Shared Virtual Memory

Context

® Parallel architectures & programming models
® Bus-based shared memory multiprocessors

® h/w support for coherent shared memory

® can run both shared memory & message passing

Distributed Shared
Memory

® Radical idea: let us not have the hardware dictate
what programming model we can use

® Provide a shared address space abstraction even on
clusters

How do we provide this abstraction?

® Operating system support:

® e.g., lvy, Treadmarks, Munin

® Compiler support (Shasta)

® minimize overhead through compiler analysis

IVY Shared Virtual Memory

® Seminal system that sparked the entire field of DSM
(distributed shared memory)

® Motivations:
® sharing things on a network

- ® “embassy” system to support a network file system between

Traditional Virtual Memory

Virtual
Memory

- Page Table entry:

- If “valid”, translation exists

- If “not valid”, traps into the kernel, gets the page, re-executes
trapped instruction

- Check is made for every access; TLB serves as a cache for the
page table entries

Shared Virtual Memory

e Pool of “shared pages”: if not
local, page is not mapped

e Page table entry access bits

Virt. page # physical page #|_valid | access

e H/w detects read access to
invalid page =
e read faults : E¥E Shared
e H/w detects writes to mapped [Virtual
memory with no write access

e write faults

e (OS maintains consistency at VM
page level

e copying data
e setting access bits

BYES

® Programming model (as in coherence, consistency,
asctc

Calis -

Programming Model

® Contract between programmer and h/w

® Shared memory abstraction typically means two
related concepts:

® Coherence

Coherence vs. Consistency

® Coherence: writes are propagated to other nodes; the
writes to a particular memory location are seen in
order

Sequential Consistency

@ "The result of any execution is the same as if the
operations of all the processes were executed in some
sequential order and the operations of each individual
process appear in this sequence in the order specified
by its program” (Lamport, 1979)

P W(x)a

Sequential Consistency

@ "The result of any execution is the same as if the
operations of all the processes were executed in some
sequential order and the operations of each individual
process appear in this sequence in the order specified
by its program” (Lamport, 1979)

P W(x)a

Other Consistency Models

® Can we have consistency models stronger than
sequential consistency?

Weakening Sequential

Consistency: Causal Consistency

@ Writes that are potfentially causally related must be
seen by all processes in the same order. Concurrent
writes may be seen in a different order on different
machines. (Hutto and Ahamad, 1990)

p1: W(x)a >W (x)c

p2: \R(:z:)a—>W(:E)b

More Weakening: FIFO
Consistency

@ "Writes done by a single process are seen by all other processes in
the order in which they were issued, but writes from different
processes may be seen in a different order by different
processes” (PRAM consistency, Lipton and Sandberg 1988)

p1: W(x)a

p2: \R(az)a—>W(a:)b—>W(:I;)c

myl rg e SR -,1- R = e e o A e ma e e P 1:.-.711 ;I‘\‘a’?-.-"":avj.—y T -s‘J' YYD s

Programming Complexity

Process p; Process p-

lvy DSM

® Goal: provide sequentially consistent shared memory

® Baseline Implementation:

Read Faults

® Handler on client:

® asks manager

Pseudocode

Manager:

Lock (Info[p] .1lock) ;
Info[p] .copyset =
Info[p] .copyset U {regNode};
ask Info[p] .owner to send p;
receive confirmation from regNode;
Lock (Ptable[p] .1lock) ; Unlock (Info[p] .1lock) ;
ask manager for p;
receive p;

Read Fault Handler:

send confirmation to manager;
Ptable[p] .access = read;
Unlock (Ptable[p] .1lock) ;

Read Server:

Lock (Ptable[p] .lock) ;
Ptable[p] .access = read;
send copy of p;

Unlock (Ptable[p] .1lock) ;

Write Faults

® Handling includes invalidations:

® make request to manager

- ® copies areinvalidated

Write Pseudocode

Write Fault Handler:

Lock (Ptable[p] .1lock) ;

ask manager for p;

receive p;

send confirmation to manager;

Ptable[p] .access = write;
Unlock (Ptable[p] .1lock) ;

Manager:

Lock (Info[p] .lock) ;

Invalid(p, Info[p].copyset)
Info[p] .copyset = {};

ask Info[p] .owner to send p;
receive confirmation from regNode;
Unlock (Info[p] .1lock) ;

Write Server:

Lock (Ptable[p] .1lock) ;
Ptable[p] .access = nil;
send copy of p;

Unlock (Ptable[p] .lock) ;

Scenarios

® Consider P1 and P2 caching a page with “read” perms

Question

Scenarios

® Consider P1 is owner of page

® P2 performs aread

Improved Manager

Read Server:

Read Fault Handler: Lock (Ptable[p] . lock);
If I am owner {

Ptable[p] .access = read;
Ptable[p] .copyset =
Ptable[p] .copyset U {reqNode};
send copy of p;
} else {

forward request to probable owner;

Lock (Ptable[p] .lock) ;

ask manager for p;
receive p;

Ptable[p] .access = read;
Unlock (Ptable[p] .lock) ;

}
Unlock (Ptable[p] .lock) ;

Performance Questions

~ ® In what situations will IVY perform well?

