write	
can	be	an	idempotent	RPC	(like	in	NFS)



Data	Corrup8on

• Files	stored	on	Linux	and	Linux	has	bugs	

• some8mes	silent	corrup8ons	

• Files	stored	on	disks	and	disks	are	not	fail	stop	

• stored	blocks	could	be	corrupted	

• rare	events	become	common	at	scale	

• Chunkserver	maintains	per-chunk	CRC	(64KB)



• Discussion:	Iden8fy	one	thing	that	you	would	improve	
about	GFS	and	suggest	an	alterna8ve	design



~15	years	later

• Scale	is	much	bigger	

• now	10K	servers	instead	of	1K,	100	PB	instead	of	100	TB	

• Bigger	upload	change:	updates	to	small	files	

• Around	2010:	incremental	updates	of	the	Google	
search	index



GFS	->	Colossus

• Main	scalability	limit	of	GFS:	single	master	

• fixed	by	par88oning	the	metadata	

• ~100M	files	per	master,	smaller	chunk	sizes	(1MB)	

• Reduce	storage	overhead	using	erasure	coding


