Log-Structured File
Systems




Outline




Disk Structure




Background

® |-node: structure for per-file metadata

® contains ownership, permissions, timestamps + 10 datablock
pointers

® form an array, indexed by “i-number”

® array is explicit in Unix File system, implicit for LFS




Unix File System

® Original Unix file system was simple and elegant, but
slow




Unix File System

® Problems:

® blocks too small

® consecutive blocks of files not close together




Unix Fast File System

® Larger block size (4K to 8K)

® why not choose even larger blocks?

® Disk divided into cylinder groups

® Each contains super-block, i-nodes, bitmap of free blocks,




Locality

® Key ideas:

® don’tlet disk fill up in any one area




Locality Policies

® Keep directory within a cylinder group, spread out
different directories to other groups

® Allocate runs of blocks within a cylinder group; every once
in a while, jump to a new cylinder group

- @ Layout policy: global & local |




LFS

® Radically different file system design

® Technology motivations:

® CPUs outpacing disks




Implications/Problems

® Lots of little writes

® because reads are taken care of

® because most files are small

® Synchronous: wait for disk in too many places




Basic Idea of LFS

® Log all data and meta-data with efficient, large,
sequential writes

® Logis the “only and entire” truth, there is nothing
else




Two Potential Problems

® No update-in-place; (almost) nothing has a
permanent home

® so how do we find things? (log retrieval)

~Wrap around: what happens when end oOf disk




Log Retrieval

® Keep same basic file structure as Unix (data, inode,
indirect blocks)

® Leti-nodes float, so we need to find a file’s inode

® Solution: an “inode map” that tells position of inode




LFS Data Structures

® Read:

® follow: map of inode map, to inode map, to inode, to block

® get some locality in inode map; cache a lot of it in memory

' [l




Two Potential Problems

® No update-in-place; (almost) nothing has a
permanent home

® so how do we find things? (log retrieval)




Approach #1: Compaction

HEHEH

'

o

® Works fine if you have a mostly empty disk

® But suppose 90% utilization:
® write 10%
® compact 90% (read 90%, write 90%)

® repeat!



Approach #2: Threading

® Fill in empty spaces
® Start at the beginning of disk once you reach end

® What is the problem with this approach?



Solution: Segmented Log

N~ [
b el

® Use both compaction & threading

® compaction: big free space

® threading: leave long living things in place & don’t copy
® Segmented log:

® chop disk into a bunch of large segments

® compaction within segment, threading among segments



Segmented Log (contd.)

® \When writing, use only clean segments (i.e., no live
data)

® Occasionally clean segments:

® read in several, write out live data in compacted form,




Cleaning Issues

® Which segments to clean?




Cleaning Goals

® \Want bimodal distribution:

® small number of low-utilized segments (so cleaner can find
easy segments to clean)

® large number of high-utilized segments (so disk is well
utilized)



Greedy cleaner

® Pick the lowest util to clean
® Works not so great for random workload

® For “hot-cold” workload: even worse

. Hot-and-cold

. Uniform

00 02 04 06 08 1.
Segment utilization




Induce Bi-modal

® Segments are like “fish”: swimming to the left

® Cleaner spends all its time repeatedly slinging a few hot fish

back

® Cold fish hide lots of free space, but cleaner can’t get to them

fast

F“K'“Un (‘f S('g"'(‘nls 6 }r}ﬁ)éhSh O€ t ‘[hro\g vbbl l\

0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

quldin come back

g cold fish piling up

e )
Hot-and cold

Unifoem

04 06 08 10



Induce Bi-modal

® Cold segment space more valuable: if you clean cold
segments, takes them longer to come back

® Hot free space is less valuable: might as well wait a bit longer

Fraction of segments
0.008 !a
0.007
0.006
0.005 = Let hot fish
0.004 swim farther

0.003 -

0.002 e
0001 LFS Greedy

0.000

I
|

LFS Cost-Benefn

02 04 06 08 10
Segment utilization




Key Feature of the Paper

® Keen awareness of technology trends

® Willing to radically depart from conventional practice

® Yet keep sufficient compatibility




