
Log-Structured	File	
Systems



Outline

• Unix	Fast	File	Systems	

• Log	structured	file	systems



Disk	Structure



Background

• I-node:	structure	for	per-file	metadata	

• contains	ownership,	permissions,	Dmestamps	+	10	datablock	
pointers	

• form	an	array,	indexed	by	“i-number”	

• array	is	explicit	in	Unix	File	system,	implicit	for	LFS	

• Indirect	blocks:	

• i-node	only	holds	a	small	number	of	datablock	ptrs	

• for	larger	files,	i-node	points	to	an	indirect	block,	which	in	turn	
points	to	the	data	blocks	

• can	have	mulDple	levels	of	indirect	blocks



Unix	File	System

• Original	Unix	file	system	was	simple	and	elegant,	but	
slow	

• achieve	only	about	2%	of	disk	bandwidth	

• What	can	explain	such	bad	performance?



Unix	File	System

• Problems:	

• blocks	too	small	

• consecuDve	blocks	of	files	not	close	together	

• i-nodes	far	from	data	

• i-nodes	of	directory	not	close	together	

• no	read-ahead



Unix	Fast	File	System

• Larger	block	size	(4K	to	8K)	

• why	not	choose	even	larger	blocks?	

• Disk	divided	into	cylinder	groups	

• Each	contains	super-block,	i-nodes,	bitmap	of	free	blocks,	
usage	summary	informaDon	

• I-nodes	are	now	spread	across	the	disk	

• keep	i-node	near	file,	i-nodes	of	a	directory	together	

• cylinder	groups	~	16	cylinders



Locality

• Key	ideas:	

• don’t	let	disk	fill	up	in	any	one	area	

• paradox:	to	achieve	locality,	must	spread	unrelated	things	
far	apart	

• result:	achieved	about	20%	of	disk	bandwidth



Locality	Policies

• Keep	directory	within	a	cylinder	group,	spread	out	
different	directories	to	other	groups	

• Allocate	runs	of	blocks	within	a	cylinder	group;	every	once	
in	a	while,	jump	to	a	new	cylinder	group	

• Layout	policy:	global	&	local	

• global	policy	allocates	files	&	directories	to	cylinder	groups	

• local	allocaDon	search	order:	

• rotaDonally	closest	in	current	cylinder,	current	cylinder	group,	
hash	to	another	cylinder	group



LFS

• Radically	different	file	system	design	

• Technology	moDvaDons:	

• CPUs	outpacing	disks	

• Big	memories	

• Disks	becoming	more	complicated	

• What	are	the	implicaDons	of	these	tech	trends?			

• Are	they	sDll	relevant	today?



ImplicaDons/Problems

• Lots	of	lidle	writes	

• because	reads	are	taken	care	of	

• because	most	files	are	small	

• Synchronous:	wait	for	disk	in	too	many	places	

• because	of	recovery	concerns	

• 5	seeks	to	create	a	file:	

• file	i-node	(create),	file	data,	directory	entry,	file	i-node	
(finalize),	directory	i-node	(mod	Dme)



Basic	Idea	of	LFS

• Log	all	data	and	meta-data	with	efficient,	large,	
sequenDal	writes		

• Log	is	the	“only	and	enDre”	truth,	there	is	nothing	
else	

• turn	the	disk	into	a	tape!	

• keep	an	index	of	the	log’s	contents	

• Rely	on	a	large	memory	to	provide	fast	access	through	
caching



Two	PotenDal	Problems

• No	update-in-place;	(almost)	nothing	has	a	
permanent	home	

• so	how	do	we	find	things?	(log	retrieval)	

• Wrap	around:	what	happens	when	end	of	disk	is	
reached?	

• no	longer	any	big,	empty	runs	available	

• how	to	prevent	fragmentaDon?



