
Virtual Machines

Background

• IBM sold expensive mainframes to large organizations

• Some wanted to run different OSes at the same time
(because applications were developed on old OSes)

• Solution: IBM developed virtual machine monitor (VMM) or
hypervisor (circa 1974)

• Monitor sits between one or more OSes and HW

• Gives the illusion that each OS controls the HW

• Another level of indirection

• apps assume separate CPU, unlimited memory

• now another layer to provide similar illusion to OS

Today’s World

• Why VMMs now? Are there new reasons for using
VMMs?

• What are the key challenges/issues in building VMMs?

Resurgence in VMs

• Sparked by work on Disco (system from Stanford/
Rosenblum)

• Resulted in VMware -- now a market leader in
virtualization

VM Observations

• Instruction-set architectures is one of the few well-
documented complex interfaces

• interface includes meaning of interrupt numbers, etc.

• Anything that implements the interface can execute
the software for the platform

• Virtual machine is a software implementation of this
interface

Outline

• Disco project

• Design space for virtualization

• Xen project

Traditional Process-OS Model

• Processes run in user mode

• OS runs in privileged (kernel) mode

• can execute instructions to setup/update TLB

• can execute instructions to install trap handlers

• Processes “trap” into OS

• when they want services from the OS

• or when they have “faults”

Virtualizing CPU

• Basic technique: limited direct execution

• Ideal case:

• VMM jumps to first instruction of the OS and lets the OS run

• Generalize a context switch on processes to machine switch

• save the entire machine state of one OS including registers,
PC, and privileged hardware state

• restore the target OS state

• Guest OS cannot run privileged instructions (like TLB ops)

• VMM must intercept these ops and emulate them

System Call Primer

• Consider: open(char*path, int flags, mode_t mode)

open:
push dword mode
push dword flags
push dword path
mov eax, 5
push eax
int 80h

• Process code, hardware, and OS cooperate to
implement the interface

• Trap: switches to kernel mode, jumps to OS trap
handler; trap handlers registered by OS at startup

Virtualized Platform

• Application remains the same

• Trap handler is inside the VMM; executed in kernel mode

• What should the VMM do?

• does not know the details of the guest OSes

• but knows where the OS’s trap handler is

• when the guest OS attempted to install trap handlers, VMM
intercepts the call and records the information

• so jump into OS; which executes the actual handler, performs
another privileged instruction (iret on x86), bounces back into VMM

• VMM performs a real return from trap and returns to app

Execution Privileges

• OS cannot be in kernel mode

• Disco project: MIPS hardware had a supervisor mode

• kernel > supervisor > user

• supervisor can access little more memory than user, but
cannot execute privileged instructions

• No extra mode:

• run OS in user mode and use memory protection (page
tables and TLBs) to protect OS data structures appropriately

• x86 has 4 protection rings, so extra mode is available

Virtual Memory Primer

• TLB: fast cache used in every instruction

• TLB miss handled by OS in some cases (software TLB)

• In some other cases, hardware fills TLB using a page table

• OS manages the page table

• Hardware is a consumer of the page table

• Question: what issues arise with virtual machines?

• How do we tackle such issues?

Virtualizing Memory

• Normally:

• each program has a private address space

• OS virtualizes memory for its processes

• Now:

• multiple OSes can share the actual physical memory and
must do so transparently

• So we have virtual memory (VM), physical memory (PM),
and machine memory (MM)

• OS maps virtual to physical addresses via its per-process
page tables, VMM maps the resulting physical address to
machine memory via its per-OS page tables

2-Level Translation

• Let us consider software managed TLB

• In a virtualized system:

• Application traps into VMM; VMM jumps to OS trap handler

• OS tries to install (VM, PM) in TLB, but this traps

• VMM installs (VM, MM), returns to OS and then App

• VMM maintains (PM, MM) mappings and even does paging

Information Gap

• VMM often doesn’t know what the OS is doing

• For example, if OS has nothing else to run:

• go into an idle loop and spin waiting for the next interrupt

• Another example:

• most OSes zero pages before giving to processes for
security

• VMM also has to the do the same, resulting in double work!

• One option is inference of OS behavior, another is
paravirtualization

Design Space

App is not modified App is modified

OS is not modified Disco
(VMWare) ---

OS is modified Xen Denali

Xen

• Key idea: change the machine-OS interface to make
VMs simpler and higher performance

• Pros:

• better performance on x86

• some simplifications in VM implementation

• OS might want to know that it is virtualized

• Cons: must modify the guest OS

• Aims for performance isolation

Xen & Paravirtualization

• VM-style virtualization on an uncooperative architecture

• Support full-featured multi-user multi-application OSes

• contrast with Denali: thin OSes for lightweight services

• OSes are ported to a new “x86-xeno” architecture

• call to Xen for privileged operations

• porting requires source code

Fully virtualizing the MMU

• Constraints:

• Hardware-based TLB

• No tags on TLB

• Use shadow page tables

• Guest OS maintains “virtual to physical mem” map

• VMM maintains “virtual to machine mem” map

• Guest reads of page table is free

• Guest writes need switching to VMM

• Accessed/dirty bits require upcalls into OS

Paravirtualizing the MMU

• Paravirtualization obviates the need for shadows

• modify the guest OS to handle sparse memory maps

• Guest OSes allocate and manage their own PTs

• map Xen into top 64 MB in all address spaces

• Updates to page tables must be passed to Xen for
validation (use batching)

• Validation rules:

• only map a page if owned by the requesting guest OS

• only map a page containing PTEs for read-only access

• Xen tracks page ownership and current use

Memory Benchmarks

I/O Virtualization

• Need to minimize cost of transferring bulk data via
Xen

• copying costs time

• copying pollutes caches

• copying requires intermediate memory

• Device classes

• network

• disk

• graphics

I/O Virtualization

• Xen uses rings of buffer descriptors

• descriptors are small, cheap to copy and validate

• descriptors refer to bulk data

• no need to map or copy the data into Xen’s address space

• exception: checking network packet headers prior to TX

• Use zero-copy DMA to transfer bulk data between
hardware and guest OS

• net TX: DMA packet payload separately from header

• net RX: page-flip receive buffers into guest address space

TCP Results

Other Nice Ideas

• Domain 0:

• run the VMM management at user level

• easier to debug

• Network and disk are virtual devices

• virtual block devices: similar to SCSI disks

• model each guest OS has a virtual network interface
connected to a virtual firewall router

