Experience with Processes
and Monitors in Mesa




Background

® Focus of this paper: light-weight processes (threads)
and how they synchronize with each other

® History:




Background

® |arge system, many programmers, many applications

® Module-based programming with information hiding




® Discuss:
® what you liked about the paper?

- ® what you disliked?




Programming model

® T[wo choices for programming concurrency:
® Shared memory

® Message passing

® Needham & Lauer claimed the two models are duals




Synchronizing Processes

® Goal: mutual exclusion

® An option: non-preemptive scheduler

® Process owns the processor till it yields




Mesa Language Constructs

® |ight weight processes




Light weight Processes

® FEasy forking and synchronization
® Shared address space

® Fast performance for creation, switching, and
synchronization

® |ow storage overheads




Monitors

® Monitor lock for synchronization

® Tied to module structure of the language; makes it clear
what is being monitored

~—
s




Modules and Monitors

® Three types of procedures in a monitor module:
® entry (acquires and releases lock)

® internal (no locking done): can’t be called from outside the
module

® external (no locking done): externally callable




Condition Variables

® Notify semantics options:

® Cede lock to waking process

® Notifier keeps lock, waking process gets put in front of
monitor queue




Notification in Mesa

® |tis a“hint”. Notifying process keeps the lock/control

® Other related aspects of notify:

® Timeouts

® Broadcasts: why is this useful?




Deadlocks

® Typical deadlock scenarios:
® Recursion on the same module

® Enter multiple monitors in different orders

® Process | obtains monitor A followed by B; Process 2
obtains monitor B followed by A




Other Issues

® | ock granularity

® introduced monitored records so that the same monitor
code could handle multiple instances of something in parallel

® |nterrupts: interrupt handler can’t block waiting

B R s




Priority, locks, scheduling

® There are subtle interactions between priorities and
scheduling and holding locks

® Mars Pathfinder:




Priority Inversion

® “|nformation bus” is a shared memory region shared
across the following processes:

® Bus manager (high priority process)
® Meteorological data gatherer (low priority)

b

D - - 1 » 0 O f 1 -
NESC DUs IManager has Jih 101 a wiilie




Priority Inversion

® Another thread: communications task
® Medium priority, long running task

® Sometimes the communications task would get scheduled
instead of the data gatherer

® Neither the lower priority data gatherer nor the higher

D ol DU IT1AIla®C wouid run




Other Issues

® FExceptions
® Must restore monitor invariant as you unwind the stack

® The idea that you just kill a process and release the locks is
naive




Performance

® Context switch is very fast
® Two procedure calls

® But ran only on uniprocessor systems

® Concurrency mostly used for clean structuring purposes




Key Features of the Paper

® Describes the experiences designers had with
designing, building, and using a large system that relies

on lightweight processes

- ® Describes various subtle issues of implementing

NS




Discussion

® What about distributed memory systems or clusters!?
What is a good programming model for concurrency
in such systems!

- ® What other issues come up for multi-core systems?!