Log	Retrieval

• Keep	same	basic	file	structure	as	Unix	(data,	inode,	
indirect	blocks)	

• Let	i-nodes	float,	so	we	need	to	find	a	file’s	inode	

• SoluDon:	an	“inode	map”	that	tells	posiDon	of	inode	

• inode	map	gets	wriden	to	log	like	everything	else	

• But	need	“map	of	inode	map”	to	keep	track	of	inode	maps;	
small	enough	to	be	in	memory	

• Map	of	inode	map	gets	wriden	in	special	checkpoint	locaDon	
on	disk;	used	in	crash	recovery



LFS	Data	Structures

• Read:	

• follow:	map	of	inode	map,	to	inode	map,	to	inode,	to	block	

• get	some	locality	in	inode	map;	cache	a	lot	of	it	in	memory	

• Recover:	

• read	checkpoint,	get	map	of	map	

• roll	forward	in	log	to	update	map	of	map



Two	PotenDal	Problems

• No	update-in-place;	(almost)	nothing	has	a	
permanent	home	

• so	how	do	we	find	things?	(log	retrieval)	

• Wrap	around:	what	happens	when	end	of	disk	is	
reached?	

• no	longer	any	big,	empty	runs	available	

• how	to	prevent	fragmentaDon?



Approach	#1:	CompacDon

• Works	fine	if	you	have	a	mostly	empty	disk	

• But	suppose	90%	uDlizaDon:	

• write	10%	

• compact	90%	(read	90%,	write	90%)	

• repeat!



Approach	#2:	Threading

• Fill	in	empty	spaces	

• Start	at	the	beginning	of	disk	once	you	reach	end	

• What	is	the	problem	with	this	approach?



SoluDon:	Segmented	Log

• Use	both	compacDon	&	threading	

• compacDon:	big	free	space	

• threading:	leave	long	living	things	in	place	&	don’t	copy	

• Segmented	log:	

• chop	disk	into	a	bunch	of	large	segments	

• compacDon	within	segment,	threading	among	segments



Segmented	Log	(contd.)

• When	wriDng,	use	only	clean	segments	(i.e.,	no	live	
data)	

• Occasionally	clean	segments:	

• read	in	several,	write	out	live	data	in	compacted	form,	
leaving	some	segments	free	

• try	to	collect	long-lived	informaDon	into	segments	that	
never	need	to	be	cleaned	

• note	there	is	not	a	free	list	of	blocks,	only	a	list	of	clean	
segments



Cleaning	Issues

• Which	segments	to	clean?	

• What	informaDon	to	keep	track	per	segment?	(and	
how	to	keep	track	of	them)



Cleaning	Goals

• Want	bimodal	distribuDon:	

• small	number	of	low-uDlized	segments	(so	cleaner	can	find	
easy	segments	to	clean)	

• large	number	of	high-uDlized	segments	(so	disk	is	well	
uDlized)



Greedy	cleaner

• Pick	the	lowest	uDl	to	clean	

• Works	not	so	great	for	random	workload	

• For	“hot-cold”	workload:	even	worse



Induce	Bi-modal

• Segments	are	like	“fish”:	swimming	to	the	lep	

• Cleaner	spends	all	its	Dme	repeatedly	slinging	a	few	hot	fish	
back	

• Cold	fish	hide	lots	of	free	space,	but	cleaner	can’t	get	to	them	
fast



Induce	Bi-modal

• Cold	segment	space	more	valuable:	if	you	clean	cold	
segments,	takes	them	longer	to	come	back	

• Hot	free	space	is	less	valuable:	might	as	well	wait	a	bit	longer



Key	Feature	of	the	Paper

• Keen	awareness	of	technology	trends	

• Willing	to	radically	depart	from	convenDonal	pracDce	

• Yet	keep	sufficient	compaDbility	

• Provide	insight	with	simplified	math	

• SimulaDon	to	evaluate	and	validate	ideas	

• Rethink	what	is	primary	and	what	is	secondary	in	a	
design


